
https://doi.org/10.1007/s11075-020-00959-w

ORIGINAL PAPER

Alternatives to the EM algorithm for ML estimation
of location, scatter matrix, and degree of freedom
of the Student t distribution

Marzieh Hasannasab1 · Johannes Hertrich1 ·Friederike Laus2 ·
Gabriele Steidl1

Received: 16 October 2019 / Accepted: 2 June 2020 /
© The Author(s) 2020, corrected publication 2021

Abstract
In this paper, we consider maximum likelihood estimations of the degree of freedom
parameter ν, the location parameter μ and the scatter matrix Σ of the multivariate Stu-
dent t distribution. In particular, we are interested in estimating the degree of freedom
parameter ν that determines the tails of the corresponding probability density function
and was rarely considered in detail in the literature so far. We prove that under certain
assumptions a minimizer of the negative log-likelihood function exists, where we have
to take special care of the case ν → ∞, for which the Student t distribution approaches
the Gaussian distribution. As alternatives to the classical EM algorithm we propose
three other algorithms which cannot be interpreted as EM algorithm. For fixed ν, the
first algorithm is an accelerated EM algorithm known from the literature. However, since
we do not fix ν, we cannot apply standard convergence results for the EM algorithm.
The other two algorithms differ from this algorithm in the iteration step for ν. We show
how the objective function behaves for the different updates of ν and prove for all
three algorithms that it decreases in each iteration step. We compare the algorithms as
well as some accelerated versions by numerical simulation and apply one of them for
estimating the degree of freedom parameter in images corrupted by Student t noise.

The original online version of this article was revised due to a retrospective Open Access order.

� Marzieh Hasannasab
hasannas@math.tu-berlin.de

Johannes Hertrich
j.hertrich@math.tu-berlin.de

Gabriele Steidl
steidl@math.tu-berlin.de

1 Institute of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623,
Berlin, Germany

2 Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Germany

Numerical Algorithms (2021) 87:77–118

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-020-00959-w&domain=pdf
http://orcid.org/0000-0002-3975-5545
mailto: hasannas@math.tu-berlin.de
mailto: j.hertrich@math.tu-berlin.de
mailto: steidl@math.tu-berlin.de

Keywords Accelerated EM Algorithm · Student t distribution · Image denoising ·
Robust denoising · ML estimators · Cauchy noise · Nonlocal myriad filters

1 Introduction

The motivation for this work arises from certain tasks in image processing, where the
robustness of methods plays an important role. In this context, the Student t distri-
bution and the closely related Student t mixture models became popular in various
image processing tasks. In [31] it has been shown that Student t mixture models are
superior to Gaussian mixture models for modeling image patches and the authors
proposed an application in image compression. Image denoising based on Student t

models was addressed in [17] and image deblurring in [6, 34]. Further applications
include robust image segmentation [4, 25, 29] as well as robust registration [8, 35].

In one dimension and for ν = 1, the Student t distribution coincides with the
one-dimensional Cauchy distribution. This distribution has been proposed to model
a very impulsive noise behavior and one of the first papers which suggested a
variational approach in connection with wavelet shrinkage for denoising of images
corrupted by Cauchy noise was [3]. A variational method consisting of a data term
that resembles the noise statistics and a total variation regularization term has been
introduced in [23, 28]. Based on an ML approach the authors of [16] introduced
a so-called generalized myriad filter that estimates both the location and the scale
parameter of the Cauchy distribution. They used the filter in a nonlocal denoising
approach, where for each pixel of the image they chose as samples of the distribu-
tion those pixels having a similar neighborhood and replaced the initial pixel by its
filtered version. We also want to mention that a unified framework for images cor-
rupted by white noise that can handle (range constrained) Cauchy noise as well was
suggested in [14].

In contrast to the above pixelwise replacement, the state-of-the-art algorithm of
Lebrun et al. [18] for denoising images corrupted by white Gaussian noise restores
the image patchwise based on a maximum a posteriori approach. In the Gaussian
setting, their approach is equivalent to minimum mean square error estimation, and
more general, the resulting estimator can be seen as a particular instance of a best lin-
ear unbiased estimator (BLUE). For denoising images corrupted by additive Cauchy
noise, a similar approach was addressed in [17] based on ML estimation for the fam-
ily of Student t distributions, of which the Cauchy distribution forms a special case.
The authors call this approach generalized multivariate myriad filter.

However, all these approaches assume that the degree of freedom parameter ν of
the Student t distribution is known, which might not be the case in practice. In this
paper we consider the estimation of the degree of freedom parameter based on an
ML approach. In contrast to maximum likelihood estimators of the location and/or
scatter parameter(s) μ and Σ , to the best of our knowledge the question of exis-
tence of a joint maximum likelihood estimator has not been analyzed before and in
this paper we provide first results in this direction. Usually the likelihood function
of the Student t distributions and mixture models are minimized using the EM algo-
rithm derived e.g. in [13, 21, 22, 26]. For fixed ν, there exists an accelerated EM

Numerical Algorithms (2021) 87:77–11878

algorithm [12, 24, 32] which appears to be more efficient than the classical one for
smaller parameters ν. We examine the convergence of the accelerated version if also
the degree of freedom parameter ν has to be estimated. Also for unknown degrees of
freedom, there exist an accelerated version of the EM algorithm, the so-called ECME
algorithm [20] which differs from our algorithm. Further, we propose two modifi-
cations of the ν iteration step which lead to efficient algorithms for a wide range
of parameters ν. Finally, we address further accelerations of our algorithms by the
squared iterative methods (SQUAREM) [33] and the damped Anderson acceleration
with restarts and ε-monotonicity (DAAREM) [9].

The paper is organized as follows: In Section 2 we introduce the Student t distri-
bution, the negative log-likelihood function L and their derivatives. The question of
the existence of a minimizer of L is addressed in Section 3. Section 4 deals with the
solution of the equation arising when setting the gradient of L with respect to ν to
zero. The results of this section will be important for the convergence consideration
of our algorithms in the Section 5. We propose three alternatives of the classical EM
algorithm and prove that the objective function L decreases for the iterates produced
by these algorithms. Finally, we provide two kinds of numerical results in Section 5.
First, we compare the different algorithms by numerical examples which indicate that
the new ν iterations are very efficient for estimating ν of different magnitudes. Sec-
ond, we come back to the original motivation of this paper and estimate the degree
of freedom parameter ν from images corrupted by one-dimensional Student t noise.
The code is provided online1.

2 Likelihood of themultivariate student t distribution

The density function of the d-dimensional Student t distribution Tν(μ, Σ) with ν >

0 degrees of freedom, location paramter μ ∈ Rd and symmetric, positive definite
scatter matrix Σ ∈ SPD(d) is given by

p(x|ν, μ, Σ) = �
(

d+ν
2

)

�
(

ν
2

)
ν

d
2 π

d
2 |Σ | 1

2

1
(

1 + 1
ν
(x − μ)TΣ−1(x − μ)

) d+ν
2

,

with the Gamma function �(s) := ∫∞
0 t s−1e−t dt . The expectation of the Student t

distribution is E(X) = μ for ν > 1 and the covariance matrix is given by Cov(X) =
ν

ν−2Σ for ν > 2; otherwise, the quantities are undefined. The smaller the value
of ν, the heavier the tails of the Tν(μ, Σ) distribution. For ν → ∞, the Student t

distribution Tν(μ, Σ) converges to the normal distribution N (μ, Σ) and for ν = 0
it is related to the projected normal distribution on the sphere Sd−1 ⊂ Rd . Figure 1
illustrates this behavior for the one-dimensional standard Student t distribution.

As the normal distribution, the d-dimensional Student t distribution belongs to
the class of elliptically symmetric distributions. These distributions are stable under
linear transforms in the following sense: Let X ∼ Tν(μ, Σ) and A ∈ Rd×d be an

1https://github.com/johertrich/Alternatives-EM-Studentt

Numerical Algorithms (2021) 87:77–118 79

https://github.com/johertrich/Alternatives-EM-Studentt

Fig. 1 Standard Student t distribution Tν(0, 1) for different values of ν in comparison with the standard
normal distribution N (0, 1)

invertible matrix and let b ∈ Rd . Then AX+b ∼ Tν

(
Aμ + b, AΣAT

)
. Furthermore,

the Student t distribution Tν(μ, Σ) admits the following stochastic representation,
which can be used to generate samples from Tν(μ, Σ) based on samples from
the multivariate standard normal distribution N (0, I) and the Gamma distribution
�
(

ν
2 , ν

2

)
: Let Z ∼ N (0, I) and Y ∼ �

(
ν
2 , ν

2

)
be independent, then

X = μ + Σ
1
2 Z√
Y

∼ Tν(μ, Σ). (1)

For i.i.d. samples xi ∈ Rd , i = 1, . . . , n, the likelihood function of the Student t

distribution Tν(μ, Σ) is given by

L(ν,μ,Σ |x1,. . . ,xn)= �
(

d+ν
2

)n

�
(

ν
2

)n
(πν)

nd
2 |Σ | n

2

n∏

i=1

1
(

1+ 1
ν
(xi−μ)TΣ−1(xi − μ)

) d+ν
2

,

and the log-likelihood function by

�(ν, μ,Σ |x1, . . . , xn) = n log
(
�
(

d+ν
2

))− n log
(
�
(

ν
2

))− nd
2 log(πν)

−n

2
log |Σ | − d+ν

2

n∑

i=1

log

(
1 + 1

ν
(xi − μ)TΣ−1(xi − μ)

)
.

Numerical Algorithms (2021) 87:77–11880

In the following, we are interested in the negative log-likelihood function, which up
to the factor 2

n
and weights wi = 1

n
reads as

L(ν, μ, Σ) = −2 log
(
�
(

d+ν
2

))+ 2 log
(
�
(

ν
2

))− ν log(ν)

+(d + ν)

n∑

i=1

wi log
(
ν + (xi − μ)TΣ−1(xi − μ)

)
+ log |Σ | .

In this paper, we allow for arbitrary weights from the open probability simplex �̊n :={
w = (w1, . . . , wn) ∈ Rn

>0 :∑n
i=1 wi = 1

}
. In this way, we might express different

levels of confidence in single samples or handle the occurrence of multiple samples.

Using ∂ log(|X|)
∂X

= X−1 and ∂aTX−1b
∂X

= −(X−T
)
abT
(
X−T

)
(see [27]), the derivatives

of L with respect to μ, Σ and ν are given by

∂L

∂μ
(ν, μ, Σ) = −2(d + ν)

n∑

i=1

wi

Σ−1(xi − μ)

ν + (xi − μ)TΣ−1(xi − μ)
,

∂L

∂Σ
(ν, μ, Σ) = −(d + ν)

n∑

i=1

wi

Σ−1(xi − μ)(xi − μ)TΣ−1

ν + (xi − μ)TΣ−1(xi − μ)
+ Σ−1,

∂L

∂ν
(ν, μ, Σ) = φ

(ν

2

)
− φ

(
ν + d

2

)
+

n∑

i=1

wi

(
ν + d

ν + (xi − μ)TΣ−1(xi − μ)

− log

(
ν + d

ν + (xi − μ)TΣ−1(xi − μ)

)
− 1

)
,

with

φ(x) := ψ(x) − log(x), x > 0

and the digamma function

ψ(x) = d

dx
log (�(x)) = �′(x)

�(x)
.

Setting the derivatives to zero results in the equations

0 =
n∑

i=1

wi

xi − μ

ν + (xi − μ)TΣ−1(xi − μ)
, (2)

I = (d + ν)

n∑

i=1

wi

Σ− 1
2 (xi − μ)(xi − μ)TΣ− 1

2

ν + (xi − μ)TΣ−1(xi − μ)
, (3)

0 = F
(ν

2

)
:= φ

(ν

2

)
− φ

(
ν + d

2

)

+
n∑

i=1

wi

(
ν+d

ν+(xi−μ)TΣ−1(xi−μ)
− log

(
ν+d

ν+(xi−μ)TΣ−1(xi−μ)

)
− 1
)

. (4)

Numerical Algorithms (2021) 87:77–118 81

Computing the trace of both sides of (3) and using the linearity and permutation
invariance of the trace operator we obtain

d = tr(I) = (d + ν)

n∑

i=1

wi

tr
(
Σ− 1

2 (xi − μ)(xi − μ)TΣ− 1
2

)

ν + (xi − μ)TΣ−1(xi − μ)

= (d + ν)

n∑

i=1

wi

(xi − μ)TΣ−1(xi − μ)

ν + (xi − μ)TΣ−1(xi − μ)
,

which yields

1 = (d + ν)

n∑

i=1

wi

1

ν + (xi − μ)TΣ−1(xi − μ)
.

We are interested in critical points of the negative log-likelihood function L, i.e., in
solutions (μ, Σ, ν) of (2)–(4), and in particular in minimizers of L.

3 Existence of critical points

In this section, we examine whether the negative log-likelihood function L has a
minimizer, where we restrict our attention to the case μ = 0. For an approach how
to extend the results to arbitrary μ for fixed ν we refer to [17]. To the best of our
knowledge, this is the first work that provides results in this direction. The question
of existence is, however, crucial in the context of ML estimation, since it lays the
foundation for any convergence result for the EM algorithm or its variants. In fact,
the authors of [13] observed the divergence of the EM algorithm in some of their
numerical experiments, which is in accordance with our observations.

For fixed ν > 0, it is known that there exists a unique solution of (3) and for
ν = 0 that there exist solutions of (3) which differ only by a multiplicative positive
constant (see, e.g., [17]). In contrast, if we do not fix ν, we have roughly to distinguish
between the two cases that the samples tend to come from a Gaussian distribution,
i.e., ν → ∞, or not. The results are presented in Theorem 1.

We make the following general assumption:

Assumption 1 Any subset of less or equal d samples xi , i ∈ {1, . . . , n} is linearly
independent and max{wi : i = 1, . . . , n} < 1

d
.

For μ = 0, the negative log-likelihood function becomes

L(ν,Σ) := −2 log

(
�

(
d + ν

2

))
+ 2 log

(
�
(ν

2

))
− ν log(ν)

+(d + ν)

n∑

i=1

wi log
(
ν + xT

i Σ−1xi

)
+ log(|Σ |)

= −2 log

(
�

(
d + ν

2

))
+ 2 log

(
�
(ν

2

))
− ν log(ν)

+(d + ν) log(ν) + (d + ν)

n∑

i=1

wi log

(
1 + 1

ν
xT
i Σ−1xi

)
+ log(|Σ |).

Numerical Algorithms (2021) 87:77–11882

Further, for a fixed ν > 0, set

Lν(Σ) := (d + ν)

n∑

i=1

wi log
(
ν + xT

i Σ−1xi

)
+ log(|Σ |).

To prove the next existence theorem we will need two lemmas, whose proofs are
given in the Appendix.

Theorem 1 Let xi ∈ Rd , i = 1, . . . , n andw ∈ �̊n fulfill Assumption 1. Then exactly
one of the following statements holds:

(i) There exists a minimizing sequence (νr , Σr)r of L, such that {νr : r ∈ N} has
a finite cluster point. Then we have argmin(ν,Σ)∈R>0×SPD(d)L(ν, Σ) 	= ∅ and
every (ν̂, Σ̂) ∈ argmin(ν,Σ)∈R>0×SPD(d)L(ν, Σ) is a critical point of L.

(ii) For every minimizing sequence (νr , Σr)r of L(ν, Σ) we have lim
r→∞νr = ∞.

Then (Σr)r converges to the maximum likelihood estimator Σ̂ =∑n
i=1 wixix

T
i

of the normal distribution N (0, Σ).

Proof Case 1: Assume that there exists a minimizing sequence (νr , Σr)r of L, such
that (νr)r has a bounded subsequence. In particular, using Lemma 4, we have that
(νr)r has a cluster point ν∗ > 0 and a subsequence (νrk)k converging to ν∗. Clearly,
the sequence (νrk , Σrk)k is again a minimizing sequence so that we skip the second
index in the following. By Lemma 5, the set {Σr : r ∈ N} is a compact subset of
SPD(d). Therefore there exists a subsequence (Σrk)k which converges to some Σ∗ ∈
SPD(d). Now we have by continuity of L(ν, Σ) that

L(ν∗, Σ∗) = lim
k→∞ L(νrk , Σrk) = min

(ν,Σ)∈R>0×SPD(d)
L(ν, Σ).

Case 2: Assume that for every minimizing sequence (νr , Σr)r it holds that νr → ∞
as r → ∞. We rewrite the likelihood function as

L(ν, Σ) = 2 log

⎛

⎝�
(

ν
2

)
ν
2

d
2

�
(

d+ν
2

)

⎞

⎠+ d log(2)

+(d + ν)

n∑

i=1

wi log

(
1 + 1

ν
xT
i Σ−1xi

)
+ log(|Σ |).

Since

lim
ν→∞

�
(

ν
2

)
ν
2

d
2

�
(

d+ν
2

) = 1,

we obtain

lim
r→∞L(νr , Σr) = d log(2)+ lim

νr→∞(d+νr)

n∑

i=1

wi log

(
1 + 1

νr

xT
i Σ−1

r xi

)
+log(|Σr |).

(5)
Next we show by contradiction that {Σr : r ∈ N} is in SPD(d) and bounded: Denote
the eigenvalues of Σr by λr1 ≥ · · · ≥ λrd . Assume that either {λr1 : r ∈ N} is

Numerical Algorithms (2021) 87:77–118 83

unbounded or that {λrd : r ∈ N} has zero as a cluster point. Then, we know by
[17, Theorem 4.3] that there exists a subsequence of (Σr)r , which we again denote
by (Σr)r , such that for any fixed ν > 0 it holds

lim
r→∞Lν(Σr) = ∞.

Since k → (
1 + k

x

)k
is monotone increasing, for νr ≥ d + 1 we have

(d + νr)

n∑

i=1

wi log

(
1 + 1

νr

xT
i Σ−1

r xi

)
=

n∑

i=1

wi log

((
1 + 1

νr

xT
i Σ−1

r xi

)νr+d
)

≥
n∑

i=1

wi log

((
1 + 1

νr

xT
i Σ−1

r xi

)νr
)

≥
n∑

i=1

wi log

((
1 + 1

d + 1
xT
i Σ−1

r xi

)d+1
)

= (d+1)

n∑

i=1

wi log

(
1 + 1

d + 1
xT
i Σ−1

r xi

)

≥ (d + 1)

n∑

i=1

wi log
(

1 + xT
i Σ−1

r xi

)

− log(d + 1)d+1.

By (5) this yields

lim
r→∞L(νr , Σr) ≥ d log(2) − log(d + 1)d+1

+ lim
r→∞(d + 1)

n∑

i=1

wi log
(

1 + xT
i Σ−1

r xi

)
+ log(|Σr |)

= d log(2) − log(d + 1)d+1 + lim
r→∞L1(Σr) = ∞.

This contradicts the assumption that (νr , Σr)r is a minimizing sequence of L. Hence,
{Σr : r ∈ N} is a bounded subset of SPD(d).

Finally, we show that any subsequence of (Σr)r has a subsequence which converges
to Σ̂ =∑n

i=1 wixix
T
i . Then the whole sequence (Σr)r converges to Σ̂ .

Let
(
Σrk

)
k

be a subsequence of (Σr)r . Since it is bounded, it has a convergent

subsequence
(
Σrkl

)

l
which converges to some Σ̃ ∈ {Σr : r ∈ N} ⊂ SPD(d). For

simplicity, we denote
(
Σrkl

)

l
again by (Σr)r . Since (Σr)r is converges, we know

that also
(
xT
i Σ−1

r xi

)
r

converges and is bounded. By lim
r→∞νr = ∞ we know that the

functions x →
(

1 + x
νr

)νr

converge locally uniformly to x → exp(x) as r → ∞.

Numerical Algorithms (2021) 87:77–11884

Thus we obtain

lim
r→∞(d + νr)

n∑

i=1

wi log

(
1 + 1

νr

xT
i Σ−1

r xi

)

= lim
r→∞

n∑

i=1

wi log

((
1 + 1

νr

xT
i Σ−1

r xi

)d+νr
)

= lim
r→∞

n∑

i=1

wi log

(

lim
r→∞

(
1 + 1

νr

xT
i Σ−1

r xi

)νr
(

1 + 1

νr

xT
i Σ−1

r xi

)d
)

= lim
r→∞

n∑

i=1

wi log

(
lim

r→∞

(
1 + 1

νr

xT
i Σ−1

r xi

)νr
)

=
n∑

i=1

wi log
(

exp
(
xT
i Σ̃−1xi

))
=

n∑

i=1

wix
T
i Σ̃−1xi .

Hence, we have

inf
(ν,Σ)∈R>0×SPD(d)

L(ν, Σ) = lim
r→∞L(νr , Σr) = d log(2) +

n∑

i=1

wix
T
i Σ̃−1xi + log

(∣∣∣Σ̃
∣∣∣
)

.

By taking the derivative with respect to Σ we see that the right-hand side is minimal
if and only if Σ = Σ̂ = ∑n

i=1 wixix
T
i . On the other hand, by similar computations

as above we get

inf
(ν,Σ)∈R>0×SPD(d)

L(ν, Σ) ≤ lim
r→∞L

(
νr , Σ̂

)

= d log(2) + log
(∣∣
∣Σ̂
∣
∣
∣
)

+ lim
vr→∞(d + νr)

n∑

i=1

wi log

(
1 + 1

νr

xT
i Σ̂−1xi

)

= d log(2) + log
(∣∣
∣Σ̂
∣∣
∣
)

+
n∑

i=1

wix
T
i Σ̂−1xi + log

(∣∣
∣Σ̂
∣∣
∣
)

,

so that Σ̃ = Σ̂ . This finishes the proof.

4 Zeros of F

In this section, we are interested in the existence of solutions of (4), i.e., in zeros of
F for arbitrary fixed μ and Σ . Setting x := ν

2 > 0, t := d
2 and

si := 1

2
(xi − μ)TΣ−1(xi − μ), i = 1, . . . , n.

Numerical Algorithms (2021) 87:77–118 85

we rewrite the function F in (4) as

F(x) = φ(x) − φ(x + t) +
n∑

i=1

wi

(
x + t

x + si
− log

(
x + t

x + si

)
− 1

)

=
n∑

i=1

wiFsi (x) =
n∑

i=1

wi

(
A(x) + Bsi (x)

)
, (6)

where
Fs(x) := A(x) + Bs(x) (7)

and

A(x) := φ(x) − φ(x + t), Bs(x) := x + t

x + s
− log

(
x + t

x + s

)
− 1.

The digamma function ψ and φ = ψ − log(·) are well examined in the literature (see
[1]). The function φ(x) is the expectation value of a random variable which is �(x, x)

distributed. It holds − 1
x

< φ(x) < − 1
2x

and it is well-known that −φ is completely
monotone. This implies that the negative of A is also completely monotone, i.e., for
all x > 0 and m ∈ N0 we have

(−1)m+1φ(m)(x) > 0, (−1)m+1A(m)(x) > 0,

in particular A < 0, A′ > 0 and A′′ < 0. Further, it is easy to check that

lim
x→0

φ(x) = −∞, lim
x→∞φ(x) = 0−, (8)

lim
x→0

A(x) = −∞, lim
x→∞A(x) = 0−. (9)

On the other hand, we have that B(x) ≡ 0 if s = t in which case Fs = A < 0 and
has therefore no zero. If s 	= t , then Bs is completely monotone, i.e., for all x > 0
and m ∈ N0,

(−1)mB(m)
s (x) > 0,

in particular Bs > 0, B ′
s < 0 and B ′′

s > 0, and

Bs(0) = t

s
− log

(
t

s

)
− 1 > 0, lim

x→∞Bs(x) = 0+.

Hence, we have
lim
x→0

Fs(x) = −∞, lim
x→∞Fs(x) = 0. (10)

If X ∼ N (μ, Σ) is a d-dimensional random vector, then Y := (X−μ)TΣ−1(X−
μ) ∼ χ2

d with E(Y) = d and V ar(Y) = 2d . Thus, we would expect that for samples
xi from such a random variable X the corresponding values (xi −μ)TΣ−1(xi −μ) lie
with high probability in the interval [d −√

2d, d +√
2d], respective si ∈ [t −√

t, t +√
t]. These considerations are reflected in the following theorem and corollary.

Theorem 2 For Fs : R>0 → R given by (7) the following relations hold true:

i) If s ∈ [t − √
t, t + √

t] ∩ R>0, then Fs(x) < 0 for all x > 0 so that Fs has no
zero.

Numerical Algorithms (2021) 87:77–11886

ii) If s > 0 and s 	∈ [t − √
t, t + √

t], then there exists x+ such that Fs(x) > 0 for
all x ≥ x+. In particular, Fs has a zero.

Proof We have

F ′
s (x) = φ′ (x) − φ′(x + t) − (s − t)2

(x + s)2(x + t)

= ψ ′(x) − ψ ′(x + t) − t

x(x + t)
− (s − t)2

(x + s)2(x + t)
.

We want to sandwich F ′
s between two rational functions Ps and Ps + Q which zeros

can easily be described.
Since the trigamma function ψ ′ has the series representation

ψ ′(x) =
∞∑

k=0

1

(x + k)2
,

see [1], we obtain

F ′
s(x) =

∞∑

k=0

1

(x + k)2
− 1

(x + k + t)2
− t

x(x + t)
− (s − t)2

(x + s)2(x + t)
. (11)

For x > 0, we have

I (x) =
∫ ∞

0

1

(x + u)2
− 1

(x + u + t)2
︸ ︷︷ ︸

g(u)

du = 1

x
− 1

x + t
= t

(x + t)x
.

Let R(x) and T (x) denote the rectangular and trapezoidal rule, respectively, for
computing the integral with step size 1. Then, we verify

R(x) =
∞∑

k=0

g(k) =
∞∑

k=0

1

(x + k)2
− 1

(x + k + t)2

so that

F ′
s(x) = (R(x) − T (x)) + (T (x) − I (x)) − (s − t)2

(x + s)2(x + t)

= 1

2

(
1

x2
− 1

(x + t)2

)
+ (T (x) − I (x)) − (s − t)2

(x + s)2(x + t)
.

By considering the first and second derivatives of g we see the integrand in I (x) is
strictly decreasing and strictly convex. Thus, Ps(x) < F ′

s(x), where

Ps(x) := 1

2

(
1

x2
− 1

(x + t)2

)
− (s − t)2

(x + s)2(x + t)

= (2tx + t2)(x + s)2 − (s − t)2x2(x + t)

2x2(x + s)2(x + t)2

= ps(x)

2x2(x + s)2(x + t)2
.

Numerical Algorithms (2021) 87:77–118 87

with ps(x) := a3x
3 + a2x

2 + a1x + a0 and

a0 = t2s2 > 0, a1 = 2st (s + t) > 0,

a2 = t
(

4s + t − (s − t)2
)

, a3 = 2
(
t − (s − t)2

)
.

For t ≥ 1, we have

a3 ≥ 0 ⇐⇒ s ∈ [t − √
t, t + √

t] (12)

and

a2 ≥ 0 ⇐⇒ s ∈ [t + 2 − √
4 + 5t, t + 2 + √

4 + 5t] ⊃ [t − √
t, t + √

t].
For t = 1

2 , it holds [t + 2 − √
4 + 5t, t + 2 + √

4 + 5t] ⊃ [0, t + √
t].

Thus, for s ∈ [t −√
t, t +√

t], by the sign rule of Descartes, ps(x) has no positive
zero which implies

0 ≤ Ps(x) < F ′
s(x) for s ∈ [t − √

t, t + √
t] ∩ R>0.

Hence, the continuous function Fs is monotone increasing and by (10) we obtain
Fs(x) < 0 for all x > 0 if s ∈ [t − √

t, t + √
t] ∩ R>0.

Let s > 0 and s 	∈ [t − √
t, t + √

t]. By

T (x) − I (x) =
∞∑

k=0

(
1

2
(g(k + 1) + g(k)) −

∫ 1

0
g(k + u) du

)

and Euler’s summation formula, we obtain

T (x) − I (x) =
∞∑

k=0

1

12

(
g′(k + 1) − g′(k)

)− 1

720
g(4)(ξk), ξk ∈ (k, k + 1)

with g′(u) = − 2
(x+u)3 + 2

(x+u+t)3 and g(4)(u) = 5!
(x+u)6 − 5!

(x+u+t)6 , so that

T (x) − I (x) = − 1

12
g′(0) +

∞∑

k=0

1

6

1

(x + ξk + t)6
− 1

6

1

(x + ξk)6

< − 1

12
g′(0) = 1

6

3tx2 + 3t2x + t3

x3(x + t)3
. (13)

Therefore, we conclude

F ′
s (x) < Ps(x) + 1

6

3tx2 + 3t2x + t3

x3(x + t)3
︸ ︷︷ ︸

Q(x)

= ps(x)x(x + t) + (tx2 + t2x + 1
3 t3)(x + s)2

2x3(x + s)2(x + t)3
.

The main coefficient of x5 of the polynomial in the numerator is 2
(
t − (s − t)2

)

which fulfills (12). Therefore, if s 	∈ [t − √
t, t + √

t], then there exists x+ large
enough such that the numerator becomes smaller than zero for all x ≥ x+. Conse-
quently, F ′

s(x) ≤ Ps(x) + Q(x) < 0 for all x ≥ x+. Thus, Fs is decreasing on
[x+, ∞). By (10), we conclude that Fs has a zero.

Numerical Algorithms (2021) 87:77–11888

The following corollary states that Fs has exactly one zero if s > t + √
t .

Unfortunately we do not have such a results for s < t − √
t .

Corollary 1 Let Fs : R>0 → R be given by (7). If s > t + √
t , t ≥ 1, then Fs has

exactly one zero.

Proof By Theorem 2ii) and since limx→0 Fs(x) = −∞ and limx→∞ = 0+, it
remains to prove that F ′

s has at most one zero. Let x0 > 0 be the smallest number
such that F ′

s(x0) = 0. We prove that F ′
s(x) < 0 for all x > x0. To this end, we show

that hs(x) := F ′
s(x)(x + s)2(x + t) is strictly decreasing. By (11) we have

hs(x) = (x + s)2(x + t)

(∞∑

k=0

1

(x + k)2
− 1

(x + k + t)2
− t

x(x + t)

)

− (s − t)2,

and for s > t further

h′
s(x) =

(
2(x + s)(x + t) + (x + s)2

)
(∞∑

k=0

1

(x + k)2
− 1

(x + k + t)2
− t

x(x + t)

)

+(x + s)2(x + t)

(∞∑

k=0

−2

(x + k)3
+ 2

(x + k + t)3
+ t (2x + t)

x2(x + t)2

)

≤ 3(x + s)2

(∞∑

k=0

1

(x + k)2
− 1

(x + k + t)2
− t

x(x + t)

)

+(x + s)2(x + t)

(∞∑

k=0

−2

(x + k)3
+ 2

(x + k + t)3
+ t (2x + t)

x2(x + t)2

)

= (x + s)2(R(x) − I (x)),

where I (x) is the integral and R(x) the corresponding rectangular rule with step size
1 of the function g := g1 + g2 defined as

g1(u) := 3

(
1

(x + u)2
− 1

(x + t + u)2

)
,

g2(u) := (x + t)

(−2

(x + u)3
+ 2

(x + t + u)3

)
.

We show that R(x)−I (x) < 0 for all x > 0. Let T (x), Ti(x) be the trapezoidal rules
with step size 1 corresponding to I (x) and Ii(x) = ∫∞

0 gi(u)du, i = 1, 2. Then it
follows

R(x)− I (x) = R(x)−T (x)+T (x)− I (x) = R(x)−T (x)+T1(x)− I1(x)+T2(x)− I2(x).

Since g2 is a decreasing, concave function, we conclude T2(x) − I2(x) < 0. Using
Euler’s summation formula in (13) for g1, we get

T1(x) − I1(x) = − 1

12
g′

1(0) − 1

720

∞∑

k=0

g
(4)
1 (ξk), ξk ∈ (k, k + 1).

Numerical Algorithms (2021) 87:77–118 89

Since g
(4)
1 is a positive function, we can write

R(x) − I (x) < R(x) − T (x) + T1(x) − I1(x) ≤ 1

2
g(0) − 1

12
g′

1(0)

= 3

2

(
1

x2
− 1

(x + t)2

)
+ 1

2
(x + t)

(−2

x3
+ 2

(x + t)3

)

− 1

2

(−1

x3
+ 1

(x + t)3

)

= t

2

(−3t + 3)x2 + (−5t2 + 3t
)
x − 2t3 + t2

x3(x + t)3
.

All coefficients of x are smaller or equal than zero for t ≥ 1 which implies that hs

is strictly decreasing.

Theorem 2 implies the following corollary.

Corollary 2 For F : R>0 → R given by (6) and δi := (xi − μ)TΣ−1(xi − μ),
i = 1, . . . , n, the following relations hold true:

i) If δi ∈ [d − √
2d, d + √

2d] ∩ R>0 for all i ∈ {1, . . . , n}, then F(x) < 0 for all
x > 0 so that F has no zero.

ii) If δi > 0 and δi 	∈ [d − √
2d, d + √

2d] for all i ∈ {1, . . . , n}, there exists x+
such that F(x) > 0 for all x ≥ x+. In particular, F has a zero.

Proof Consider F = ∑n
i=1 Fsi . If δi ∈ [d − √

2d, d + √
2d] ∩ R>0 for all i ∈

{1, . . . , n}, then we have by Theorem 2 that Fsi (x) < 0 for all x > 0. Clearly, the
same holds true for the whole function F such that it cannot have a zero.

If δi 	∈ [d − √
2d, d + √

2d] for all i ∈ {1, . . . , n}, then we know by Theorem 2
that there exist xi+ > 0 such that Fsi (x) > 0 for x ≥ xi+. Thus, F(x) > 0 for
x ≥ x+ := maxi (xi+). Since limx→0 F(x) = −∞ this implies that F has a zero.

5 Algorithms

In this section, we propose an alternative of the classical EM algorithm for comput-
ing the parameters of the Student t distribution along with convergence results. In
particular, we are interested in estimating the degree of freedom parameter ν, where
the function F is of particular interest.

Algorithm 1 with weights wi = 1
n

, i = 1, . . . , n, is the classical EM algorithm.
Note that the function in the third M-Step

Φr

(ν

2

)
:= φ

(
ν
2

)−φ

(
νr + d

2

)
+

n∑

i=1

wi

(
γi,r − log(γi,r) − 1

)

︸ ︷︷ ︸
cr

has a unique zero since by (8) the function φ < 0 is monotone increasing with
limx→∞ φ(x) = 0− and cr > 0. Concerning the convergence of the EM algorithm
it is known that the values of the objective function L(νr , μr, Σr) are monotone
decreasing in r and that a subsequence of the iterates converges to a critical point of
L(ν, μ, Σ) if such a point exists, see [5].

Numerical Algorithms (2021) 87:77–11890

Algorithm 2 distinguishes from the EM algorithm in the iteration of Σ , where the
factor 1

n∑

i=1
wiγi,r

is incorporated now. The computation of this factor requires no addi-

tional computational effort, but speeds up the performance in particular for smaller
ν. Such kind of acceleration was suggested in [12, 24]. For fixed ν ≥ 1, it was shown
in [32] that this algorithm is indeed an EM algorithm arising from another choice of
the hidden variable than used in the standard approach, see also [15]. Thus, it follows
for fixed ν ≥ 1 that the sequence L(ν, μr, Σr) is monotone decreasing. However, we
also iterate over ν. In contrast to the EM Algorithm 1 our ν iteration step depends on
μr+1 and Σr+1 instead of μr and Σr . This is important for our convergence results.
Note that for both cases, the accelerated algorithm can no longer be interpreted as an
EM algorithm, so that the convergence results of the classical EM approach are no
longer available.

Let us mention that a Jacobi variant of Algorithm 2 for fixed ν, i.e.,

Σr+1 =
n∑

i=1

wiγi,r (xi − μr)(xi − μr)
T

∑n
i=1 wiγi,r

,

with μr instead of μr+1 including a convergence proof was suggested in [17]. The
main reason for this index choice was that we were able to prove monotone conver-
gence of a simplified version of the algorithm for estimating the location and scale
of Cauchy noise (d = 1, ν = 1) which could be not achieved with the variant

Numerical Algorithms (2021) 87:77–118 91

incorporating μr+1 (see [16]). This simplified version is known as myriad filter in
image processing. In this paper, we keep the original variant from the EM algorithm
(14) since we are mainly interested in the computation of ν.

Instead of the above algorithms we suggest to take the critical point (4) more
directly into account in the next two algorithms.

Finally, Algorithm 4 computes the update of ν by directly finding a zero of the
whole function F in (4) given μr and Σr . The existence of such a zero was discussed
in the previous section. The zero computation is done by an inner loop which iterates
the update step of ν from Algorithm 3. We will see that the iteration converge indeed
to a zero of F .

Numerical Algorithms (2021) 87:77–11892

In the rest of this section, we prove that the sequence (L(νr , μ, r, Σr))r gener-
ated by Algorithms 2 and 3 decreases in each iteration step and that there exists a
subsequence of the iterates which converges to a critical point.

We will need the following auxiliary lemma.

Lemma 1 Let Fa, Fb : R>0 → R be continuous functions, where Fa is strictly
increasing and Fb is strictly decreasing. Define F := Fa + Fb. For any initial value
x0 > 0 assume that the sequence generated by

xl+1 = zero of Fa(x) + Fb(xl)

is uniquely determined, i.e., the functions on the right-hand side have a unique zero.
Then it holds

i) If F(x0) < 0, then (xl)l is strictly increasing and F(x) < 0 for all x ∈ [xl, xl+1],
l ∈ N0.

ii) If F(x0) > 0, then (xl)l is strictly decreasing and F(x) > 0 for all x ∈
[xl+1, xl], l ∈ N0.

Furthermore, assume that there exists x− > 0 with F(x) < 0 for all x < x− and
x+ > 0 with F(x) > 0 for all x > x+. Then, the sequence (xl)l converges to a zero
x∗ of F .

Proof We consider the case i) that F(x0) < 0. Case ii) follows in a similar way.
We show by induction that F(xl) < 0 and that xl+1 > xl for all l ∈ N. Then

it holds for all l ∈ N and x ∈ (xl, xl+1) that Fa(x) + Fb(x) < Fa(x) + Fb(xl) <

Fa(xl+1) + Fb(xl) = 0. Thus F(x) < 0 for all x ∈ [xl, xl+1], l ∈ N0.

Induction step. Let Fa(xl) + Fb(xl) < 0. Since Fa(xl+1) + Fb(xl) = 0 > Fa(xl) +
Fb(xl) and Fa is strictly increasing, we have xl+1 > xl . Using that Fb is strictly
decreasing, we get Fb(xl+1) < Fb(xl) and consequently

F(xl+1) = Fa(xl+1) + Fb(xl+1) < Fa(xl+1) + Fb(xl) = 0.

Assume now that F(x) > 0 for all x > x+. Since the sequence (xl)l is strictly
increasing and F(xl) < 0 it must be bounded from above by x+. Therefore it
converges to some x∗ ∈ R>0. Now, it holds by the continuity of Fa and Fb that

0 = lim
l→∞ Fa(xl+1) + Fb(xl) = Fa(x

∗) + Fb(x
∗) = F(x∗).

Hence x∗ is a zero of F .

For the setting in Algorithm 4, Lemma 1 implies the following corollary.

Corollary 3 Let Fa(ν) := φ
(

ν
2

)− φ
(

ν+d
2

)
and

Fb(ν) :=
n∑

i=1

wi

(
ν + d

ν + δi,r+1
− log

(
ν + d

ν + δi,r+1

)
− 1

)
, r ∈ N0.

Assume that there exists ν+ > 0 such that F := Fa + Fb > 0 for all ν ≥ ν+. Then
the sequence (νr,l)l generated by the rth inner loop of Algorithm 4 converges to a
zero of F .

Numerical Algorithms (2021) 87:77–118 93

Note that by Corollary 2 the above condition on F is fulfilled in each iteration
step, e.g., if δi,r 	∈ [d − √

2d, d + √
2d] for i = 1, . . . , n and r ∈ N0.

Proof From the previous section we know that Fa is strictly increasing and Fb is
strictly decreasing. Both functions are continuous. If F(νr) < 0, then we know from
Lemma 1 that (νr,l)l is increasing and converges to a zero ν∗

r of F .
If F(νr) > 0, then we know from Lemma 1 that (νr,l)l is decreasing. The con-

dition that there exists x− ∈ R>0 with F(x) < 0 for all x < x− is fulfilled since
limx→0 F(x) = −∞. Hence, by Lemma 1, the sequence converges to a zero ν∗

r

of F .

To prove that the objective function decreases in each step of the Algorithms 2–4
we need the following lemma.

Lemma 2 Let Fa, Fb : R>0 → R be continuous functions, where Fa is strictly
increasing and Fb is strictly decreasing. Define F := Fa + Fb and let G : R>0 → R
be an antiderivative of F , i.e., F = d

dx
G. For an arbitrary x0 > 0, let (xl)l be the

sequence generated by

xl+1 = zero of Fa(x) + Fb(xl).

Then the following holds true:

i) The sequence (G(xl))l is monotone decreasing with G(xl) = G(xl+1) if and
only if x0 is a critical point of G. If (xl)l converges, then the limit x∗ fulfills

G(x0) ≥ G(x1) ≥ G(x∗),
with equality if and only if x0 is a critical point of G.

ii) Let F = F̃a + F̃b be another splitting of F with continuous functions F̃a, F̃b,
where the first one is strictly increasing and the second one strictly decreasing.
Assume that F̃ ′

a(x) > F ′
a(x) for all x > 0. Then holds for y1 := zero of F̃a(x)+

F̃b(x0) that G(x0) ≥ G(y1) ≥ G(x1) with equality if and only if x0 is a critical
point of G.

Proof i) If F(x0) = 0, then x0 is a critical point of G.
Let F(x0) < 0. By Lemma 1 we know that (xl)l is strictly increasing and that

F(x) < 0 for x ∈ [xr , xr+1], r ∈ N0. By the Fundamental Theorem of calculus it
holds

G(xl+1) = G(xl) +
∫ xl+1

xl

F (ν)dν.

Thus, G(xl+1) < G(xl).
Let F(x0) > 0. By Lemma 1 we know that (xl)l is strictly decreasing and that

F(x) > 0 for x ∈ [xr+1, xr], r ∈ N0. Then

G(xl) = G(xl+1) +
∫ xl

xl+1

F(ν)dν.

implies G(xl+1) < G(xl). Now, the rest of assertion i) follows immediately.

Numerical Algorithms (2021) 87:77–11894

ii) It remains to show that G(x1) ≤ G(y1). Let F(x0) < 0. Then we have y1 ≥ x0
and x1 ≥ x0. By the Fundamental Theorem of calculus we obtain

F(x0) +
∫ x1

x0

F ′
a(x)dx = Fa(x0) +

∫ x1

x0

F ′
a(x)dx + Fb(x0) = Fa(x1) + Fb(x0) = 0,

and

F(x0) +
∫ y1

x0

F̃ ′
a(x)dx = F̃a(x0) +

∫ y1

x0

F̃ ′
a(x)dx + F̃b(x0) = F̃a(y1) + F̃b(x0) = 0.

This yields ∫ x1

x0

F ′
a(x)dx =

∫ y1

x0

F̃ ′
a(x)dx,

and since F̃ ′
a(x) > F ′

a(x) further y1 ≤ x1 with equality if and only if x0 = x1, i.e., if
x0 is a critical point of G. Since F(x) < 0 on (x0, x1) it holds

G(x1) = G(y1) +
∫ x1

y1

F(x)dx ≤ G(y1),

with equality if and only if x0 = x1. The case F(x0) > 0 can be handled similarly.

Lemma 2 implies the following relation between the values of the objective
function L for Algorithms 2–4.

Corollary 4 For the same fixed νr > 0, μr ∈ Rd , Σr ∈ SPD(d) define μr+1,
Σr+1, νaEM

r+1 , ν
MMF
r+1 and νGMMF

r+1 by Algorithm 2, 3 and 4, respectively. For the GMMF
algorithm assume that the inner loop converges. Then it holds

L(νr , μr+1, Σr+1) ≥ L(νaEM
r+1 , μr+1, Σr+1) ≥ L(νMMF

r+1 , μr+1, Σr+1)

≥ L(νGMMF
r+1 , μr+1, Σr+1).

Equality holds true if and only if d
dν

L(νr , μr+1, Σr+1) = 0 and in this case νr =
νaEM
r+1 = νMMF

r+1 = νGMMF
r+1 .

Proof For G(ν) := L(ν, μr+1, Σr+1), we have d
dν

L(ν, μr+1, Σr+1) = F(ν), where

F(ν) := φ
(ν

2

)
− φ

(
ν + d

2

)
+

n∑

i=1

wi

(
ν + d

ν + δi,r+1
− log

(
ν + d

ν + δi,r+1

)
− 1

)
.

We use the splitting
F = Fa + Fb = F̃a + F̃b

with

Fa(ν) := φ
(ν

2

)
− φ

(
ν + d

2

)
, F̃a := φ

(ν

2

)
,

Fb(ν) :=
n∑

i=1

wi

(
ν + d

ν + δi,r+1
− log

(
ν + d

ν + δi,r+1

)
− 1

)
,

Numerical Algorithms (2021) 87:77–118 95

and

F̃b(ν) := −φ

(
ν + d

2

)
+ Fb(ν).

By the considerations in the previous section we know that Fa , F̃a are strictly increas-
ing and Fb, F̃b are strictly decreasing. Moreover, since φ′ > 0 we have F̃ ′

a > F ′
a .

Hence it follows from Lemma 2(ii) that

L(νr , μr+1, Σr+1) ≥ L
(
νaEM
r , μr+1, Σr+1

)
≥ L

(
νMMF
r , μr+1, Σr+1

)
.

Finally, we conclude by Lemma 2(i) that

L
(
νMMF
r , μr+1, Σr+1

)
≥ L

(
νGMMF
r , μr+1, Σr+1

)
.

Concerning the convergence of the three algorithms we have the following result.

Theorem 3 Let (νr , μr, Σr)r be sequence generated by Algorithm 2, 3 or 4, respec-
tively starting with arbitrary initial values ν0 > 0, μ0 ∈ Rd , Σ0 ∈ SPD(d). For
the GMMF algorithm we assume that in each step the inner loop converges. Then it
holds for all r ∈ N0 that

L(νr , μr, Σr) ≥ L(νr+1, μr+1, Σr+1),

with equality if and only if (νr , μr , Σr) = (νr+1, μr+1, Σr+1).

Proof By the general convergence results of the accelerated EM algorithm for fixed
ν, see also [17], it holds

L(νr , μr+1, Σr+1) ≤ L(νr , μr, Σr),

with equality if and only if (μr, Σr) = (μr+1, Σr+1). By Corollary 4 it holds

L(νr+1, μr+1, Σr+1) ≤ L(νr , μr+1, Σr+1),

with equality if and only if νr = νr+1. The combination of both results proves the
claim.

Lemma 3 Let T = (T1, T2, T3) : R>0 × Rd × SPD(d) → R>0 × Rd × SPD(d) be
the operator of one iteration step of Algorithm 2 (or 3). Then T is continuous.

Proof We show the statement for Algorithm 3. For Algorithm 2 it can be shown
analogously. Clearly the mapping (T2, T3)(ν, μ, Σ) is continuous. Since

T1(ν, μ, Σ) = zero of Ψ (x, ν, T2(ν, μ, Σ), T3(ν, μ, Σ)),

where

Ψ (x, ν, μ, Σ) = φ
(x

2

)
− φ

(
x + d

2

)

+
n∑

i=1

wi

(
ν+d

ν+(xi−μ)T Σ−1(xi−μ)
− log

(
ν+d

ν+(xi−μ)T Σ−1(xi−μ)

)
− 1
)

.

Numerical Algorithms (2021) 87:77–11896

It is sufficient to show that the zero of Ψ depends continuously on ν, T2 and
T3. Now the continuously differentiable function Ψ is strictly increasing in x, so
that ∂

∂x
Ψ (x, ν, T2, T3) > 0. By Ψ (T1, ν, T2, T3) = 0, the Implicit Function The-

orem yields the following statement: There exists an open neighborhood U × V

of (T1, ν, T2, T3) with U ⊂ R>0 and V ⊂ R>0 × Rd × SPD(d) and a continu-
ously differentiable function G : V → U such that for all (x, ν, μ, Σ) ∈ U × V

it holds

Ψ (x, ν, μ, Σ) = 0 if and only if G(ν, μ, Σ) = x.

Thus the zero of Ψ depends continuously on ν, T2 and T3.

This implies the following theorem.

Theorem 4 Let (νr , μr, Σr)r be the sequence generated by Algorithm 2 or 3 with
arbitrary initial values ν0 > 0, μ0 ∈ Rd , Σ0 ∈ SPD(d). Then every cluster point of
(νr , μr, Σr)r is a critical point of L.

Proof The mapping T defined in Lemma 3 is continuous. Further we know from its
definition that (ν, μ, Σ) is a critical point of L if and only if it is a fixed point of
T . Let (ν̂, μ̂, Σ̂) be a cluster point of (νr , μr , Σr)r . Then there exists a subsequence
(νrs , μrs , Σrs)s which converges to (ν̂, μ̂, Σ̂). Further we know by Theorem 3 that
Lr = L(νr , μr, Σr) is decreasing. Since (Lr)r is bounded from below, it converges.
Now it holds

L
(
ν̂, μ̂, Σ̂

)
= lim

s→∞L
(
νrs , μrs , Σrs

)

= lim
s→∞Lrs = lim

s→∞Lrs+1

= lim
s→∞L

(
νrs+1, μrs+1, Σrs+1

)

= lim
s→∞L

(
T
(
νrs , μrs , Σrs

)) = L
(
T
(
ν̂, μ̂, Σ̂

))
.

By Theorem 3 and the definition of T we have that L(ν, μ, Σ) = L(T (ν, μ, Σ))

if and only if (ν, μ, Σ) = T (ν, μ, Σ). By the definition of the algorithm this is the
case if and only if (ν, μ, Σ) is a critical point of L. Thus (ν̂, μ̂, Σ̂) is a critical point
of L.

6 Numerical results

In this section we give two numerical examples of the developed theory. First,
we compare the four different algorithms in Section 6.1. Then, in Section 6.2, we
address further accelerations of our algorithms by SQUAREM [33] and DAAREM
[9] and show also a comparison with the ECME algorithm [20]. Finally, in
Section 6.3, we provide an application in image analysis by determining the degree
of freedom parameter in images corrupted by Student t noise. We run all exper-

Numerical Algorithms (2021) 87:77–118 97

iments on a HP Probook with Intel i7-8550U Quad Core processor. The code is
provided online2.

6.1 Comparison of algorithms

In this section, we compare the numerical performance of the classical EM algo-
rithm 1 and the proposed Algorithms 2, 3, and 4. To this aim, we did the following
Monte Carlo simulation: Based on the stochastic representation of the Student t dis-
tribution, see (1), we draw n = 1000 i.i.d. realizations of the Tν(μ, Σ) distribution
with location parameter μ = 0 and different scatter matrices Σ and degrees of
freedom parameters ν. Then, we used Algorithms 2, 3, and 4 to compute the ML
estimator (ν̂, μ̂, Σ̂).

We initialize all algorithms with the sample mean for μ and the sample covariance
matrix for Σ . Furthermore, we set ν = 3 and in all algorithms the zero of the respec-
tive function is computed by Newton’s method. As a stopping criterion we use the
following relative distance:√

‖μr+1 − μr‖2 + ‖Σr+1 − Σr‖2
F

√
‖μr‖2 + ‖Σr‖2

F

+
√

(log(νr+1) − log(νr))2

|log(νr)| < 10−5.

We take the logarithm of ν in the stopping criterion, because Tν(μ, Σ) converges to
the normal distribution as ν → ∞ and therefore the difference between Tν(μ, Σ)

and Tν+1(μ, Σ) becomes small for large ν.
To quantify the performance of the algorithms, we count the number of iterations

until the stopping criterion is reached. Since the inner loop of the GMMF is poten-
tially time consuming we additionally measure the execution time until the stopping
criterion is reached. This experiment is repeated N = 10.000 times for different
values of ν ∈ {1, 2, 5, 10}. Afterward we calculate the average number of itera-
tions and the average execution times. The results are given in Tables 1 and 2. We
observe that the performance of the algorithms depends on Σ . Further we see, that
the performance of the aEM algorithm is always better than those of the classical EM
algorithm. Further all algorithms need a longer time to estimate large ν. This seems
to be natural since the likelihood function becomes very flat for large ν. Further, the
GMMF needs the lowest number of iterations. But for small ν the execution time
of the GMMF is larger than those of the MMF and the aEM algorithm. This can be
explained by the fact, that the ν step has a smaller relevance for small ν but is still time
consuming in the GMMF. The MMF needs slightly more iterations than the GMMF
but if ν is not extremely large the execution time is smaller than for the GMMF and
for the aEM algorithm. In summary, the MMF algorithm is proposed as algorithm
of choice.

In Fig. 2 we exemplarily show the functional values L(νr , μr, Σr) of the four
algorithms and samples generated for different values of ν and Σ = I . Note that
the x-axis of the plots is in log-scale. We see that the convergence speed (in terms

2https://github.com/johertrich/Alternatives-EM-Studentt

Numerical Algorithms (2021) 87:77–11898

https://github.com/johertrich/Alternatives-EM-Studentt

Table 1 Average number of iterations (lowest in bold) and the corresponding standard deviations of the
different algorithms

Σ ν EM aEM MMF GMMF

(
0.1 0

0 0.1

)

1 62.32 ± 2.50 23.44 ± 0.79 22.16 ± 0.75 20.61 ± 0.70

2 46.17 ± 1.82 26.42 ± 1.08 21.48 ± 0.94 17.79 ± 0.80

5 50.42 ± 11.22 49.97 ± 7.48 25.28 ± 2.61 12.14 ± 1.73

10 122.62 ± 31.74 117.40 ± 31.65 38.16 ± 4.51 14.32 ± 0.96

100 531.07 ± 91.41 528.14 ± 92.19 53.66 ± 6.98 10.76 ± 2.07(
1 0

0 1

)

1 62.34 ± 2.52 23.43 ± 0.78 22.16 ± 0.75 20.59 ± 0.70

2 46.20 ± 1.81 26.43 ± 1.07 21.49 ± 0.94 17.79 ± 0.80

5 50.68 ± 10.86 50.06 ± 7.42 25.31 ± 2.58 12.06 ± 1.75

10 122.72 ± 31.65 117.51 ± 31.56 38.18 ± 4.50 14.28 ± 0.97

100 531.75 ± 90.98 528.84 ± 91.75 53.62 ± 6.94 10.64 ± 2.02(
10 0

0 10

)

1 62.35 ± 2.55 23.44 ± 0.78 22.15 ± 0.76 20.59 ± 0.71

2 46.27 ± 1.82 26.45 ± 1.08 21.51 ± 0.95 17.81 ± 0.80

5 50.71 ± 11.21 50.15 ± 7.61 25.34 ± 2.63 12.08 ± 1.78

10 122.44 ± 30.66 117.19 ± 30.56 38.17 ± 4.46 14.27 ± 0.96

100 533.21 ± 89.80 530.27 ± 90.57 53.64 ± 6.93 10.62 ± 2.01(
2 −1

−1 2

)

1 62.32 ± 2.55 23.43 ± 0.78 22.15 ± 0.76 20.60 ± 0.70

2 46.22 ± 1.82 26.43 ± 1.09 21.50 ± 0.94 17.80 ± 0.80

5 50.76 ± 11.12 50.21 ± 7.52 25.35 ± 2.59 12.09 ± 1.75

10 122.37 ± 31.01 117.17 ± 30.92 38.13 ± 4.49 14.30 ± 0.96

100 530.89 ± 91.36 527.96 ± 92.15 53.68 ± 7.07 10.75 ± 2.08

of number of iterations) of the EM algorithm is much slower than those of the
MMF/GMMF. For small ν the convergence speed of the aEM algorithm is close to
the GMMF/MMF, but for large ν it is close to the EM algorithm.

In Fig. 3 we show the histograms of the ν-output of 1000 runs for different values
of ν and Σ = I . Since the ν-outputs of all algorithms are very close together we
only plot the output of the GMMF. We see that the accuracy of the estimation of
ν decreases for increasing ν. This can be explained by the fact, that the likelihood
function becomes very flat for large ν such that the estimation of ν becomes much
harder.

6.2 Comparison with other accelerations of the EM algortihm

In this section, we compare our algorithms with the Expectation/Conditional Maxi-
mization Either (ECME) algorithm [19, 20] and apply the SQUAREM acceleration
[33] as well as the damped Anderson Acceleration (DAAREM) [9] to our algorithms.

Numerical Algorithms (2021) 87:77–118 99

Table 2 The execution times (lowest in bold) and the corresponding standard deviations of the different
algorithms

Σ ν EM aEM MMF GMMF

(
0.1 0

0 0.1

)

1 0.008469 ± 0.00111 0.003511 ± 0.00044 0.003498 ± 0.00044 0.006954 ± 0.00114

2 0.006428 ± 0.00069 0.003995 ± 0.00042 0.003409 ± 0.00036 0.005388 ± 0.00061

5 0.007237 ± 0.00208 0.007768 ± 0.00181 0.004133 ± 0.00085 0.003752 ± 0.00100

10 0.017421 ± 0.00532 0.017991 ± 0.00567 0.006187 ± 0.00122 0.005796 ± 0.00110

100 0.070024 ± 0.01306 0.075191 ± 0.01418 0.008146 ± 0.00131 0.005601 ± 0.00097(
1 0

0 1

)

1 0.008645 ± 0.00090 0.003581 ± 0.00034 0.003572 ± 0.00036 0.007126 ± 0.00098

2 0.006431 ± 0.00074 0.003989 ± 0.00044 0.003417 ± 0.00039 0.005427 ± 0.00071

5 0.006883 ± 0.00162 0.007352 ± 0.00128 0.003939 ± 0.00058 0.003550 ± 0.00079

10 0.016434 ± 0.00439 0.016964 ± 0.00470 0.005869 ± 0.00089 0.005493 ± 0.00077

100 0.072309 ± 0.01507 0.077724 ± 0.01624 0.008363 ± 0.00155 0.005773 ± 0.00117(
10 0

0 10

)

1 0.008839 ± 0.00108 0.003664 ± 0.00043 0.003639 ± 0.00042 0.007217 ± 0.00104

2 0.006516 ± 0.00075 0.004054 ± 0.00048 0.003449 ± 0.00039 0.005428 ± 0.00065

5 0.007293 ± 0.00207 0.007799 ± 0.00180 0.004149 ± 0.00082 0.003740 ± 0.00098

10 0.020598 ± 0.00659 0.021193 ± 0.00683 0.007228 ± 0.00167 0.006834 ± 0.00155

100 0.078682 ± 0.01969 0.084275 ± 0.02087 0.009039 ± 0.00213 0.006246 ± 0.00160(
2 −1

−1 2

)

1 0.008837 ± 0.00107 0.003648 ± 0.00039 0.003641 ± 0.00041 0.007207 ± 0.00104

2 0.006481 ± 0.00070 0.004016 ± 0.00041 0.003433 ± 0.00036 0.005413 ± 0.00061

5 0.006968 ± 0.00167 0.007440 ± 0.00129 0.003965 ± 0.00055 0.003561 ± 0.00077

10 0.016608 ± 0.00442 0.017107 ± 0.00468 0.005920 ± 0.00092 0.005499 ± 0.00076

100 0.072354 ± 0.01509 0.077586 ± 0.01619 0.008385 ± 0.00153 0.005715 ± 0.00114

ECME algorithm: The ECME algorithm was first proposed in [19]. Some numeri-
cal examples of the behavior of the ECME algorithm for estimating the parameters
(ν, μ, Σ) of a Student t distribution Tν(μ, Σ) are given in [20]. The idea of ECME
is first to replace the M-Step of the EM algorithm by the following update of the
parameters (νr , μr, Σr): first, we fix ν = νr and compute the update (μr+1, Σr+1)

of the parameters (μr, Σr) by performing one step of the EM algorithm for fixed
degree of freedom (CM1-Step). Second, we fix (μ, Σ) = (μr, Σr) and com-
pute the update νr+1 of νr by maximizing the likelihood function with respect
to ν (CM2-Step). The resulting algorithm is given in Algorithm 5. It is similar
to the GMMF (Algorithm 4), but uses the Σ-update of the EM algorithm (Algo-
rithm 5) instead of the Σ-update of the aEM algorithm (Algorithm 2). The authors
of [19] showed a similar convergence result as for the EM algorithm. Alterna-
tively, we could prove Theorem 3 for the ECME algorithm analogously as for the
GMMF algorithm.

Numerical Algorithms (2021) 87:77–118100

Next, we consider two acceleration schemes of arbitrary fixed point algorithms
ϑr+1 = G(ϑr). In our case ϑ ∈ Rp is given by (ν, μ, Σ) and G is given by one step
of Algorithm 1, 2, 3, 4, or 5.

SQUAREMAcceleration: The first acceleration scheme, called squared iterative meth-
ods (SQUAREM) was proposed in [33]. The idea of SQUAREM is to update the
parameters ϑr = (νr , μr , Σr) in the following way: we compute ϑr,1 = G(ϑr) and
ϑr,2 = G(ϑr,1). Then, we calculate s = ϑr,1 − ϑr and v = (ϑr,2 − ϑr,1) − s.
Now we set ϑ ′ = ϑr − 2αr + α2v and define the update ϑr+1 = G(ϑ ′), where α

is chosen as follows. First, we set α = min(−‖r‖2‖v‖2
, −1). Then we compute ϑ ′ as

described before. If L(ϑ ′) < L(ϑr), we keep our choice of α. Otherwise we update
α by α = α−1

2 . Note that this scheme terminates as long a ϑr is not a critical point
of L by the following argument: it holds that ϑr + 2r + v = ϑr,2, which implies
that it holds that limα→−1 L(ϑr − 2α + α2v) = L(ϑr,2) ≤ L(ϑr) with equality if
and only if ϑr is a critical point of L, since all our algorithms have the property that
L(ϑ) ≥ L(G(ϑ)) with equality if and only if ϑ is a critical point of L. By con-
struction this scheme ensures that the negative log-likelihood values of the iterates
are decreasing.

Numerical Algorithms (2021) 87:77–118 101

Fig. 2 Plots of L(νr , μr ,Σr) on the y-axis and r on the x-axis for all algorithms

Damped Anderson Acceleration with Restarts and ε-Monotonicity (DAAREM): The
DAAREM acceleration was proposed in [9]. It is based on the Anderson accel-
eration, which was introduced in [2]. As for the SQUAREM acceleration want to
solve the fixed point equation ϑ = G(ϑ) with ϑ = (ν, μ, Σ) using the iteration
ϑr+1 = G(ϑr). We also use the equivalent formulation to solve f (ϑ) = 0, where
f (ϑ) = G(ϑ) − ϑ . For a fixed parameter m ∈ N>0, we define mr = min(m, r).
Then, one update of ϑr using the Anderson Acceleration is given by

Numerical Algorithms (2021) 87:77–118102

Fig. 3 Histograms of the output ν from the algorithms

Numerical Algorithms (2021) 87:77–118 103

ϑr+1 = G(ϑr) −
mr∑

j=1

(G(ϑr−mr+j) − G(ϑr−mr+j−1))γ
(r)
j

= ϑr + f (ϑr) −
mr∑

j=1

((ϑr−mr+j − ϑr−mr+j−1) − (f (ϑr−mr+j)

−f (ϑr−mr+j−1)))γ
(r)
j , (14)

with γ (r) = (
FT

r Fr

)−1 FT
r f (ϑr), where the columns of Fr ∈ Rp×mr are given by

f (ϑr−mr+j+1) − f (ϑr−mr+j) for j = 0, . . . , mr − 1. An equivalent formulation of
update step (14) is given by

ϑr+1 = ϑr + f (ϑr) − (Xr + Fr)γ
(r),

where the columns of Xr ∈ Rp×mr are given by ϑr−mr+j+1 − ϑr−mr+j for j =
0, . . . , mr − 1. The Anderson acceleration can be viewed as a special case of a
multisecant quasi-Newton procedure to solve f (ϑ) = 0. For more details we refer
to [7, 9].

The DAAREM acceleration modifies the Anderson acceleration in three points.
The first modification is to restart the algorithm after m steps. That is, to set
mr = min(m, cr) instead of mr = min(m, r), where cr ∈ {1, . . . , m} is defined
by cr = r mod m. The second modification is to add damping term in the com-
putation coefficients γ (r). This means, that γ (r) is given by γ (r) = (FT

r Fr +
λrI)−1FT

r f (ϑr) instead of γ (r) = (FT
r F)−1FT

r f (ϑr). The parameter λr is chosen
such that

‖(FT
r Fr + λrI)−1FT

r f (ϑr)‖2
2 = δr‖(FT

r Fr)
−1FT

r f (ϑr)‖2
2 (15)

for some damping parameters δr . We initialize the δr by δ1 = 1
1+ακ and decrease

the exponent of α in each step by 1 up to a minimum of κ − D for some
parameter D ∈ N>0. The third modification is to enforce that for the negative log-
likelihood function L does not increase more than ε in one iteration step. To do
this, we compute the update ϑr+1 using the Anderson acceleration. If L(ϑr+1) >

L(ϑr) + ε, we use our original fixed point algorithm in this step, i.e., we set
ϑr+1 = G(ϑr).

We summarize the DAAREM acceleration in Algorithm 6. In our numerical exper-
iments we use for the parameters the values suggested by [9], that is ε = 0.01,
εc = 0, α = 1.2, κ = 25, D = 2κ and m = min(�p

2 �, 10), where p is the number of
parameters in ϑ .

Numerical Algorithms (2021) 87:77–118104

Simulation Study: To compare the performance of all of these algorithms we perform
again a Monte Carlo simulation. As in the previous section we draw n = 100 i.i.d.
realizations of Tν(μ, Σ) with μ = 0, Σ = 0.1 Id and ν ∈ {1, 2, 5, 10, 100}. Then, we
use each of the Algorithms 1, 2, 3, 4 and 5 to compute the ML estimator (ν̂, μ̂, Σ̂).
We use each of these algorithms with no acceleration, with SQUAREM acceleration
and with DAAREM acceleration.

We use the same initialization and stopping criteria as in the previous section and
repeat this experiment N = 1.000 times. To quantify the performance of the algo-
rithms, we count the number of iterations and measure the execution time. The results
are given in Tables 3 and 4. Since the DAAREM and SQUAREM accelerations were
proposed originally for an absolute stopping criteria, we redo the experiments with
the stopping criteria

√
‖μr+1 − μr‖2 + ‖Σr+1 − Σr‖2

F + (log(νr+1) − log(νr))2 < 10−8.

The results are given in Tables 5 and 6.
We observe that for nearly any choice of the parameters the performance of

the GMMF is better than the performance of the ECME. For small ν, the perfor-
mance of the SQUAREM-aEM is also very good. On the other hand, for large ν the
SQUAREM-GMMF behaves very well. Further, for any choice of ν the performance
of the SQUAREM-MMF is close to the best algorithm.

Numerical Algorithms (2021) 87:77–118 105

Table 3 Average number of iterations (lowest in bold) and the corresponding standard deviations of the
different algorithms using a relative stopping criterion

Algorithm ν = 1 ν = 2 ν = 5 ν = 10 ν = 100

EM 62.24 ± 2.47 46.20 ± 1.84 50.14 ± 11.01 122.45 ± 30.81 530.72 ± 89.11

aEM 23.39 ± 0.75 26.46 ± 1.08 49.60 ± 7.55 117.21 ± 30.74 527.77 ± 89.92

MMF 22.13 ± 0.73 21.51 ± 0.96 25.12 ± 2.63 38.17 ± 4.47 53.98 ± 7.06

GMMF 20.56 ± 0.67 17.79 ± 0.79 12.06 ± 1.73 14.35 ± 0.97 10.86 ± 2.10

ECME 60.81 ± 2.41 40.73 ± 1.97 29.07 ± 1.81 22.12 ± 3.81 12.81 ± 2.96

DAAREM-EM 22.09 ± 4.05 22.26 ± 4.59 20.39 ± 5.42 24.72 ± 6.34 28.09 ± 6.93

DAAREM-aEM 15.52 ± 1.57 14.90 ± 2.39 15.35 ± 3.22 17.84 ± 4.41 20.07 ± 3.68

DAAREM-MMF 15.16 ± 1.45 14.02 ± 2.09 13.12 ± 2.09 14.99 ± 3.62 66.86 ± 630.74

DAAREM-GMMF 14.11 ± 1.04 12.81 ± 1.46 9.61 ± 1.27 9.84 ± 1.46 10.15 ± 2.10

DAAREM-ECME 22.69 ± 4.71 19.15 ± 3.50 17.06 ± 3.33 16.89 ± 3.75 12.35 ± 3.90

SQUAREM-EM 26.36 ± 2.25 21.77 ± 4.56 21.43 ± 3.13 46.01 ± 10.72 111.24 ± 40.47

SQUAREM-aEM 15.32 ± 0.98 14.86 ± 0.86 22.87 ± 2.26 43.57 ± 8.29 38.56 ± 35.35

SQUAREM-MMF 15.47 ± 1.09 14.05 ± 1.40 14.18 ± 1.56 18.40 ± 1.21 22.41 ± 9.39

SQUAREM-GMMF 13.30 ± 1.49 11.99 ± 0.16 9.02 ± 0.49 8.90 ± 0.80 8.28 ± 1.29

SQUAREM-ECME 24.25 ± 2.79 19.20 ± 1.96 18.48 ± 3.12 17.98 ± 3.33 13.41 ± 3.41

6.3 Unsupervised estimation of noise parameters

Next, we provide an application in image analysis. To this aim, we consider images
corrupted by one-dimensional Student t noise with μ = 0 and unknown Σ ≡ σ 2 and
ν. We provide a method that allows to estimate ν and σ in an unsupervised way. The
basic idea is to consider constant areas of an image, where the signal to noise ratio is
weak and differences between pixel values are solely caused by the noise.

Constant area detection: In order to detect constant regions in an image, we adopt
an idea presented in [30]. It is based on Kendall’s τ -coefficient, which is a measure
of rank correlation, and the associated z-score, see [10, 11]. In the following, we
briefly summarize the main ideas behind this approach. For finding constant regions
we proceed as follows: First, the image grid G is partitioned into K small, non-
overlapping regions G = ⋃K

k=1 Rk , and for each region we consider the hypothesis
testing problem

H0 : Rk is constant vs. H1 : Rk is not constant.

To decide whether to reject H0 or not, we observe the following: Consider a fixed
region Rk and let I, J ⊆ Rk be two disjoint subsets of Rk with the same cardinality.
Denote with uI and uJ the vectors containing the values of u at the positions indexed
by I and J . Then, under H0, the vectors uI and uJ are uncorrelated (in fact even
independent) for all choices of I, J ⊆ Rk with I ∩ J = ∅ and |I | = |J |. As a
consequence, the rejection of H0 can be reformulated as the question whether we
can find I, J such that uI and uJ are significantly correlated, since in this case there

Numerical Algorithms (2021) 87:77–118106

Ta
bl
e
4

T
he

ex
ec

ut
io

n
tim

es
(l

ow
es

ti
n

bo
ld

)
an

d
th

e
co

rr
es

po
nd

in
g

st
an

da
rd

de
vi

at
io

ns
of

th
e

di
ff

er
en

ta
lg

or
ith

m
s

us
in

g
a

re
la

tiv
e

st
op

pi
ng

cr
ite

ri
on

A
lg

or
ith

m
ν

=
1

ν
=

2
ν

=
5

ν
=

10
ν

=
10

0

E
M

0.
00

89
0

±
0.

00
16

3
0.

00
64

4
±

0.
00

07
4

0.
00

68
2

±
0.

00
15

8
0.

01
65

9
±

0.
00

43
2

0.
07

07
6

±
0.

01
35

0

aE
M

0.
00

36
5

±
0.

00
05

6
0.

00
40

1
±

0.
00

04
9

0.
00

73
2

±
0.

00
12

8
0.

01
70

6
±

0.
00

46
5

0.
07

51
3

±
0.

01
41

6

M
M

F
0.

00
36

9
±

0.
00

07
5

0.
00

34
2

±
0.

00
03

9
0.

00
39

0
±

0.
00

05
2

0.
00

58
9

±
0.

00
08

5
0.

00
83

4
±

0.
00

15
1

G
M

M
F

0.
00

76
3

±
0.

00
19

3
0.

00
54

0
±

0.
00

06
1

0.
00

35
5

±
0.

00
07

4
0.

00
55

1
±

0.
00

06
3

0.
00

59
9

±
0.

00
11

2

E
C

M
E

0.
01

99
8

±
0.

00
34

3
0.

01
21

4
±

0.
00

13
7

0.
00

92
7

±
0.

00
11

4
0.

00
80

1
±

0.
00

10
5

0.
00

68
4

±
0.

00
15

7

D
A

A
R

E
M

-E
M

0.
00

72
8

±
0.

00
16

3
0.

00
72

6
±

0.
00

15
8

0.
00

65
2

±
0.

00
18

0
0.

00
79

6
±

0.
00

21
8

0.
00

90
5

±
0.

00
23

3

D
A

A
R

E
M

-a
E

M
0.

00
55

4
±

0.
00

09
5

0.
00

51
9

±
0.

00
09

7
0.

00
53

0
±

0.
00

12
4

0.
00

61
3

±
0.

00
16

0
0.

00
68

7
±

0.
00

14
1

D
A

A
R

E
M

-M
M

F
0.

00
55

3
±

0.
00

09
0

0.
00

50
0

±
0.

00
08

4
0.

00
46

3
±

0.
00

08
2

0.
00

52
9

±
0.

00
13

7
0.

02
41

0
±

0.
22

51
8

D
A

A
R

E
M

-G
M

M
F

0.
00

83
7

±
0.

00
18

5
0.

00
67

9
±

0.
00

09
1

0.
00

49
1

±
0.

00
08

1
0.

00
60

1
±

0.
00

08
6

0.
00

77
2

±
0.

00
20

1

D
A

A
R

E
M

-E
C

M
E

0.
01

52
7

±
0.

00
35

1
0.

01
06

1
±

0.
00

17
5

0.
00

96
8

±
0.

00
17

1
0.

00
99

3
±

0.
00

18
9

0.
00

82
5

±
0.

00
20

7

SQ
U

A
R

E
M

-E
M

0.
00

45
6

±
0.

00
08

1
0.

00
37

2
±

0.
00

07
7

0.
00

37
5

±
0.

00
06

8
0.

00
83

1
±

0.
00

22
0

0.
02

29
9

±
0.

00
83

7

SQ
U

A
R

E
M

-a
E

M
0.
00
29
1

±
0.
00
05
0

0.
00

26
9

±
0.

00
02

9
0.

00
44

1
±

0.
00

06
5

0.
00

91
3

±
0.

00
20

3
0.

00
79

5
±

0.
00

62
1

SQ
U

A
R

E
M

-M
M

F
0.

00
30

8
±

0.
00

05
9

0.
00
26
8

±
0.
00
03
5

0.
00
27
0

±
0.
00
04
1

0.
00
37
3

±
0.
00
04
1

0.
00

47
4

±
0.

00
18

4

SQ
U

A
R

E
M

-G
M

M
F

0.
00

56
9

±
0.

00
12

9
0.

00
40

0
±

0.
00

04
0

0.
00

30
4

±
0.

00
04

2
0.

00
37

5
±

0.
00

04
6

0.
00
42
0

±
0.
00
08
0

SQ
U

A
R

E
M

-E
C

M
E

0.
01

15
3

±
0.

00
22

2
0.

00
72

2
±

0.
00

08
6

0.
00

71
7

±
0.

00
11

2
0.

00
76

1
±

0.
00

09
0

0.
00

72
7

±
0.

00
18

2

Numerical Algorithms (2021) 87:77–118 107

Table 5 Average number of iterations (lowest in bold) and the corresponding standard deviations of the
different algorithms using an absolute stopping criterion

Algorithm ν = 1 ν = 2 ν = 5 ν = 10 ν = 100

EM 87.56 ± 3.22 60.61 ± 2.93 58.16 ± 10.53 126.97 ± 30.12 535.17 ± 88.15

aEM 29.00 ± 1.27 30.98 ± 1.44 53.40 ± 7.24 119.34 ± 30.30 531.86 ± 89.26

MMF 28.07 ± 1.23 26.58 ± 1.13 29.24 ± 2.39 41.21 ± 4.49 55.30 ± 7.15

GMMF 26.54 ± 1.19 22.97 ± 1.15 15.84 ± 1.77 17.31 ± 1.04 12.32 ± 2.19

ECME 86.02 ± 3.32 54.99 ± 2.92 36.30 ± 2.72 25.92 ± 4.33 13.94 ± 3.37

DAAREM-EM 30.48 ± 7.45 29.11 ± 8.37 24.50 ± 6.35 27.65 ± 6.44 29.13 ± 6.63

DAAREM-aEM 19.96 ± 2.05 19.19 ± 3.15 18.74 ± 4.30 20.45 ± 4.92 21.34 ± 3.90

DAAREM-MMF 19.44 ± 1.80 18.20 ± 2.61 15.94 ± 2.44 17.65 ± 4.30 62.17 ± 546.96

DAAREM-GMMF 18.49 ± 1.50 16.29 ± 1.86 12.26 ± 1.54 12.15 ± 1.67 11.50 ± 2.18

DAAREM-ECME 30.87 ± 8.03 24.74 ± 5.14 20.88 ± 4.38 19.68 ± 4.66 13.95 ± 4.42

SQUAREM-EM 34.97 ± 3.73 28.91 ± 4.59 25.45 ± 3.00 49.97 ± 10.56 111.47 ± 38.98

SQUAREM-aEM 20.73 ± 1.08 18.02 ± 0.78 26.56 ± 2.05 46.94 ± 8.43 41.79 ± 31.88

SQUAREM-MMF 21.04 ± 0.51 17.84 ± 0.96 18.07 ± 1.24 21.59 ± 1.34 25.51 ± 10.29

SQUAREM-GMMF 17.09 ± 1.39 15.02 ± 0.21 12.12 ± 0.73 12.01 ± 0.97 11.28 ± 1.34

SQUAREM-ECME 33.28 ± 4.73 25.84 ± 2.73 22.82 ± 2.77 21.12 ± 3.36 16.13 ± 3.40

has to be some structure in the image region Rk and it cannot be constant. Now, in
order to quantify the correlation, we adopt an idea presented in [30] and make use
of Kendall’s τ -coefficient, which is a measure of rank correlation, and the associated
z-score, see [10, 11]. The key idea is to focus on the rank (i.e., on the relative order)
of the values rather than on the values themselves. In this vein, a block is considered
homogeneous if the ranking of the pixel values is uniformly distributed, regardless
of the spatial arrangement of the pixels. In the following, we assume that we have
extracted two disjoint subsequences x = uI and y = uJ from a region Rk with I and
J as above. Let (xi, yi) and (xj , yj) be two pairs of observations. Then, the pairs are
said to be ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

concordant if xi < xj and yi < yj

or xi > xj and yi > yj ,

discordant if xi < xj and yi > yj

or xi > xj and yi < yj ,

tied if xi = xj or yi = yj .

Next, let x, y ∈ Rn be two sequences without tied pairs and let nc and nd

be the number of concordant and discordant pairs, respectively. Then, Kendall’s τ

coefficient [10] is defined as τ : Rn × Rn → [−1, 1],
τ(x, y) = nc − nd

n(n−1)
2

.

From this definition we see that if the agreement between the two rankings is perfect,
i.e., the two rankings are the same, then the coefficient attains its maximal value 1.
On the other extreme, if the disagreement between the two rankings is perfect, that

Numerical Algorithms (2021) 87:77–118108

Ta
bl
e
6

T
he

ex
ec

ut
io

n
tim

es
(l

ow
es

ti
n

bo
ld

)
an

d
th

e
co

rr
es

po
nd

in
g

st
an

da
rd

de
vi

at
io

ns
of

th
e

di
ff

er
en

ta
lg

or
ith

m
s

us
in

g
an

ab
so

lu
te

st
op

pi
ng

cr
ite

ri
on

A
lg

or
ith

m
ν

=
1

ν
=

2
ν

=
5

ν
=

10
ν

=
10

0

E
M

0.
01

57
8

±
0.

00
42

1
0.

00
99

5
±

0.
00

20
3

0.
01

00
8

±
0.

00
29

6
0.

02
17

9
±

0.
00

74
3

0.
08

22
7

±
0.

01
92

9

aE
M

0.
00

58
1

±
0.

00
15

9
0.

00
56

5
±

0.
00

11
7

0.
01

01
2

±
0.

00
25

7
0.

02
22

2
±

0.
00

76
9

0.
08

87
2

±
0.

02
06

5

M
M

F
0.

00
59

6
±

0.
00

16
4

0.
00

50
3

±
0.

00
10

2
0.

00
58

2
±

0.
00

13
6

0.
00

81
7

±
0.

00
22

6
0.

00
97

8
±

0.
00

20
5

G
M

M
F

0.
01

11
9

±
0.

00
34

4
0.

00
75

1
±

0.
00

16
7

0.
00

54
1

±
0.

00
15

0
0.

00
77

0
±

0.
00

21
6

0.
00

68
2

±
0.

00
16

1

E
C

M
E

0.
03

05
8

±
0.

00
87

4
0.

01
69

8
±

0.
00

35
4

0.
01

31
4

±
0.

00
32

7
0.

01
08

0
±

0.
00

30
9

0.
00

80
2

±
0.

00
25

3

D
A

A
R

E
M

-E
M

0.
01

28
6

±
0.

00
45

5
0.

01
14

7
±

0.
00

39
5

0.
00

99
5

±
0.

00
33

8
0.

01
11

6
±

0.
00

35
6

0.
01

07
8

±
0.

00
30

5

D
A

A
R

E
M

-a
E

M
0.

00
92

3
±

0.
00

26
7

0.
00

81
7

±
0.

00
20

3
0.

00
83

5
±

0.
00

27
4

0.
00

89
7

±
0.

00
29

8
0.

00
84

6
±

0.
00

19
7

D
A

A
R

E
M

-M
M

F
0.

00
91

2
±

0.
00

25
4

0.
00

78
3

±
0.

00
18

1
0.

00
71

8
±

0.
00

18
6

0.
00

79
0

±
0.

00
28

4
0.

02
66

3
±

0.
24

13
4

D
A

A
R

E
M

-G
M

M
F

0.
01

29
8

±
0.

00
40

7
0.

00
97

6
±

0.
00

21
9

0.
00

75
2

±
0.

00
20

4
0.

00
86

6
±

0.
00

24
7

0.
00

93
7

±
0.

00
27

2

D
A

A
R

E
M

-E
C

M
E

0.
02

31
4

±
0.

00
75

9
0.

01
50

8
±

0.
00

39
4

0.
01

40
2

±
0.

00
42

4
0.

01
36

5
±

0.
00

41
0

0.
00

99
5

±
0.

00
32

2

SQ
U

A
R

E
M

-E
M

0.
00

77
9

±
0.

00
23

9
0.

00
60

3
±

0.
00

15
2

0.
00

57
9

±
0.

00
17

1
0.

01
16

4
±

0.
00

41
6

0.
02

63
4

±
0.

00
98

7

SQ
U

A
R

E
M

-a
E

M
0.
00
50
5

±
0.
00
14
9

0.
00
40
6

±
0.
00
09
0

0.
00

66
2

±
0.

00
17

1
0.

01
26

2
±

0.
00

41
7

0.
00

97
7

±
0.

00
62

3

SQ
U

A
R

E
M

-M
M

F
0.

00
53

7
±

0.
00

15
8

0.
00

41
8

±
0.

00
09

4
0.
00
44
3

±
0.
00
12
1

0.
00

55
2

±
0.

00
14

6
0.

00
60

9
±

0.
00

25
3

SQ
U

A
R

E
M

-G
M

M
F

0.
00

83
4

±
0.

00
27

1
0.

00
56

1
±

0.
00

12
0

0.
00

46
7

±
0.

00
12

8
0.
00
55
1

±
0.
00
15
2

0.
00
55
4

±
0.
00
13
9

SQ
U

A
R

E
M

-E
C

M
E

0.
01

70
1

±
0.

00
52

9
0.

01
02

3
±

0.
00

24
9

0.
01

03
1

±
0.

00
28

8
0.

01
04

3
±

0.
00

30
2

0.
00

86
3

±
0.

00
23

4

Numerical Algorithms (2021) 87:77–118 109

is, one ranking is the reverse of the other, then the coefficient has value −1. If the
sequences x and y are uncorrelated, we expect the coefficient to be approximately
zero. Denoting with X and Y the underlying random variables that generated the
sequences x and y, we have the following result, whose proof can be found in [10].

Theorem 5 Let X and Y be two arbitrary sequences under H0 without tied pairs.
Then, the random variable τ(X, Y) has an expected value of 0 and a variance of
2(2n+5)
9n(n−1)

. Moreover, for n → ∞, the associated z-score z : Rn × Rn → R,

z(x, y) = 3
√

n(n − 1)√
2(2n + 5)

τ (x, y) = 3
√

2(nc − nd)√
n(n − 1)(2n + 5)

is asymptotically standard normal distributed,

z(X, Y)
n→∞∼ N (0, 1).

With slight adaption, Kendall’s τ coefficient can be generalized to sequences with
tied pairs (see [11]). As a consequence of Theorem 5, for a given significance level
α ∈ (0, 1), we can use the quantiles of the standard normal distribution to decide
whether to reject H0 or not. In practice, we cannot test any kind of region and any
kind of disjoint sequences. As in [30], we restrict our attention to quadratic regions
and pairwise comparisons of neighboring pixels. We use four kinds of neighboring
relations (horizontal, vertical and two diagonal neighbors) thus perform in total four
tests. We reject the hypothesis H0 that the region is constant as soon as one of the
four tests rejects it. Note that by doing so, the final significance level is smaller than
the initially chosen one. We start with blocks of size 64 × 64 whose side-length is
incrementally decreased until enough constant areas are found.

Parameter estimation. In each constant region we consider the pixel values in the
region as i.i.d. samples of a univariate Student t distribution Tν(μ, σ 2), where we
estimate the parameters using Algorithm 3.

After estimating the parameters in each found constant region, the estimated loca-
tion parameters μ are discarded, while the estimated scale and degrees of freedom
parameters σ respective ν are averaged to obtain the final estimate of the global noise
parameters. At this point, as both ν and σ influence the resulting distribution in a
multiplicative way, instead of an arithmetic mean, one might use a geometric which
is slightly less affected by outliers.

In Fig. 4 we illustrate this procedure for two different noise scenarios. The left col-
umn in each figure depicts the detected constant areas. The middle and right column
show histograms of the estimated values for ν respective σ . For the constant area
detection we use the code of [30]3. The true parameters used to generate the noisy
images where ν = 1 and σ = 10 for the top row and ν = 5 and σ = 10 for the bot-
tom row, while the obtained estimates are (geometric mean in brackets) ν̂ = 1.0437
(1.0291) and σ̂ = 10.3845 (10.3111) for the top row and ν̂ = 5.4140 (5.0423) and
σ̂ = 10.5500 (10.1897) for the bottom row.

3https://github.com/csutour/RNLF

Numerical Algorithms (2021) 87:77–118110

https://github.com/csutour/RNLF

A further example is given in Fig. 5. Here, the obtained estimates are (geometric
mean in brackets) ν̂ = 1.0075 (0.99799) and σ̂ = 10.2969 (10.1508) for the top row
and ν̂ = 5.4184 (5.1255) and σ̂ = 10.2295 (10.1669) for the bottom row.

Appendix. Auxiliary lemmas

Lemma 4 Let xi ∈ Rd , i = 1, . . . , n and w ∈ �̊n fulfill Assumption 1. Let (νr , Σr)r
be a sequence in R>0 × SPD(d) with νr → 0 as r → ∞ (or if {νr }r has a subse-
quence which converges to zero). Then (νr , Σr)r cannot be a minimizing sequence of
L(ν, Σ).

Proof We write

L(ν, Σ) = g(ν) + Lν(Σ),

where

g(ν) = 2 log
(
�
(ν

2

))
− 2 log

(
�

(
d + ν

2

))
− ν log(ν).

Fig. 4 Unsupervised estimation of the noise parameters ν and σ 2

Numerical Algorithms (2021) 87:77–118 111

Fig. 5 Unsupervised estimation of the noise parameters ν and σ 2

Then it holds limν→0 g(ν) = ∞. Hence it is sufficient to show that (νr , Σr)r has

a subsequence (νrk , Σrk) such that
(
Lνrk

(Σrk)
)

r
is bounded from below. Denote by

λr1 ≥ . . . ≥ λrd the eigenvalues of Σr .
Case 1: Let {λr,i : r ∈ N, i = 1, . . . , d} ⊆ [a, b] for some 0 < a ≤ b < ∞. Then

it holds lim infr→∞ log |Σr | ≥ log(ad) = d log(a) and

lim inf
r→∞ (d + νr)

n∑

i=1

wi log(νr + xT
i Σ−1

r xi) ≥ lim
r→∞(d + νr)

n∑

i=1

wi log

(
1

b
xT
i xi

)

= d

n∑

i=1

wi log

(
1

b
xT
i xi

)
.

Numerical Algorithms (2021) 87:77–118112

Note that Assumption 1 ensures xi 	= 0 and xT
i xi > 0 for i = 1, . . . , n. Then we get

lim inf
r→∞ Lνr (Σr) = lim inf

r→∞ (d + νr)

n∑

i=1

wi log(νr + xT
i Σ−1

r xi) + log |Σr |

≥ d

n∑

i=1

wi log

(
1

b
xT
i xi

)
+ d log(a).

Hence (Lνr (Σr))r is bounded from below and (νr , Σr) cannot be a minimizing
sequence.

Case 2: Let {λr,i : r ∈ N, i = 1, . . . , d} 	⊆ [a, b] for all 0 < a ≤ b < ∞. Define
ρr = ‖Σr‖F and Pr = Σr

ρr
. Then, by concavity of the logarithm, it holds

Lνr (Σr) = (d + νr)

n∑

i=1

wi log(νr + xT
i Σ−1

r xi) + log(|Σr |)

≥ d

n∑

i=1

wi log(xT
i Σ−1

r xi) + νr log(νr) + log(|Σr |)

≥ d

n∑

i=1

wi log

(
1

ρr

xT
i P −1

r xi

)
+ log(ρd

r |Pr |) + const

= d

n∑

i=1

wi log(xT
i P −1

r xi) + log(|Pr |)
︸ ︷︷ ︸

=:L0(Pr)

+const. (16)

Denote by pr,1 ≥ . . . ≥ pr,d > 0 the eigenvalues of Pr . Since {Pr : r ∈ N} is
bounded there exists some C > 0 with C ≥ pr,1 for all r ∈ N. Thus one of the
following cases is fulfilled:

i) There exists a constant c > 0 such that pr,d > c for all r ∈ N.
ii) There exists a subsequence (Prk)k of (Pr)r which converges to some P ∈

∂SPD(d).

Case 2i) Let c > 0 with pr,d ≥ c for all r ∈ N. Then lim inf
r→∞ log(|Pr |) ≥ log(cd) =

d log(c) and

lim inf
r→∞ d

n∑

i=1

wi log(xT
i P −1

r xi) ≥ d

n∑

i=1

wi log

(
1

C
xT
i xi

)
.

By (16) this yields

lim inf
r→∞ Lνr (Σr) ≥ lim inf

r→∞ d

n∑

i=1

wi log(xT
i P −1

r xi) + log(|Pr |) + const

≥ d

n∑

i=1

wi log

(
1

C
xT
i xi

)
+ d log(c) + const.

Numerical Algorithms (2021) 87:77–118 113

Hence, (Lνr (Σr))r is bounded from below and (νr , Σr) cannot be a minimizing
sequence.

Case 2ii) We use similar arguments as in the proof of [17, Theorem 4.3]. Let (Prk)k
be a subsequence of (Pr)r which converges to some P ∈ ∂SPD(d). For simplicity
we denote (Prk)k again by (Pr)r . Let p1 ≥ . . . ≥ pd ≥ 0 be the eigenvalues of P .
Since ‖P ‖F = lim

r→∞ ‖Pr‖F = 1 it holds p1 > 0. Let q ∈ 1, . . . , d − 1 such that

p1 ≥ . . . ≥ pq > pq+1 = . . . = pd = 0.

By er,1, . . . , e,rd , we denote the orthonormal eigenvectors corresponding to
pr,1, . . . , pr,d . Since (Sd)d is compact we can assume (by going over to a subse-
quence) that (er,1, . . . , er,d)r converges to orthonormal vectors (e1, . . . , ed). Define
S0 := {0} and for k = 1, . . . , d set Sk := span{e1, . . . , ek}. Now, for k = 1, . . . , d

define

Wk := Sk\Sk−1 = {y ∈ Rd : 〈y, ek〉 	= 0, 〈y, el〉 = 0 for l = k + 1, . . . , d}.
Further, let

Ĩk := {i ∈ {1, . . . , n} : xi ∈ Sk} and Ik := {i ∈ {1, . . . , n} : xi ∈ Wk}.
Because of Sk = Wk∪̇Sk−1 we have Ĩk = Ik∪̇Ĩk−1 for k = 1, . . . , d. Due to Assump-

tion 1 we have |Ik| ≤
∣∣
∣Ĩk

∣∣
∣ ≤ dim(Sk) = k for k = 1, . . . , d − 1. Defining for

j = 1, . . . , d,

Lj (Pr) := d
∑

i∈Ij

wi log(xT
i P −1

r xi) + log(prj),

it holds L0(Pr) =∑d
j=1 Lj . For j ≤ q we get

lim inf
r→∞ Lj (Pr) ≥ lim inf

r→∞ d
∑

i∈Ij

wi log

(
1

C
xT
i xi

)
+log(pr,j) = d

∑

i∈Ij

wi log

(
1

C
xT
i xi

)
+log(pj).

Since for k ∈ {1, . . . , d} and i ∈ Ik ,

xT
i P −1

r xi =
d∑

j=1

1

pr,j

〈
xi, er,j

〉2 ≥ 1

pr,k

〈xi, erk〉2 ,

and limr→∞ 〈xi, erk〉 = 〈xi, ek〉 	= 0, we obtain

lim inf
r→∞ pr,kx

T
i Prxi ≥ lim inf

r→∞
〈
y, er,k

〉 ≥ 〈y, ek〉2 > 0.

Hence, it holds for j ≥ q + 1 that

Lj (Pr) = d
∑

i∈Ij

wi

[
log(xT

i P −1
r xi) + log(pr,j)

]
+
⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j)

= d
∑

i∈Ij

wi log(pr,j x
T
i P −1

r xi) +
⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j).

Numerical Algorithms (2021) 87:77–118114

Thus, we conclude

lim inf
r→∞ L0(Pr) = lim inf

r→∞

d∑

j=1

Lj (Pr) ≥
q∑

j=1

lim inf
r→∞ Lj (Pr) + lim inf

r→∞

d∑

j=q+1

Lj (Pr)

≥
q∑

j=1

d
∑

i∈Ij

wi log

(
1

C
xT
i xi

)
+ log(pj) + lim inf

r→∞

d∑

j=q+1

d
∑

i∈Ij

wi log(prj x
T
i P −1

r xi)

+lim inf
r→∞

d∑

j=q+1

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(prj)

≥
q∑

j=1

d
∑

i∈Ij

wi log(
1

C
xT
i xi) + log(pj) +

d∑

j=q+1

d
∑

i∈Ij

wi log(
〈
xi, ej

〉
)

+lim inf
r→∞

d∑

j=q+1

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j)

= const + lim inf
r→∞

d∑

j=q+1

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j).

It remains to show that there exist c̃ > 0 such that

lim inf
r→∞

d∑

j=q+1

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j) ≥ c̃. (17)

We prove for k ≥ q + 1 by induction that for sufficiently large r ∈ N it holds

d∑

j=k

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(prj) ≥
⎛

⎝d
∑

i∈Ĩk−1

wi − (k − 1)

⎞

⎠ log(pr,k). (18)

Induction basis k = d: Since Ĩk = Ik ∪ Ĩk−1 we have
∑

i∈Ĩk

wi −
∑

i∈Ĩk−1

wi =
∑

i∈Ik

wi,

and further

1−d
∑

i∈Id

wi =1−d

⎛

⎝
∑

i∈Ĩd

wi −
∑

i∈Ĩd−1

wi

⎞

⎠ =1−d

⎛

⎝1−
∑

i∈Ĩd−1

wi

⎞

⎠ =d
∑

i∈Ĩd−1

wi−(d−1).

If we multiply both sides with log(prd) this yields (18) for k = d .
Induction step: Assume that (18) holds for some k + 1 with d ≥ k + 1 > q + 1, i.e.,

d∑

j=k+1

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j) ≥ d

⎛

⎝
∑

i∈Ĩk

wi − k

d

⎞

⎠ log(pr,k+1).

Numerical Algorithms (2021) 87:77–118 115

Then we obtain

d∑

j=k

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j)

=
d∑

j=k+1

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(pr,j) +
⎛

⎝1 − d
∑

i∈Ik

wi

⎞

⎠ log(pr,k)

≥ d

⎛

⎝
∑

i∈Ĩk

wi − k

d

⎞

⎠ log(pr,k+1) +
⎛

⎝1 − d
∑

i∈Ik

wi

⎞

⎠ log(pr,k).

and since
∑

i∈Ĩk
wi <

∣
∣∣Ĩk

∣
∣∣ 1

d
≤ k

d
by Assumption 1 and pr,k+1 ≤ pr,k < 1 finally

≥ d

⎛

⎝
∑

i∈Ĩk

wi − k

d

⎞

⎠ log(pr,k) +
⎛

⎝1 − d
∑

i∈Ik

wi

⎞

⎠ log(pr,k)

=
⎛

⎝d
∑

i∈Ĩk−1

wi − (k − 1)

⎞

⎠ log(pr,k).

This shows (18) for k ≥ q + 1. Using k = q + 1 in (17) we get

lim inf
r→∞

d∑

j=q+1

⎛

⎝1 − d
∑

i∈Ij

wi

⎞

⎠ log(prj) ≥ lim inf
r→∞

⎛

⎜
⎝d
∑

i∈Ĩq

wi − q

⎞

⎟
⎠

︸ ︷︷ ︸
<0

log(pr,q+1)︸ ︷︷ ︸
bounded from above

> −∞.

This finishes the proof.

Lemma 5 Let (νr , Σr)r be a sequence in R>0 × SPD(d) such that there exists ν− ∈
R>0 with ν− ≤ νr for all r ∈ N. Denote by λr,1 ≥ · · · ≥ λr,d the eigenvalues of Σr .
If {λ1,r : r ∈ N} is unbounded or {λd,r : r ∈ N} has zero as a cluster point, then
there exists a subsequence (νrk , Σrk)k of (νr , Σr)r , such that lim

k→∞ L(νrk , Σrk) = ∞.

Proof Without loss of generality we assume (by considering a subsequence) that
either λr1 → ∞ as r → ∞ and λrd ≥ c > 0 for all r ∈ N or that λrd → 0 as
r → ∞. By [17, Theorem 4.3] for fixed ν = ν−, we have Lν−(Σr) → ∞ as r → ∞.

The function h : R>0 → R defined by ν → (d + ν) log(ν + k) is monotone
increasing for all k ∈ R≥0. This can be seen as follows: The derivative of h fulfills

h′(ν) = d + ν

k + ν
+ log(ν + k) ≥ 1 + ν

k + ν
+ log(ν + k),

and since
∂

∂k

(
1 + ν

k + ν
+ log(ν + k)

)
= k − 1

(k + ν)2
,

Numerical Algorithms (2021) 87:77–118116

the later function is minimal for k = 1, so that

h′(ν) ≥ 1 + ν

k + ν
+ log(ν + k) ≥ 1 + ν

1 + ν
+ log(ν + 1) = 1 + log(1 + ν) > 0.

Using this relation, we obtain

(d + νr)

n∑

i=1

wi log
(
νr + xT

i Σ−1
r xi

)
≥ (d + ν−)

n∑

i=1

wi log
(
ν− + xT

i Σ−1
r xi

)

and further

L(νr , Σr) = (d + νr)

n∑

i=1

wi log
(
νr + xT

i Σ−1
r xi

)
+ log(|Σr |)

≥ (d + ν−)

n∑

i=1

wi log
(
ν− + xT

i Σ−1
r xi

)
+ log(|Σr |)

= Lν−(Σr) → ∞ as r → ∞.

Acknowledgments The authors want to thank the anonymous referees for bringing certain accelerations
of the EM algorithm to our attention.

Funding Open Access funding enabled and organized by Projekt DEAL. This work received funding
from the German Research Foundation (DFG) within the project STE 571/16-1.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and
mathematical tables, volume 55 Courier Corporation (1965)

2. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach. 12,
547–560 (1965)

3. Antoniadis, A., Leporini, D., Pesquet, J.-C.: Wavelet thresholding for some classes of non-Gaussian
noise. Statis. Neerlandica 56(4), 434–453 (2002)

4. Banerjee, A., Maji, P.: Spatially constrained Student’s t-distribution based mixture model for robust
image segmentation. J. Mathe. Imag. Vision 60(3), 355–381 (2018)

5. Byrne, C.L.: The EM algorithm: theory, applications and related methods. Lecture notes university of
massachusetts (2017)

6. Ding, M., Huang, T., Wang, S., Mei, J., Zhao, X.: Total variation with overlapping group sparsity for
deblurring images under Cauchy noise. Appl. Math. Comput. 341, 128–147 (2019)

7. Fang, H.-R., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear
Algebra Appli. 16(3), 197–221 (2009)

8. Gerogiannis, D., Nikou, C., Likas, A.: The mixtures of Student’s t-distributions as a robust framework
for rigid registration. Image Vis. Comput. 27(9), 1285–1294 (2009)

Numerical Algorithms (2021) 87:77–118 117

http://creativecommons.org/licenses/by/4.0/

9. Henderson, N.C., Varadhan, R.: Damped Anderson acceleration with restarts and monotonicity control
for accelerating EM and EM-like algorithms. J. Comput. Graph. Stat. 28(4), 834–846 (2019)

10. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)
11. Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 239–251 (1945)
12. Kent, J.T., Tyler, D.E., Vard, Y.: A curious likelihood identity for the multivariate t-distribution.

Communications in Statistics-Simulation and Computation 23(2), 441–453 (1994)
13. Lange, K.L., Little, R.J., Taylor, J.M.: Robust statistical modeling using the t distribution. J. Am. Stat.

Assoc. 84(408), 881–896 (1989)
14. Lanza, A., Morigi, S., Sciacchitano, F., Sgallari, F.: Whiteness constraints in a unified variational

framework for image restoration. J. Mathe. Imag. Vision 60(9), 1503–1526 (2018)
15. Laus, F.: Statistical Analysis and Optimal Transport for Euclidean and Manifold-Valued Data. PhD

Thesis, TU Kaiserslautern (2020)
16. Laus, F., Pierre, F., Steidl, G.: Nonlocal myriad filters for Cauchy noise removal. J. Math. Imag. Vision

60(8), 1324–1354 (2018)
17. Laus, F., Steidl, G.: Multivariate myriad filters based on parameter estimation of student-t distribu-

tions. SIAM J Imaging Sci 12(4), 1864–1904 (2019)
18. Lebrun, M., Buades, A., Morel, J.-M.: A nonlocal Bayesian image denoising algorithm. SIAM J.

Imag. Sci. 6(3), 1665–1688 (2013)
19. Liu, C., Rubin, D.B.: The ECME algorithm: a simple extension of EM and ECM with faster monotone

convergence. Biometrika 81(4), 633–648 (1994)
20. Liu, C., Rubin, D.B.: ML estimation of the t distribution using EM and its extensions, ECM and

ECME. Stat. Sin. 5(1), 19–39 (1995)
21. McLachlan, G., Krishnan, T.: The EM algorithm and extensions. John wiley and sons inc (1997)
22. McLachlan, G., Peel, D.: Robust cluster analysis via mixtures of multivariate t-distributions. volume

1451 of Lecture Notes in Computer Science. Springer, New York (1998)
23. Mei, J.-J., Dong, Y., Huang, T.-Z., Yin, W.: Cauchy noise removal by nonconvex ADMM with

convergence guarantees. J. Sci. Comput. 74(2), 743–766 (2018)
24. Meng, X.-L., Van Dyk, D.: The EM algorithm - an old folk-song sung to a fast new tune. J. Royal

Statis. Soc. :, Series B (Statis. Methodol.) 59(3), 511–567 (1997)
25. Nguyen, T.M., Wu, Q.J.: Robust Student’s-t mixture model with spatial constraints and its application

in medical image segmentation. IEEE Trans. Med. Imaging 31(1), 103–116 (2012)
26. Peel, D., McLachlan, G.J.: Robust mixture modelling using the t distribution. Stat. Comput. 10(4),

339–348 (2000)
27. Petersen, K.B., Pedersen, M.S.: The Matrix Cookbook. Technical University of Denmark, Lecture

Notes (2008)
28. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with Cauchy

noise. SIAM J. Imag. Sci. 8(3), 1894–1922 (2015)
29. Sfikas, G., Nikou, C., Galatsanos, N.: Robust image segmentation with mixtures of Student’s t-

distributions. In: 2007 IEEE International Conference on Image Processing, volume 1, pages I – 273–I
–276 (2007)

30. Sutour, C., Deledalle, C.-A., Aujol, J.-F.: Estimation of the noise level function based on a
nonparametric detection of homogeneous image regions. SIAM J. Imag. Sci. 8(4), 2622–2661 (2015)

31. Van Den Oord, A., Schrauwen, B.: The Student-t mixture as a natural image patch prior with
application to image compression. J. Mach. Learn. Res. 15(1), 2061–2086 (2014)

32. Van Dyk, D.A.: Construction, Implementation, and Theory of Algorithms Based on Data Augmenta-
tion and Model Reduction. The University of Chicago, PhD Thesis (1995)

33. Varadhan, R., Roland, C.: Simple and globally convergent methods for accelerating the convergence
of any EM algorithm. Scandinavian. J. Statis. Theory Appli 35(2), 335–353 (2008)

34. Yang, Z., Yang, Z., Gui, G.: A convex constraint variational method for restoring blurred images in
the presence of alpha-stable noises. Sensors 18(4), 1175 (2018)

35. Zhou, Z., Zheng, J., Dai, Y., Zhou, Z., Chen, S.: Robust non-rigid point set registration using Student’s-
t mixture model. PloS one 9(3), e91381 (2014)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Numerical Algorithms (2021) 87:77–118118

	Numerical Algorithms
	Abstract
	Introduction
	Likelihood of the multivariate student t distribution
	Existence of critical points
	Zeros of F
	Algorithms
	Numerical results
	Comparison of algorithms
	Comparison with other accelerations of the EM algortihm
	ECME algorithm:
	SQUAREM Acceleration:
	Damped Anderson Acceleration with Restarts and -Monotonicity (DAAREM):
	Simulation Study:

	Unsupervised estimation of noise parameters
	Constant area detection:
	Parameter estimation.

	Appendix: . Auxiliary lemmas
	References

