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Abstract For the computation of the generalized singular value decomposition (GSVD) of
a large matrix pair (A,B) of full column rank, the GSVD is commonly formulated as two
mathematically equivalent generalized eigenvalue problems, so that a generalized eigen-
solver can be applied to one of them and the desired GSVD components are then recovered
from the computed generalized eigenpairs. Our concern in this paper is, in finite precision
arithmetic, which generalized eigenvalue formulation is numerically preferable to compute
the desired GSVD components more accurately. We make a detailed perturbation analysis
on the two formulations and show how to make a suitable choice between them. Numerical
experiments illustrate the results obtained.
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1 Introduction

The generalized singular value decomposition (GSVD) of a matrix pair (A,B) was first in-
troduced by van Loan [25] and then developed by Paige and Saunders [18]. It has become a
standard decomposition and an important computational tool [7], and has been extensively
used in a wide range of contexts, e.g., solutions of discrete linear ill-posed problems [9],
weighted or generalized least squares problems [4], information retrieval [12], linear dis-
criminant analysis [19], and many others [3,5,7,17,24].
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Let A ∈ Rm×n (m ≥ n) and B ∈ Rp×n (p ≥ n) be large and possibly sparse matrices of
full column rank, i.e., rank(A) = rank(B) = n. The GSVD of (A,B) is{

A =UCX−1,

B =V SX−1,
with

{
C = diag{α1, . . . ,αn},
S = diag{β1, . . . ,βn},

(1.1)

where X = [x1, . . . ,xn] is nonsingular, U = [u1, . . . ,un] and V = [v1, . . . ,vn] are orthonor-
mal, and the positive numbers αi and βi satisfy α2

i + β 2
i = 1, i = 1, . . . ,n. We call such

(αi,βi,ui,vi,xi) a GSVD component of (A,B) with the generalized singular value σi =
αi
βi

,
the left generalized singular vectors ui and vi, and the right generalized singular vector xi,
i = 1, . . . ,n. Denote the generalized singular value matrix of (A,B) by

Σ =CS−1 = diag{σ1, . . . ,σn}. (1.2)

Throughout this paper, we also refer to a scalar pair (αi,βi) as a generalized singular value
of (A,B). Particularly, we will denote by σmax(A,B) and σmin(A,B) the largest and small-
est generalized singular values of (A,B), respectively. Obviously, the generalized singular
values of the pair (B,A) are 1

σi
, i = 1,2, . . . ,n, the reciprocals of those of (A,B), and their

generalized singular vectors are the same as those of (A,B).
For a prescribed target τ , assume that the generalized singular values of (A,B) are la-

beled by

|σ1− τ| ≤ |σ2− τ| ≤ · · · ≤ |σ`− τ|< |σ`+1− τ| ≤ · · · ≤ |σn− τ|. (1.3)

Specifically, if we are interested in the ` smallest generalized singular values of (A,B) and/or
the associated left and right generalized singular vectors, we assume τ = 0 in (1.3), so that
the generalized singular values are labeled in increasing order; if we are interested in the `
largest generalized singular values of (A,B) and/or the corresponding generalized singular
vectors, we assume τ = +∞ in (1.3), so that the generalized singular values are labeled
in decreasing order. More generally, once τ is bigger than the largest generalized singular
value, the ` generalized singular values closest to τ are the largest ones of (A,B). In these
two cases, the ` GSVD components (α,β ,u,v,x) are called the extreme (smallest or largest)
GSVD components of (A,B). Otherwise they are called ` interior GSVD components of
(A,B) if the given τ is inside the spectrum of the generalized singular values of (A,B). We
will abbreviate any one of the desired GSVD components as (σ ,u,v,x) or (α,β ,u,v,x) with
the subscripts dropped.

For a large and possibly sparse matrix pair (A,B), one kind of approach to compute the
desired GSVD components works on the pair directly. Zha [26] proposes a joint bidiago-
nalization method to compute the extreme generalized singular values σ and the associated
generalized singular vectors u,v,x, which is a generalization of Lanczos bidiagonalization
type methods [14,15] for computing a partial ordinary SVD of A when B = I. A main bot-
tleneck of this method is that a large-scale least squares problem with the coefficient matrix[

A
B

]
must be solved at each step of the joint bidiagonalization. Jia and Yang [16] has made

a further analysis on this method and its variant, and provided more theoretical supports for
its rationale.

For the computation of GSVD, a natural approach is to apply a generalized eigensolver
to the mathematically equivalent generalized eigenvalue problem of the cross product matrix
pair (AT A,BT B) to compute the corresponding eigenpairs (σ2,x) and then recover the de-
sired GSVD components from the computed eigenpairs. However, because of the squaring
of the generalized singular values of (A,B), for σ small, the eigenvalues σ2 of (AT A,BT B)
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are much smaller. As a consequence, the smallest generalized singular values may be re-
covered much less accurately and even may have no accuracy [13]. Therefore, we will not
consider such a formulation in this paper.

Another kind of commonly used approach formulates the GSVD as a generalized eigen-
value problem [11], where the Jacobi-Davidson method [10] for the ordinary SVD problem
has been adapted to a mathematically equivalent formulation of the GSVD so that a suitable
generalized eigensolver [20,21,22] can be used. The approach then recovers the desired
GSVD components. Concretely, the two formulations proposed in [11] transform the GSVD
into the generalized eigenvalue problem of the augmented definite matrix pair

(Â, B̂) :=
([

A
AT

]
,

[
I

BT B

])
, (1.4)

or the augmented definite matrix pair

(B̃, Ã) :=
([

B
BT

]
,

[
I

AT A

])
. (1.5)

We will give detailed relationships between the GSVD of (A,B) and the generalized eigen-
pairs of (Â, B̂) and (B̃, Ã) in the next section. One then applies a generalized eigensolver to
either of them, computes the corresponding generalized eigenpairs, and recovers the desired
GSVD components from those computed generalized eigenpairs.

As will be clear next section, the nonzero eigenvalues of (Â, B̂) and (B̃, Ã) are ±σi and
± 1

σi
, i= 1,2, . . . ,n, respectively. Therefore, the largest or interior generalized singular values

of (A,B) become the largest or interior eigenvalues of (Â, B̂), and the smallest or interior
generalized singular values are the largest and interior eigenvalues of (B̃, Ã). In principle,
we may use a number of projection methods, e.g., Lanczos type methods, to compute the
extreme GSVD components via solving the generalized eigenvalue problem of (Â, B̂) or
(B̃, Ã). For a unified account of projection algorithms, we refer to [2]. For the computation
of interior GSVD components of (A,B), we may employ the Jacobi-Davidson type method
proposed in [11], referred as JDGSVD, where at each step a linear system, i.e., the correction
equation, is solved iteratively and its approximate solution is used to expand the current
searching subspaces. The JDGSVD method deals with the generalized eigenvalue problem
of (1.4) or (1.5), computes some specific generalized eigenpairs, and recovers the desired
GSVD components from the converged generalized eigenpairs.

As far as numerical computations are concerned, an important question arises naturally:
which of the mathematically equivalent formulations (1.4) and (1.5) is numerically prefer-
able, so that the desired GSVD components can be computed more accurately? In this paper,
rather than propose or develop any numerical algorithm for computing the desired ` GSVD
components, we focus on this question carefully, give a deterministic answer to it, and sug-
gest a definitive choice. We first make a sensitivity analysis on the generalized eigenpairs of
(1.4) and (1.5). Based on the results to be obtained, we establish accuracy estimates for the
approximate generalized singular values and the left and right generalized singular vectors
that are recovered from the approximate generalized eigenpairs obtained. Then by compar-
ing the accuracy of the approximate GSVD components recovered from the approximate
generalized eigenpairs of (1.4) and (1.5), we make a correct choice between these two for-
mulations.

This paper is organized as follows. In Section 2 we make a sensitivity analysis on the
generalized eigenvalue problems of the structured matrix pairs (Â, B̂) and (B̃, Ã), respec-
tively, and give error bounds for the generalized singular values σ and the generalized
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eigenvectors of (Â, B̂) and (B̃, Ã). In Section 3 we carry out a sensitivity analysis on the
approximate generalized singular vectors that are recovered from the approximate gener-
alized eigenpairs of (Â, B̂) and (B̃, Ã). Based on the results and analysis, we conclude that
(1.5) is preferable to compute the GSVD more accurately when A is well conditioned and B
is ill conditioned, and (1.4) is preferable when A is ill conditioned and B is well conditioned.
In Section 4 we propose a few practical choice strategies on (1.4) and (1.5). In Section 5 we
report the numerical experiments. We conclude the paper in Section 6.

Throughout this paper, denote by ‖ · ‖ the 2-norm of a vector or matrix and κ(C) =
σmax(C)/σmin(C) the condition number of a matrix C with σmax(C) and σmin(C) being the
largest and smallest singular values of C, respectively, and by CT the transpose of C. Denote
by Ik the identity matrix of order k, by 0k and 0k×l the zero matrices of order k and k× l,
respectively. The subscripts are omitted when there is no confusion. We also denote by
R(C) the column space or range of C. For brevity of our analysis and results, without loss
of generality, we suppose that ‖A‖ and ‖B‖ are comparable in size and, furthermore, A
and B have already been scaled so that their 2-norms are of O(1), that is, ‖A‖ ≈ ‖B‖ ≈ 1
roughly, meaning that σ

−1
min(A) = ‖A

†‖ ≈ κ(A) and σ
−1
min(B) = ‖B

†‖ ≈ κ(B) roughly and the
conditioning of A and B is reflected by σmin(A) and σmin(B), respectively.

2 Perturbation analysis of generalized eigenvalue problems and the accuracy of
generalized singular values

The generalized eigendecompositions of the matrix pairs (Â, B̂) and (B̃, Ã) are closely related
to the GSVD of (A,B) in the following way, which is straightforward to verify.

Lemma 2.1. Let the GSVD of (A,B) be defined by (1.1) with the generalized singular values
defined by (1.2). Let U⊥ ∈ Rm×(m−n) and V⊥ ∈ Rp×(p−n) be such that [U,U⊥] and [V,V⊥]
are orthogonal. Then the matrix pairs (Â, B̂) and (B̃, Ã) defined by (1.4) and (1.5) have the
generalized eigendecompositions

ÂY = B̂Y Σ̂ and B̃Z = ÃZΛ̃ , (2.1)

respectively, where

Σ̂ =
[

Σ
−Σ

0

]
, Y =

[
1√
2
U 1√

2
U U⊥

1√
2
W − 1√

2
W 0

]
(2.2)

with W = XS−1, and

Λ̃ =
[

Λ
−Λ

0

]
, Z =

[
1√
2
V 1√

2
V V⊥

1√
2
W ′ − 1√

2
W ′ 0

]
(2.3)

with Λ = Σ−1 = SC−1 and W ′ = XC−1. Moreover, the columns of the eigenvector matrices
Y and Z are B̂- and Ã-orthonormal, respectively, i.e.,

Y T B̂Y = Im+n, ZT ÃZ = Ip+n. (2.4)

Lemma 2.1 illustrates that the GSVD component (α,β ,u,v,x) of (A,B) corresponds to
the generalized eigenpair

(σ ,y) :=
(

α

β
,

1√
2

[
u

x/β

])
(2.5)
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of the augmented matrix pair (Â, B̂) with the eigenvector y satisfying yT Ây=σ and yT B̂y= 1
and the generalized eigenpair

(
1
σ
,z) :=

(
β

α
,

1√
2

[
v

x/α

])
(2.6)

of the augmented matrix pair (B̃, Ã) with the eigenvector z satisfying zT B̃z= 1
σ

and zT Ãz= 1.
Therefore, the GSVD of (A,B) is mathematically equivalent to the generalized eigendecom-
positions (1.4) and (1.5). In order to obtain some GSVD components (α,β ,u,v,x), one can
compute the corresponding generalized eigenpairs (σ ,y) of (Â, B̂) or ( 1

σ
,z) of (B̃, Ã) by

applying a generalized eigensolver to (1.4) or (1.5), and then recovers the desired GSVD
components.

However, in numerical computations, we can obtain only approximate eigenpairs of
(1.4) and (1.5), and thus recover only approximate GSVD components of (A,B). As a result,
when numerically backward stable eigensolvers solve the generalized eigenvalue problems
of (1.4) and (1.5) with the computed eigenpairs whose residuals have about the same size,
a natural and central concern is: which of the computed eigenpairs of (1.4) and (1.5) will
yield more accurate approximations to the desired GSVD components of (A,B), that is,
which of (1.4) and (1.5) is numerically preferable to compute the GSVD components more
accurately?

To this end, we need to carefully estimate the accuracy of the computed eigenpairs and
that of the recovered GSVD components. Given a backward stable generalized eigensolver
applied to (1.4) and (1.5), let (σ̂ , ŷ) and ( 1

σ̃
, z̃) be the computed approximations to (σ ,y)

and ( 1
σ
,z), respectively. Then (σ̂ , ŷ) and ( 1

σ̃
, z̃) are the exact eigenpairs of some perturbed

matrix pairs

(ÂAA, B̂BB) = (Â+ Ê, B̂+ F̂) and (B̃BB, ÃAA) = (B̃+ F̃ , Ã+ Ẽ), (2.7)

respectively, where the perturbations satisfy

‖Ê‖ ≤ ‖Â‖ε, ‖F̂‖ ≤ ‖B̂‖ε and ‖F̃‖ ≤ ‖B̃‖ε, ‖Ẽ‖ ≤ ‖Ã‖ε (2.8)

for ε small. In applications, we typically have ε = O(εmach) or ε = O(ε
1/2
mach) with εmach

being the machine precision [2,7,20,21,22]. Here in (2.7), to distinguish from the exact
augmented matrices defined in (1.4) and (1.5), we have used the bold letters to denote the
perturbed matrices. Notice that the assumption ‖A‖ ≈ ‖B‖ ≈ 1 made in Section 1 means
‖Â‖ = ‖A‖, ‖Ã‖ = max{1,‖A‖2} and ‖B̂‖ = max{1,‖B‖2}, ‖B̃‖ = ‖B‖. Therefore, the
perturbations in (2.8) satisfy

max
{
‖Ê‖,‖F̂‖,‖Ẽ‖,‖F̃‖

}
≤max{‖A‖2,‖B‖2,1}ε. (2.9)

In what follows, we will analyze how accurate the computed eigenpairs (σ̂ , ŷ) and ( 1
σ̃
, z̃)

are for a given small ε .

2.1 The accuracy of generalized singular values

Stewart and Sun in the monograph [23] use a chordal metric to measure the distance be-
tween the approximate and exact eigenvalues of a regular matrix pair. Let σ̂ and σ be the
eigenvalues of (ÂAA, B̂BB) and (Â, B̂). Then the chordal distance between them is

χ(σ̂ ,σ) =
|σ̂ −σ |√

1+ σ̂2
√

1+σ2
. (2.10)
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We present the following results.

Theorem 2.2. Let (σ ,y) and ( 1
σ
,z) be simple eigenpairs of (Â, B̂) and (B̃, Ã), respectively,

and their approximations (σ̂ , ŷ) and ( 1
σ̃
, z̃) be the exact eigenpairs of the perturbed matrix

pairs (ÂAA, B̂BB) = (Â+ Ê, B̂+ F̂) and (B̃BB, ÃAA) = (B̃+ F̃ , Ã+ Ẽ), respectively, with the perturba-
tions satisfying (2.8). Assume that the approximate eigenvectors ŷ and z̃ are decomposed in
the unnormalized form of ŷ = y+ s and z̃ = z+ t with yT B̂s = 0 and zT Ãt = 0. Then the
following error bounds hold:

χ(σ̂ ,σ) ≤ ‖y‖2(1+δ1)√
(yT Ây)2 +(yT B̂y)2

√
‖Ê‖2 +‖F̂‖2, (2.11)

χ(σ̃ ,σ) ≤ ‖z‖2(1+δ2)√
(zT Ãz)2 +(zT B̃z)2

√
‖Ẽ‖2 +‖F̃‖2, (2.12)

where δ1 =
‖s‖
‖y‖ and δ2 =

‖t‖
‖z‖ .

Proof. By the fact that Ây = σ B̂y and ÂAAŷ = σ̂ B̂BBŷ, we have σ = ŷT Ây
ŷT B̂y

= yT Âŷ
yT B̂ŷ

and σ̂ = yT ÂAAŷ
yT B̂BBŷ

.
Applying these two expressions to (2.10), we obtain

χ(σ̂ ,σ) =
|yT B̂BBŷ · yT Âŷ− yT ÂAAŷ · yT B̂ŷ|√

(yT Âŷ)2 +(yT B̂ŷ)2
√

(yT ÂAAŷ)2 +(yT B̂BBŷ)2
. (2.13)

By Â = ÂAA− Ê and B̂ = B̂BB− F̂ , the nominator in the above equality satisfies

|yT B̂BBŷ · yT Âŷ− yT ÂAAŷ · yT B̂ŷ| = |yT B̂BBŷ · yT (ÂAA− Ê)ŷ− yT ÂAAŷ · yT (B̂BB− F̂)ŷ|
= |yT B̂BBŷ · yT Êŷ− yT ÂAAŷ · yT F̂ ŷ|

≤
√
(yT ÂAAŷ)2 +(yT B̂BBŷ)2

√
(yT Êŷ)2 +(yT F̂ ŷ)2,

applying which to (2.13) gives rise to

χ(σ̂ ,σ)≤

√
(yT Êŷ)2 +(yT F̂ ŷ)2√
(yT Âŷ)2 +(yT B̂ŷ)2

≤
‖y‖‖ŷ‖

√
‖Ê‖2 +‖F̂‖2√

(yT Âŷ)2 +(yT B̂ŷ)2
.

Notice from ŷ = y+ s with s satisfying yT B̂s = 0 and yT Âs = 0 that yT Âŷ = yT Â(y+ s) =
yT Ây and yT B̂ŷ = yT B̂(y+ s) = yT B̂y. Moreover, it has ‖ŷ‖ ≤ ‖y‖+‖s‖= ‖y‖(1+δ1) with
δ1 =

‖s‖
‖y‖ . Applying these facts to the above inequality gives (2.11).

Replacing σ̂ , ŷ, y, (Â, B̂) and (ÂAA, B̂BB) with 1
σ̃

, z̃, z, (B̃, Ã) and (B̃BB, ÃAA), respectively, in (2.11),
and exploiting the invariance of the chordal distance under reciprocal, i.e.,

χ(σ̃−1,σ−1) = χ(σ̃ ,σ),

we obtain (2.12).
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Obviously, it can be seen from the proof that (2.11) and (2.12) are independent of scal-
ings of y, ŷ and z, ẑ. Therefore, our assumption in the theorem on the unnormalized de-
composition form of ŷ and ẑ is without loss of generality and is only for brevity of the
presentation.

For the scalars δ1 and δ2 in (2.11) and (2.12), we claim that

δ1 = O(ε) and δ2 = O(ε) (2.14)

for a sufficiently small ε in (2.8). To show this precisely, without loss of generality, we
assume that the approximate eigenvectors y of (Â, B̂) and z of (B̃, Ã) are scaled such that
yT B̂y = 1 and zT Ãz = 1. Moreover, let the generalized eigenvalue and eigenvector matrices
of (Â, B̂) and (B̃, Ã) defined by (2.1) be partitioned as

Σ̂ =
[

σ

Σ̂2

]
, Y = [y,Y2], Λ̃ =

[ 1
σ

Λ̃2

]
, Z = [z,Z2]. (2.15)

Relation (2.4) shows Y T
2 B̂y = 0, i.e., the columns of Y2 form a basis of (B̂y)⊥, and sT B̂y = 0

indicates that we can write s = Y2h for some h ∈ Rm+n−1. By (2.24) to be proved later, we
have

‖s‖ ≤ ‖Y2‖‖h‖ ≤
‖Y2‖2‖ŷ‖

minµi 6=σ |µi− σ̂ |
‖σ̂ F̂− Ê‖ ≤ η1‖y‖(1+δ1) (2.16)

with η1 =
‖Y2‖2‖σ̂ F̂−Ê‖
minµi 6=σ |µi−σ̂ | and µi being the eigenvalues of (Â, B̂) other than σ . If ε in (2.8) is

sufficiently small such that η1 < 1, then from (2.16) we obtain an explicit bound for δ1:

δ1 =
‖s‖
‖y‖
≤ η1

1−η1
= O(ε).

In an analogous manner, we can obtain δ2 = O(ε).
It is worthwhile to point out that some first order expansions are derived for χ(σ̂ ,σ) for

a general regular matrix pair in [23, p.291-4] but the constants in the second order smaller
terms are unknown. The proofs of bounds (2.11) and (2.12) have no special requirement on
the matrix pairs and thus are directly applicable to a general regular matrix pair by replacing
the transpose by the conjugate transpose and the scalars in the denominators by their abso-
lute values. In comparison with those results in [23, p.291-4], however, our bounds contain
explicit second order smaller terms since we have obtained the explicit bounds for δ1 and
δ2.

Exploiting y = 1√
2

[ u
x/β

]
and z = 1√

2

[ u
x/α

]
in Theorem 2.2, and keeping (2.14) in mind,

we can present the following results.

Theorem 2.3. Let (σ ,y) and ( 1
σ
,z) be the eigenpairs of (Â, B̂) and (Ã, B̃) corresponding to

the GSVD component (α,β ,u,v,x) of (A,B). Assume that their approximations (σ̂ , ŷ) and
( 1

σ̃
, z̃) are the generalized eigenpairs of the perturbed (ÂAA, B̂BB) and (B̃BB, ÃAA), respectively, where

the perturbations satisfy (2.9). If ε is sufficiently small, the following error estimates hold:

χ(σ̂ ,σ) ≤ (‖x‖2 +β 2)(1+δ1)

2β

√
‖Ê‖2 +‖F̂‖2, (2.17)

χ(σ̃ ,σ) ≤ (‖x‖2 +α2)(1+δ2)

2α

√
‖Ẽ‖2 +‖F̃‖2, (2.18)

where δ1 = O(ε) and δ2 = O(ε).



8 Jinzhi Huang, Zhongxiao Jia

Proof. It suffices to prove (2.17), and the proof of (2.18) is similar. From Lemma 2.1, notice
that the eigenvector y of (Â, B̂) satisfies yT Ây = σ and yT B̂y = 1. From σ = α/β , α2+β 2 =
1 and ‖u‖= 1, we have

‖y‖2√
(yT Ây)2 +(yT B̂y)2

=
1
2

‖u‖2 + ‖x‖
2

β 2
√

1+σ2
=
‖x‖2 +β 2

2β
.

Applying this and (2.14) to (2.11) yields (2.17).

Notice from (2.9) that the perturbation terms in the right hand sides of both (2.17) and
(2.18) are no more than the same O(ε). Theorem 2.3 illustrates that the accuracy of the
approximate generalized singular value σ̂ and that of σ̃ are determined by β and ‖x‖, and
by α and ‖x‖, respectively. Apparently, a large ‖x‖ could severely impair the accuracy of
both σ̂ and σ̃ . Fortunately, the following bounds show that ‖x‖ must be modest under some
mild conditions.

Lemma 2.4. Let X be the right generalized singular vector matrix of (A,B) as defined in
(1.1) and x be an arbitrary column of X. Then

‖X‖ ≤min{‖A†‖,‖B†‖} and ‖X−1‖ ≤
√
‖A‖2 +‖B‖2, (2.19)

where the superscript † denotes the Moore-Penrose generalized inverse of a matrix, and

1√
‖A‖2 +‖B‖2

≤ ‖x‖ ≤min{‖A†‖,‖B†‖}. (2.20)

Proof. The bounds in (2.19) and the upper bound for ‖x‖ in (2.20) are from Theorem 2.3 of
[8]. Note that x is a column of X . Then the lower bound for ‖x|| in (2.20) follows from the
fact that

‖x‖ ≥ σmin(X) = ‖X−1‖−1.

Lemma 2.4 indicates that, provided that one of A and B is well conditioned, ‖x‖must be
modest. In applications, to our best knowledge, there seems no case that both A and B are
simultaneously ill conditioned. Therefore, without loss of generality, we will assume that at
least one of A and B is well conditioned. Then we have ‖x‖= O(1). Under this assumption,
the stacked matrix

[
A
B

]
must be well conditioned, too [23, Theorem 4.4].

Moreover, Theorem 2.4 of [8] shows that provided
[

A
B

]
is well conditioned, the singular

values of A and those of B behave like αi and βi, i = 1,2, . . . ,n, correspondingly: the ratios
of the singular values of A and αi (resp. those of the singular values of B and βi), when
labeled by the same order, are bounded from below and above by

∥∥[A
B

]†∥∥−1 and
∥∥[A

B

]∥∥,
respectively. As a consequence, it is straightforward to justify the following basic properties,
which will play a vital role in analyzing the results in this paper.

Property 2.5. Assume that at least one of A and B is well conditioned.

– If both A and B are well conditioned, no αi and βi are small. In this case, all the gener-
alized singular values σi of (A,B) are neither large nor small.

– If A or B is ill conditioned, there must be some small αi or βi, that is, some generalized
singular values σi must be small or large. Moreover, the small generalized singular
values σi = αi/βi = αi(1−α2

i )
− 1

2 ≈ αi for A ill conditioned and the large σi = (1−
β 2

i )
1
2 /βi ≈ 1/βi for B ill conditioned.
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– If A is ill conditioned and B is well conditioned, all the σi cannot be large but some of
them are small; if A is well conditioned and B is ill conditioned, all the σi cannot be
small but some of them are large.

Notice that α2 +β 2 = 1 andα > 0, β > 0. We have

1
1+ 1

‖x‖2
=
‖x‖2

‖x‖2 +1
<
‖x‖2 +β 2

‖x‖2 +α2 <
‖x‖2 +1
‖x‖2 = 1+

1
‖x‖2 .

Therefore, it follows from (2.20) that

1
1+‖A‖2 +‖B‖2 <

‖x‖2 +β 2

‖x‖2 +α2 < 1+‖A‖2 +‖B‖2. (2.21)

This, together with the assumption ‖A‖ ≈ ‖B‖ ≈ 1, shows that the lower and upper bounds
are roughly 1

3 and 3, respectively, and the ratio is thus very modest. When at least one of
A and B is well conditioned, it is clear that the numerators ‖x‖2 +β 2 and ‖x‖2 +α2 in the
constants in front of the perturbation terms in bounds (2.17) and (2.18) are not only modest
but also very comparable in size. However, it is worthwhile to remind that the lower and
upper bounds in (2.21) shows that the ratio ‖x‖

2+β 2

‖x‖2+α2 is always modest, independent of the
conditioning of A and B. Furthermore, relation (2.21) shows that it is the denominators 2β

and 2α that decide the size of the constants in front of the perturbation terms in bounds
(2.17) and (2.18). As a consequence, in terms of Theorem 2.3 and Property 2.5, we can
draw the following conclusions for the accurate computation of σ :

– For A and B well conditioned, both (1.4) and (1.5) work well.
– If A is well conditioned but B is ill conditioned, (1.5) is preferable to (1.4).
– If A is ill conditioned but B is well conditioned, (1.4) is better than (1.5).

2.2 The accuracy of generalized eigenvectors

In terms of the angles between the approximate and exact eigenvectors, we present the fol-
lowing accuracy estimates for the approximate eigenvectors of the symmetric definite matrix
pairs in (1.4) and (1.5).

Theorem 2.6. With the notations of Theorem 2.2, the following bounds hold:

sin∠(ŷ,y) ≤ ‖B̂−1‖
minµi 6=σ |µi− σ̂ |

√
‖Ê‖2 + σ̂2‖F̂‖2, (2.22)

sin∠(z̃,z) ≤ ‖Ã−1‖
σ̃ min

νi 6= 1
σ

|νi− 1
σ̃
|

√
‖Ẽ‖2 + σ̃2‖F̃‖2, (2.23)

where the µi are the eigenvalues of (Â, B̂) other than σ , and the νi are the eigenvalues of
(B̃, Ã) other than 1

σ
.

Proof. By definition, we have (Â+ Ê)ŷ = σ̂(B̂+ F̂)ŷ with ŷ = y+ s = y+Y2h for some
h ∈ Rm+n−1 and the matrix Y2 defined as in (2.15). By a simple manipulation, we obtain

(Â− σ̂ B̂)(y+Y2h) = (σ̂ F̂− Ê)ŷ.
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Premultiplying Y T
2 both hand sides of the above relation, and noticing from (2.15) and (2.4)

that Y T
2 Ây = 0, Y T

2 B̂y = 0 and Y T
2 ÂY2 = Σ̂2, Y T

2 B̂Y2 = Im+n−1, we obtain

(Σ̂2− σ̂ I)h = Y T
2 (σ̂ F̂− Ê)ŷ.

Taking 2-norms on both hand sides in the above equality and exploiting

‖(Σ̂2− σ̂ I)h‖ ≥ min
µi 6=σ
|µi− σ̂ |‖h‖

with µi being the eigenvalues of (Â, B̂) other than σ leads to

‖h‖ ≤ ‖Y2‖‖ŷ‖
minµi 6=σ |µi− σ̂ |

‖σ̂ F̂− Ê‖. (2.24)

By definition, the sine of the angle between ŷ = y+ s and y satisfies

sin∠(ŷ,y) =
‖(I− yyT

yT y )(y+ s)‖
‖ŷ‖

=
‖(I− yyT

yT y )s‖
‖ŷ‖

≤ ‖s‖
‖ŷ‖

. (2.25)

Substituting ‖s‖= ‖Y2h‖ ≤ ‖Y2‖‖h‖ and (2.24) into (2.25) yields

sin∠(ŷ,y)≤ ‖Y2‖2

minµi 6=σ |µi− σ̂ |

√
‖Ê‖2 + σ̂2‖F̂‖2. (2.26)

Notice that B̂ is positive definite and Y2 satisfies Y T
2 B̂Y2 = Im+n−k. We have

‖Y2‖2 = ‖Y T
2 Y2‖= ‖Y T

2 (B̂)
1
2 (B̂)−1(B̂)

1
2 Y2‖

≤ ‖B̂−1‖‖(B̂)
1
2 Y2‖2 = ‖B̂−1‖,

applying which to (2.26) gives (2.22).
Following the same derivation, we obtain

sin∠(z̃,z)≤ ‖Ã−1‖
min

νi 6= 1
σ

|νi− 1
σ̃
|

√
‖F̃‖2 +

1
σ̃2 ‖Ẽ‖

2

with νi being eigenvalues of (B̃, Ã) other than 1
σ

, i.e., (2.23) holds.

Theorem 2.6 gives accuracy estimates for the approximate eigenvectors of the matrix
pairs (Â, B̂) and (B̃, Ã). It presents the results in the form of the structured matrix pairs and
their eigenvalues. For our use in the GSVD context, substituting the definitions of (Â, B̂) and
(B̃, Ã) in (1.4) and (1.5) as well as their eigenvectors in (2.2) and (2.3) into Theorem 2.6, we
can express the results more clearly in terms of the generalized singular values of (A,B) and
the matrices A and B themselves.

Theorem 2.7. With the notations of Theorem 2.3, the following results hold:

sin∠(ŷ,y) ≤ max{1,‖B†‖2}
σ̂ minσi 6=σ{|1− σi

σ̂
|,1}

√
‖Ê‖2 + σ̂2‖F̂‖2, (2.27)

sin∠(z̃,z) ≤ max{1,‖A†‖2}
minσi 6=σ{|1− σ̃

σi
|,1}

√
‖Ẽ‖2 + σ̃2‖F̃‖2, (2.28)

where the σi are the generalized singular values of (A,B) other than σ .
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Proof. Since the eigenvalues of (Â, B̂) are ±σ1,±σ2, . . . ,±σn and m−n zeros, we have

min
µi 6=σ
|µi− σ̂ | = min

σi 6=σ
{|σi− σ̂ |, σ̂ ,σ + σ̂ ,σi + σ̂}

= min
σi 6=σ
{|σi− σ̂ |, σ̂}= σ̂ min

σi 6=σ

{∣∣1− σi
σ̂

∣∣ ,1} , (2.29)

where the σi are the generalized singular values of (A,B) other than σ .
On the other hand, by definition (1.4) of B̂, we have

‖B̂−1‖= σ
−1
min(B̂) =

1
min{1,σ2

min(B)}
= max{1,‖B†‖}. (2.30)

Applying (2.29) and (2.30) to (2.22), we obtain (2.27).
Notice that the eigenvalues of (B̃, Ã) are± 1

σ1
,± 1

σ2
, . . . ,± 1

σn
and m−n zeros. Following

the same derivations as above, we obtain

sin∠(z̃,z) ≤ max{1,‖A†‖2}
σ̃ minσi 6=σ{| 1

σi
− 1

σ̃
|, 1

σ̃
}

√
‖Ẽ‖2 + σ̃2‖F̃‖2

=
max{1,‖A†‖2}

minσi 6=σ{|1− σ̃

σi
|,1}

√
‖Ẽ‖2 + σ̃2‖F̃‖2,

which proves (2.28).

Denote σ̂ = σ(1+ω1) and σ̃ = σ(1+ω2) with ω1 = σ̂−σ

σ
and ω2 = σ̃−σ

σ
. Assume

that ε in (2.9) is sufficiently small. Then from (2.10) and (2.17)–(2.18), we have ω1 = O(ε)
and ω2 = O(ε). For any generalized singular value σi 6= σ of (A,B), it is straightforward to
obtain

1− σi
σ̂
= (1− σi

σ
)(1+ ω1σi

(1+ω1)(σ−σi)
) = (1− σi

σ
)(1+O(ε)),

and
1− σ̃

σi
= (1− σ

σi
)(1− ω2σ

σi−σ
) = (1− σ

σi
)(1+O(ε)).

As a consequence, it holds that

min
σi 6=σ
{|1− σi

σ̂
|,1} = min

σi 6=σ
{|1− σi

σ
|,1}(1+O(ε)), (2.31)

min
σi 6=σ
{|1− σ̃

σi
|,1} = min

σi 6=σ
{|1− σ

σi
|,1}(1+O(ε)). (2.32)

For the minima in the right-hand sides of (2.31) and (2.32), we have the following result.

Theorem 2.8. Denote γ1 = minσi 6=σ{|1− σi
σ
|,1} and γ2 = minσi 6=σ{|1− σ

σi
|,1} with σi

being the generalized singular values of (A,B) other than σ . Then

1
2
≤ γ2

γ1
≤ 2. (2.33)

To prove this theorem, we need the following lemma.

Lemma 2.9. Define f (t)=min{|1−t|,1} and g(t)=min{|1− 1
t |,1} for t ∈ (0,1)∪(1,+∞).

Then
1
2
≤ g(t)

f (t)
≤ 2. (2.34)
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Proof. We classify nonnegative t as three subintervals:

– if t ∈ (0, 1
2 ), then f (t) = 1− t, g(t) = 1 and g(t)

f (t) =
1

1−t ∈ (1,2);

– if t ∈ [ 1
2 ,1)∪ (1,2], then f (t) = |1− t|, g(t) = |1− 1

t | and g(t)
f (t) =

1
t ∈ [ 1

2 ,1)∪ (1,2];
– if t ∈ (2,+∞), then f (t) = 1, g(t) = 1− 1

t and g(t)
f (t) = 1− 1

t ∈ ( 1
2 ,1).

Summarizing the above establishes (2.34).

Proof of Theorem 2.8. Denote by σl and σr the generalized singular values of (A,B) that
minimize |1− σi

σ
| and |1− σ

σi
| over all the generalized singular values σi of (A,B) other than

σ , respectively. Then γ1 and γ2 can be written as

γ1 = min{|1− σl

σ
|,1}= f (

σl

σ
),

γ2 = min{|1− σ

σr
|,1}= g(

σr

σ
),

where the functions f (·) and g(·) are defined by Lemma 2.9. Therefore, the ratio in (2.33) is

γ2

γ1
=

g(σr
σ
)

f (σl
σ
)
.

By the definitions of σl and σr, we have

f (
σl

σ
)≤ f (

σr

σ
) and g(

σr

σ
)≤ g(

σl

σ
). (2.35)

Combining (2.35) with (2.34), we obtain

1
2
≤

g(σr
σ
)

f (σr
σ
)
≤

g(σr
σ
)

f (σl
σ
)
≤

g(σl
σ
)

f (σl
σ
)
≤ 2,

which completes the proof.

Theorem 2.8, together with (2.31) and (2.32), means that the factors minσi 6=σ{|1−
σi
σ̂
|,1} and minσi 6=σ{|1− σ̃

σi
|,1} in (2.27) and (2.28) have approximately the same size and

both are approximately the relative separation of the desired σ from the other generalized
singular values of (A,B). The bigger they are, i.e., the better the desired generalized singu-
lar value σ is separated from the others, the more accurate the approximate eigenvectors of
(1.4) and (1.5) are.

For a given ε , (2.9) tells us that
√
‖Ê‖2 + σ̂2‖F̂‖2 and

√
‖Ẽ‖2 + σ̃2‖F̃‖2 in (2.27)

and (2.28) are approximately equal. Therefore, Theorems 2.7–2.8 and σ̂ = σ(1+O(ε)),
σ̃ = σ(1+O(ε)) show that which of ŷ and z̃ is more accurate critically depends on the

sizes of max{1,‖B†‖2}
σ

and max{1,‖A†‖2}. Keep in mind that ‖A‖ ≈ ‖B‖ ≈ 1 means that
max{1,‖A†‖2} ≈ κ2(A) and max{1,‖B†‖2} ≈ κ2(B). Combining these results with Prop-
erty 2.5, for a proper choice of (1.4) and (1.5) for computing eigenvectors more accurately,
we can draw the following conclusions with the arguments included.

– If A and B have roughly the same conditioning and both are well conditioned, then σ

cannot be large or small. In this case, both (1.4) and (1.5) are proper formulations of
computing the generalized eigenvectors y and z with similar accuracy.
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– For B ill conditioned and A well conditioned, assuming that the βi are labeled in decreas-
ing order, from Property 2.5, since the pair (A,B) has large generalized singular values
σi ≈ 1/βi but has no small one, it is known that ‖B†‖ ≈ 1

mini βi
≈maxi σi = σmax(A,B).

Therefore, we have

max{1,‖B†‖2}
σ

≥ ‖B†‖2

σmax(A,B)
∼ σmax(A,B)�max{1,‖A†‖2}

for any σ . Therefore, (1.5) is preferable to compute any eigenvector z more accurately.
– For B well conditioned and A ill conditioned, from Property 2.5, since some generalized

singular values σ of (A,B) are small but none is large, it is known that ‖A†‖ ≈ 1
mini αi

≈
1

mini σi
= 1

σmin(A,B)
. Therefore, we always have

max{1,‖B†‖2}
σ

≤ max{1,‖B†‖2}
σmin(A,B)

∼ 1
σmin(A,B)

� 1
σ2

min(A,B)
≈max{1,‖A†‖2}

for any σ . This means that (1.4) is preferable to compute any eigenvector y more accu-
rately.

Finally, we notice from Theorem 2.7 that ŷ or z̃ may have no accuracy at all whenever
κ(B) or κ(A) is as large as O(ε

−1/2
mach ), even though a backward stable generalized eigensolver

is applied to (1.4) or (1.5) and backward errors are O(εmach). For a large matrix pair (A,B),
iterative projection methods are used to compute some specific GSVD components and
stopping criteria are typically O(ε

1/2
mach), so that backward errors are O(ε

1/2
mach). In this case,

ŷ or z̃ may have no accuracy provided that κ(B) or κ(A) is as large as O(ε
−1/4
mach ).

3 The accuracy of generalized singular vectors

After applying a generalized eigensolver to the matrix pair (Â, B̂) or (B̃, Ã), the computed
eigenvalue σ̂ or σ̃ provides an approximation to the desired generalized singular value σ

directly. However, the situation is complicated and more involved for generalized singular
vectors since the generalized eigenvector

y =
1√
2

[
u
xβ

]
or z =

1√
2

[
v

xα

]
defined by (2.5) or (2.6) is a stack of the normalized left generalized singular vector u or v
and the scaled right generalized singular vector

xβ =
x
β

or xα =
x
α
. (3.1)

We must recover approximations to the generalized singular vectors u,v,x from a computed
approximate eigenvector ŷ or z̃. For the GSVD components of (A,B), our next task is to
determine which of ŷ and z̃ delivers more accurate approximations to u,v and x when the
perturbations Ê, F̂ and Ẽ, F̃ in (2.7) approximately have the same size in norm.

For (1.4), after a generalized eigensolver is run, we write the converged approximate
eigenvector as ŷ = 1√

2
[ûT , x̂T ]T with û ∈ Rm normalized to have unit length and x̂ ∈ Rn.

Then û and β̂ x̂ provide approximations to the left generalized singular vector u and the
right generalized singular vector x, respectively, with the computed σ̂ = α̂

β̂
. As for the left
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generalized singular vector v, since Bx = βv, it is natural to take the unit length v̂ = Bx̂
‖Bx̂‖ as

its approximation.
Analogously, for (1.5), we partition z̃ = 1√

2
[ṽT , x̃T ]T such that ṽ ∈ Rp is normalized to

have unit length, x̃∈Rn, and that ṽ and α̃ x̃ are approximations to the left generalized singular

vector v and the right generalized singular vector x, respectively, where the computed 1
σ̃
= β̃

α̃
.

Since Ax = αu, we take the unit length ũ = Ax̃
‖Ax̃‖ as an approximation to u.

Previously we have derived error estimates on sin∠(ŷ,y) and sin∠(ẑ,z) for the approx-
imate eigenvectors ŷ and z̃. Next we exploit them to estimate the accuracy of the approxi-
mate generalized singular vectors (û, v̂, β̂ x̂) and (ũ, ṽ, α̃ x̃) recovered in the manner described
above. To this end, we prove the following lemma, which is a generalization of Theorem 2.3
in [14].

Lemma 3.1. Assume that a and b are arbitrary nonzero vectors, and let a′ and b′ be ap-
proximations to them, respectively. Then

‖a‖2 sin2∠(a′,a)+‖b‖2 sin2∠(b′,b)≤ (‖a‖2 +‖b‖2)sin2∠
([

a′
b′

]
,
[a

b
])

. (3.2)

Moreover, it holds that

min{sin∠(a′,a),sin∠(b′,b)} ≤ sin∠
([

a′
b′

]
,
[a

b
])

, (3.3)√
sin2∠(a′,a)+ sin2∠(b′,b) ≤ ρ sin∠

([
a′
b′

]
,
[a

b
])

, (3.4)

where ρ =

√
1+max

{
‖a‖2
‖b‖2 ,

‖b‖2
‖a‖2

}
.

Proof. By definition, the sine of the angle between two vectors a and a′ satisfies

‖a‖sin∠(a′,a) = min
µ
‖a−µa′‖.

A similar relation holds with a and a′ replaced by b and b′, respectively. Combining these
two relations with the inequality

min
µ
‖a−µa′‖2 +min

µ
‖b−µb′‖2 ≤min

µ

∥∥∥[a
b
]
−µ

[
a′
b′

]∥∥∥2

proves (3.2). From (3.2), taking the smaller one of sin∠(a′,a) and sin∠(b′,b) yields (3.3).
It is also straightforward to obtain

sin2∠(a′,a)+ sin2∠(b′,b)≤ (1+ ‖a‖
2

‖b‖2 )sin2∠
([

a′
b′

]
,
[a

b
])

, if ‖a‖ ≥ ‖b‖,

sin2∠(a′,a)+ sin2∠(b′,b)≤ (1+ ‖b‖
2

‖a‖2 )sin2∠
([

a′
b′

]
,
[a

b
])

, if ‖a‖ ≤ ‖b‖.

Combining the above two inequalities gives rise to (3.4).

Taking a = u, b = xβ and a′ = û, b′ = x̂, bound (3.3) illustrates that at least one of
the recovered approximate generalized singular vectors û and x̂ is as accurate as ŷ. Since
‖u‖= 1, bound (3.4) indicates that if ‖xβ‖=O(1) then both û and x̂ have the same accuracy
as ŷ. But bound (3.4) also states that if ‖xβ‖ is very small or large relative to ‖u‖ = 1 then
one of û and x̂ may have considerably poorer accuracy than ŷ due to the large factor ρ .
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Fortunately, a very small ‖xβ‖ is unlikely to happen as ‖x‖ is always modest under the

assumption that at least one of A and B is well conditioned, implying that ‖xβ‖=
‖x‖
β

cannot
be small as 0 < β < 1. On the other hand, when the largest GSVD components of (A,B)
are required, a large ‖xβ‖ definitely appears if B is ill conditioned since β behaves like the
singular values of B and is small, as Property 2.5 shows.

Precisely, based on Lemma 3.1, we can derive quantitative accuracy estimates for the
recovered approximate generalized singular vectors, as will be shown below.

Theorem 3.2. The scaled right generalized singular vector xβ , defined in (3.1), of (A,B)
satisfies

‖xβ‖ ≥
1
‖B‖

. (3.5)

For the approximate generalized singular vectors û, v̂ and x̂ recovered from the approximate
eigenvector ŷ of (1.4), it holds that

sin∠(x̂,x) ≤
√

1+
1
‖xβ‖2 sin∠(ŷ,y) , (3.6)

sin∠(û,u) ≤
√

1+‖xβ‖2 sin∠(ŷ,y) , (3.7)

sin∠(v̂,v) ≤ ‖B‖
√

1+‖xβ‖2 sin∠(ŷ,y) . (3.8)

Proof. From Bx = βv and ‖v‖= 1 we have

‖xβ‖=
‖x‖
β

=
‖x‖
‖Bx‖

≥ 1
‖B‖

,

which shows (3.5).
Take a = u, b = xβ in Lemma 3.1. Neglecting the first term in the left hand side of (3.2),

we obtain

sin∠(x̂,x) = sin∠(x̂,xβ )≤

√
1+
‖u‖2

‖xβ‖2 sin∠(ŷ,y)

=

√
1+

1
‖xβ‖2 sin∠(ŷ,y) ,

which proves (3.6).
Neglecting the second term in the left hand side of (3.2) gives (3.7).
As for v̂ = Bx̂

‖Bx̂‖ , exploiting Bx = βv with ‖v‖= 1 and combining (3.6) with ‖xβ‖=
‖x‖
β

,
we have

sin∠(v̂,v) = sin∠(Bx̂,Bx) =
1
‖Bx‖

min
µ
‖Bx−µBx̂‖

≤ ‖B‖
‖Bx‖

min
µ
‖x−µ x̂‖= ‖B‖‖x‖

β
sin∠(x̂,x)

≤ ‖B‖‖xβ‖
√

1+
1
‖xβ‖2 sin∠(ŷ,y)

= ‖B‖
√

1+‖xβ‖2 sin∠(ŷ,y) ,

which proves (3.8).
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As ‖xβ‖ =
‖x‖
β
≥ 1
‖B‖ ≈ 1, this theorem shows that the recovered approximate general-

ized singular vector x̂ is unconditionally as accurate as ŷ, but û and v̂ are guaranteed to be as
accurate as ŷ only if β is not small. As Property 2.5 indicates, it is the conditioning of B that
determines the size of β : for B well conditioned, there is no small β , so that the recovered
approximate generalized singular vectors are guaranteed to be as accurate as ŷ; for B ill con-
ditioned, some β must be small so that ‖xβ‖ is large, which correspond to large generalized
singular values σ , so that the associated recovered û and v̂ may have poorer accuracy than ŷ.

In an analogous manner, we can prove the following results.

Theorem 3.3. The scaled right generalized singular vector xα , defined in (3.1), of (A,B)
satisfies

‖xα‖ ≥
1
‖A‖

. (3.9)

For the approximate generalized singular vectors ũ, ṽ and x̃ recovered from the approximate
eigenvector z̃ of (1.5), it holds that

sin∠(x̃,x) ≤

√
1+

1
‖xα‖2 sin∠(z̃,z) , (3.10)

sin∠(ṽ,v) ≤
√

1+‖xα‖2 sin∠(z̃,z) , (3.11)

sin∠(ũ,u) ≤ ‖A‖
√

1+‖xα‖2 sin∠(z̃,z) . (3.12)

The comments on Theorem 3.2 apply to this theorem: x̃ is always as accurate as z̃; ũ
and ṽ are guaranteed to be as accurate as z̃ only if α is fairly modest, and they may be
considerably poorer than z̃ when ‖xα‖ is large, i.e., when α is small. From Property 2.5, it
is known that if A is well conditioned then no α is small but if A is ill conditioned then some
α must be small, which correspond to small generalized singular values σ .

Recall the previous fundamental conclusions on the accuracy of ŷ and z̃, which have
been summarized in the near end of Section 2. Substituting the bounds in Theorem 2.7
for sin∠(ŷ,y) and sin∠(z̃,z) into Theorems 3.2–3.3, we obtain the corresponding error es-
timates for the approximate generalized singular vectors recovered from the approximate
eigenvectors ŷ of (1.4) and z̃ of (1.5), as summarized below.

Theorem 3.4. The approximate generalized singular vectors û, v̂, and x̂ recovered from the
approximate eigenvector ŷ of (1.4) satisfy

sin∠(x̂,x) ≤

√
1+ 1

‖xβ ‖2
max{1,‖B†‖2}

σ̂ minσi 6=σ{|1− σi
σ̂
|,1}

√
‖Ê‖2 + σ̂2‖F̂‖2, (3.13)

sin∠(û,u) ≤

√
1+‖xβ‖2 max{1,‖B†‖2}

σ̂ minσi 6=σ{|1− σi
σ̂
|,1}

√
‖Ê‖2 + σ̂2‖F̂‖2, (3.14)

sin∠(v̂,v) ≤
‖B‖

√
1+‖xβ‖2 max{1,‖B†‖2}

σ̂ minσi 6=σ{|1− σi
σ̂
|,1}

√
‖Ê‖2 + σ̂2‖F̂‖2. (3.15)
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Similarly, the approximate generalized singular vectors ũ, ṽ, and x̃ recovered from the ap-
proximate eigenvector z̃ of (1.5) satisfy

sin∠(x̃,x) ≤

√
1+ 1

‖xα‖2
max{1,‖A†‖2}

minσi 6=σ{|1− σ̃

σi
|,1}

√
‖Ẽ‖2 + σ̃2‖F̃‖2, (3.16)

sin∠(ṽ,v) ≤
√

1+‖xα‖2 max{1,‖A†‖2}
minσi 6=σ{|1− σ̃

σi
|,1}

√
‖Ẽ‖2 + σ̃2‖F̃‖2, (3.17)

sin∠(ũ,u) ≤ ‖A‖
√

1+‖xα‖2 max{1,‖A†‖2}
minσi 6=σ{|1− σ̃

σi
|,1}

√
‖Ẽ‖2 + σ̃2‖F̃‖2. (3.18)

Combining these bounds with the above analysis and the claims in the near end of Sec-
tion 2, we come to the following conclusions on a proper choice of (1.4) and (1.5) for more
accurate computations of generalized singular vectors.

– If both A and B are equally conditioned, i.e, both of them are well conditioned, both
(1.4) and (1.5) are suitable choices.

– If A is well conditioned and B is ill conditioned, (1.5) is preferable.
– If A is ill conditioned and B is well conditioned, (1.4) is preferable.

By comparing these conclusions with those in the end of Section 2.1 for accurate com-
putations of generalized singular values, we find out that they exactly coincide. Therefore,
we have finally achieved our ultimate goal of making a proper choice of (1.4) and (1.5): the
above conclusions apply to more accurate computations of both generalized singular values
σ and generalized singular vectors u,v,x.

4 Practical choice strategies on (1.4) and (1.5)

In Sections 2–3 we have made a sensitivity analysis on the generalized singular values and
the corresponding generalized singular vectors of (A,B), which are computed by solving
the generalized eigenvalue problems of (1.4) and (1.5). The results have shown that, in order
to compute the desired GSVD components of (A,B) more accurately, we should make a
preferable choice between (1.4) and (1.5). To be practical in computations, this requires to
estimate the condition numbers of A and B efficiently and reliably.

For A and B large-scale, note that we do not need to estimate κ(A) and κ(B) accurately,
and rough estimates are enough. Taking A as an example, we describe three approaches to
estimate κ(A) roughly. As ‖A‖ ≈ 1 and κ(A) ≈ σ

−1
min(A), estimating κ(A) is equivalent to

estimating σmin(A).
The first approach: if A is large-scale with special structures such that the matrix-vector

multiplication with the matrix (AT A)−1 can be implemented at affordable extra cost, then
one can perform a k-step symmetric Lanczos method [2,20] on (AT A)−1 and take the square
root of the largest approximate eigenvalue as a reasonable estimate of κ(A). In the algorithm,
what we need is to form AT A and compute its Cholesky factorization, which is used to solve
lower and upper triangular linear systems at each step of the Lanczos method. The largest
eigenvalue and possibly the smallest eigenvalue of (AT A)−1 can be well approximated from
below and above by the largest and smallest ones of the symmetric tridiagonal matrices
generated by the Lanczos process, respectively [20]. With k � n, this method outputs a
lower bound for κ(A). Since we do not need to estimate κ(A) accurately and the Lanczos
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method generally converges quickly for computing the largest and smallest eigenvalues, we
suggest to take a small k = 20 in practice.

The second approach: when A is a general large matrix, it is unaffordable to apply
(AT A)−1. Avron, Druinsky and Toledo [1] propose a randomized Krylov subspace method
to estimate the condition number of a matrix A. In their method, a consistent linear least
squares problem, whose solution is generated randomly, is solved iteratively by the LSQR
algorithm [4], and the smallest singular value of A is estimated by σmin(A) ≈ ‖Ae‖

‖e‖ with e
being the error of the approximate solution and the exact one. We refer the reader to [1] for
details.

The third approach: as an alternative of the second approach, one can also perform a k-
step Lanczos bidiagonalization type method on A and take the largest and smallest singular
values of the resulting small projected matrix as approximations to the largest and smallest
singular values of A; see [14,15]. We then take their ratio as a rough approximation to κ(A).
Still, we take a small k = 20 in practice. In this way, we can efficiently estimate κ(A).

Having estimated κ(A) and κ(B) using one of the above approaches, taking the resulting
estimates as replacements of κ(A) and κ(B), and based on the previous results and analysis,
one can make a proper choice of (1.4) and (1.5) according to the following strategy.

– If 0.5κ(B) ≤ κ(A) ≤ 2κ(B), which means that A and B are equally well conditioned,
then both (1.4) and (1.5) are suitable;

– If κ(A)> 2κ(B), which means that A is worse conditioned than B, then (1.5) is adopted;
– If κ(B)> 2κ(A), which means that B is worse conditioned than A, then (1.4) is recom-

mended.

5 Numerical experiments

In this section, we report numerical experiments to confirm our theory. We do not aim to
develop any algorithms based on (1.4) and (1.5) in this paper. Rather, we simply apply some
existing numerically backward stable algorithms to them and compute their generalized
eigendecompositions. In the experiments, we use the QZ algorithm, i.e., the Matlab built-in
function eig, for the generalized eigenvalue problems (1.4) and (1.5). For each matrix pair
(A,B), we recover all the approximate GSVD components (α̂, β̂ , û, v̂, x̂) and (α̃, β̃ , ũ, ṽ, x̃)
from the computed eigenpairs of the augmented matrix pairs (Â, B̂) and (B̃, Ã), respectively,
i.e., (σ̂ , ŷ) and ( 1

σ̃
, z̃), which are obtained by applying eig to (1.4) and (1.5), respectively.

The “exact” GSVD components (α,β ,u,v,x) are computed by applying the Matlab built-in
function gsvd to (A,B). 1

We compare solution accuracy of the GSVD components based on (1.4) and (1.5), and
mainly justify three points: (i) if both A and B are well conditioned, then both (1.4) and (1.5)
are suitable for computing the GSVD of (A,B) accurately; (ii) if A is ill conditioned and B
is well conditioned, then (1.4) is preferable to compute the GSVD accurately; (iii) if A is
well conditioned and B is ill conditioned, then (1.5) is a better formulation for computing
the GSVD accurately. As mentioned in the beginning of section 1, the GSVDs of the matrix
pairs (A,B) and (B,A) are the same with the generalized singular values being the reciprocals
of each other. Under the assumption that at least one of A and B is well conditioned, we can
always take one of them to be well conditioned and the other one well conditioned or ill

1 For the right generalized singular vector matrix X in (1.1), gsvd outputs R = X−T in our notation. Hence
X is recovered by using the Matlab built-in function inv and taken as the transpose of inv(R).
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conditioned. Therefore, for the sake of certainty in the experiments, we always take B to be
well conditioned but A to be well or ill conditioned. In the meantime, we justify Property 2.5.

All the numerical experiments were performed on an Intel (R) Core (TM) i7-7700 CPU
3.60 GHz with 8 GB RAM, 4 cores and 8 threads using the Matlab R2017a with the machine
precision εmach = 2.22×10−16 under the Microsoft Windows 8 64-bit system.

We measure the accuracy of the computed generalized singular values by their chordal
distances from their exact counterparts and measure the accuracy of the computed general-
ized singular vectors by the sines of the angles between them and their exact counterparts.

Each figure in this section consists of four subfigures: the top left one depicts the accu-
racy of the computed generalized singular values σi such that σ ’s are sorted in descending
order; the top right, bottom left and right ones depict the accuracy of the computed right and
left generalized singular vectors xi and ui, vi, respectively.

Experiment 5.1. We first test three randomly generated problems. For prescribed constants
cA ≥ 1 and cB ≥ 1, we generate the random sparse m× n matrix A and p× n matrix B by
the Matlab commands

A = sprand(m,n,dens,ra) and B = sprand(p,n,dens,rb)

with the density dens = 50%, and ra = [ 1
cA

: 1
n−1 (1−

1
cA
) : 1] and rb = [ 1

cB
: 1

n−1 (1−
1

cB
) : 1].

The largest singular values of such A and B are equal to one, i.e., ‖A‖= ‖B‖= 1, and their
condition numbers are cA and cB, respectively. Therefore, by prescribing the values of cA
and cB, we control the condition numbers κ(A) and κ(B). Table 1 lists the test problems
together with their basic properties. Figures 1-3 display the results.

Table 1 Properties of the test problems with m = 1500, p = 2000 and n = 1000.

Problem κ(A) κ(B) κ(
[

A
B)
]

‖X‖ ‖X−1‖ σmax(A,B) σmin(A,B)
1a 1.0e+2 1.0e+2 7.03 5.31 1.32 58.1 1.57e−2
1b 1.0e+5 1.0e+2 5.84 4.45 1.31 65.0 2.04e−5
1c 1.0e+7 1.0e+2 9.55 7.19 1.33 65.1 1.70e−7

From Table 1 we see that κ(A) = ‖A†‖ ≈ 1
σmin(A,B)

and κ(B) = ‖B†‖ ≈ σmax(A,B),
confirming Property 2.5 and the third conclusion in the near end of Section 2. We notice that
as long as at least one of A and B is well conditioned, so is the stacked matrix

[
A
B

]
.

For problem 1a, both A and B are well conditioned. Figure 1 illustrates that both (1.4)
and (1.5) yield equally accurate GSVD components of (A,B). Apparently, there is no winner
between (1.4) and (1.5) for this problem.

For problem 1b, A is moderately ill conditioned and B is well conditioned. As is observed
from Figure 2a, the computed generalized singular values based on (1.4) are generally more
accurate than those based on (1.5), or at least as comparably accurate as the latter ones. Fig-
ures 2b-2d show that for most of the generalized singular vectors, (1.4) yields significantly
more accurate approximations than (1.5) does. Therefore, (1.4) outperforms (1.5) for this
problem.

For problem 1c where A is quite ill conditioned and B is well conditioned, the advantage
of (1.4) over (1.5) is very obvious. As is visually illustrated by Figure 3, for all the gener-
alized singular components, (1.4) yields more or even much more accurate approximations
than (1.5), and the accuracy is improved by several orders. For this problem, (1.4) definitely
wins.
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(a) X (σ̂ ,σ) and X (σ̃ ,σ)
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(b) sin∠(x̂,x) and sin∠(x̃,x)
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(c) sin∠(û,u) and sin∠(ũ,u)
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(d) sin∠(v̂,v) and sin∠(ṽ,v)

Fig. 1 Accuracy of the GSVD components of problem 1a.

For these three problems, we have observed that for both A and B well conditioned,
two formulations (1.4) and (1.5) based backward stable algorithms deliver equally accurate
approximations to the GSVD components of (A,B). For the problems where A is ill con-
ditioned and B is well conditioned, (1.4) can produce more and even much more accurate
GSVD components than (1.5). Moreover, with B being well conditioned, the worse con-
ditioned A is, the more advantageous (1.4) is over (1.5). As is also observed from Figures
1-3, a suitable choice between (1.4) and (1.5) can always guarantee that under the chordal
measure all the generalized singular values σ can be computed with full accuracy, i.e., the
level of εmach, which confirms Theorem 2.3 and the analysis followed in Section 2.1.

Experiment 5.2. We test several realistic problems. For each problem, the matrices A and B
are normalized from A0 and B0, respectively, i.e., A = A0

‖A0‖
and B = B0

‖B0‖
, where A0 ∈ Rn×n

is a square matrix from the SuiteSparse Matrix Collection [6] and

B0 =


1

−1
. . .
. . . 1
−1

 ∈ R(n+1)×n

is the transpose of the n× (n + 1) first order derivative operator in dimension one [9].
Table 2 lists the test problems together with some of their basic properties, where the names
inside the brackets are those of the initial matrices A0, in which “delan12” and “viscopl1”
are abbreviations for “delaunay n12” and “viscoplastic1”, respectively.

We observe from Table 2 that κ(A) ≈ 1
σmin(A,B)

well and κ(B) ≈ σmax(A,B) roughly,
justifying Property 2.5 and the third conclusion in the near end of Section 2.
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(a) X (σ̂ ,σ) and X (σ̃ ,σ)
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(b) sin∠(x̂,x) and sin∠(x̃,x)
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(c) sin∠(û,u) and sin∠(ũ,u)
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(d) sin∠(v̂,v) and sin∠(ṽ,v)

Fig. 2 Accuracy of the GSVD components of problem 1b.
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(a) X (σ̂ ,σ) and X (σ̃ ,σ)
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(b) sin∠(x̂,x) and sin∠(x̃,x)
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(c) sin∠(û,u) and sin∠(ũ,u)
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(d) sin∠(v̂,v) and sin∠(ṽ,v)

Fig. 3 Accuracy of the GSVD components of problem 1c.
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(a) X (σ̂ ,σ) and X (σ̃ ,σ)
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(b) sin∠(x̂,x) and sin∠(x̃,x)
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(c) sin∠(û,u) and sin∠(ũ,u)
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(d) sin∠(v̂,v) and sin∠(ṽ,v)

Fig. 4 Accuracy of the GSVD components of problem 2d.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

i

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

ac
cu

ra
cy

 o
f t

he
 a

pp
ro

xa
tio

ns
 to

 

(1.4)
(1.5)

(a) X (σ̂ ,σ) and X (σ̃ ,σ)
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(b) sin∠(x̂,x) and sin∠(x̃,x)
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(c) sin∠(û,u) and sin∠(ũ,u)
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Fig. 5 Accuracy of the GSVD components of problem 2f.
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Table 2 Properties of the test problems with m = n and p = n+1.

Problem n κ(A) κ(B) κ(
[

A
B

]
) σmax(A,B) σmin(A,B)

2a (3elt) 4720 2.8e+3 3.0e+3 6.35 2.89e+3 5.00e−4
2b (delan12) 4096 5.2e+3 2.6e+3 5.15 2.35e+3 2.65e−4
2c (viscopl1) 4326 1.4e+5 2.8e+3 468 1.53e+3 9.34e−6
2d (cavity16) 4562 9.4e+6 2.9e+3 75.6 1.23e+2 1.51e−7
2e (gemat11) 4929 6.0e+7 3.1e+3 512 23.8 2.65e−8
2f (bcsstk16) 4884 4.9e+9 3.1e+3 78.7 73.5 2.86e−10

Table 3 A comparison of (1.4) and (1.5) for computing the GSVDs of test problems 2a-2f.

Problem better σ better x better u better v
pct(%) acc pct(%) acc pct(%) acc pct(%) acc

2a 43.37 −0.24 35.68 −0.12 35.93 −0.12 35.91 −0.12
2b 47.22 −0.11 36.45 −0.07 36.62 −0.07 36.57 −0.07
2c 83.93 +0.89 83.38 +0.67 84.51 +0.71 84.26 +0.71
2d 85.60 +2.26 79.35 +2.05 79.37 +2.04 79.35 +2.04
2e 86.61 +1.00 97.28 +1.12 95.94 +1.05 95.94 +1.05
2f 99.20 +6.60 99.20 +6.33 99.20 +6.34 99.20 +6.34

Table 3 displays some key data that exhibit the advantages of (1.4) over (1.5) when
computing the GSVD of (A,B) more accurately, where pct denotes the percentages that the
computed GSVD components based on (1.4) are more accurate than those based on (1.5),
and acc denotes the average orders of magnitude differences between the accuracy of the
computed GSVD components based on (1.4) and the accuracy of those based on (1.5), i.e.,
acc for the generalized singular values σ is defined by

acc(σ) =
1
n

[
n

∑
i=1

logX (σ̃i,σi)−
n

∑
i=1

logX (σ̂i,σi)

]
.

Apparently, the bigger pct and acc are, the more accurate the GSVD components based on
(1.4) are than those based on (1.5) on average. pct ≈ 50% and acc≈ 0 indicate that, on aver-
age, there is little difference and these two formulations based backward stable eigensolvers
compute the GSVD with similar accuracy.

For these six test problems, we have observed very similar phenomena to the previous
experiments. For problems 2a and 2b where both A and B are equally well conditioned,
(1.4) and (1.5) are competitive and there is no obvious winner between them, though (1.5)
is slightly better than (1.4). However, we have seen that, for problems 2c-2f, the matrix A
is increasingly worse conditioned than B, the measures pct > 50% and acc > 0 increase
and become near to one and bigger, respectively, meaning that more and more GSVD com-
ponents are computed more and even much more accurately based on (1.4) than on (1.5).
Therefore, (1.4) outperforms (1.5) for these four problems.

To illustrate the accuracy visually, we depict the results on problems 2d and 2f in Figures
4 and 5, respectively. For problem 2d, the matrix B is well conditioned and A is ill condi-
tioned. We can see from Figure 4 that for the largest 80% of the GSVD components, (1.4)
outperforms (1.5) substantially, but for the rest smallest 20% ones, the two formulations are
competitive as they yield comparably accurate approximations. Particularly, from Figure 4,
we also observe a loss of accuracy of the approximate generalized singular vectors around
the 3500th GSVD component. This occurs because of very small relative gaps between the
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corresponding generalized singular values. For problem 2f where B is well conditioned and
A is worse conditioned, (1.4) outperforms (1.5) more substantially and the accuracy im-
provements illustrated by Figure 5 are tremendous. We observe that for almost all (more
than 99%) GSVD components of (A,B), (1.4) yields much more accurate approximations
than (1.5) does. In addition, we see from Figure 5 that for the several smallest GSVD compo-
nents, using (1.5) can compute generalized singular values accurately, but the corresponding
computed generalized singular vectors have no accuracy at all, while (1.4) works very well.
This is not surprising and is in accordance with our comments in the near end of Section 2
by noticing that κ(A) = O(ε

−1/2
mach ).

Finally, for all the test problems, we have observed that, with the suitable formulation
chosen and under the chordal measure, the generalized singular values σ are always com-
puted with full accuracy, which justifies Theorem 2.3 and the analysis followed in Section
2.1.

Summarizing all the experiments, we conclude that (i) both (1.4) and (1.5) suit well
for problems where both A and B are well conditioned, (ii) (1.4) is preferable for problems
where A is ill conditioned and B is well conditioned, and (iii) (1.5) is preferable for problems
where A is well conditioned and B is ill conditioned. Therefore, the numerical experiments
have fully justified our theory.

6 Conclusions

The GSVD of the matrix pair (A,B) can be formulated as two mathematically equivalent
generalized eigenvalue problems of the matrix pairs defined by (1.4) and (1.5), to which
a generalized eigensolver can be applied, and the GSVD components are recovered from
the computed generalized eigenpairs. However, in numerical computations, the two formu-
lations may behave very differently for computing the GSVD, and the same generalized
eigensolver applied to them may compute GSVD components with quite different accuracy.
We have made a detailed sensitivity analysis on the generalized singular values and the gen-
eralized singular vectors recovered from the computed eigenpairs by solving the generalized
eigenvalue problems of the matrix pairs defined by (1.4) and (1.5), respectively. The results
and analysis have shown that (i) both (1.4) and (1.5) are suitable when both A and B are
well conditioned; (ii) (1.4) is preferable when A is ill conditioned and B is well conditioned;
(iii) (1.5) suits better when A is well conditioned and B is ill conditioned. We have also pro-
posed practical strategies of making a suitable choice between (1.4) and (1.5) in practical
computations.

Illuminating numerical experiments have confirmed our theory and supported our choice
strategies on (1.4) and (1.5).
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