Skip to main content
Log in

Accurate solutions of structured generalized Kronecker product linear systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider the generalized Kronecker product (GKP) linear system associated with a class of consecutive-rank-descending (CRD) matrices arising from bivariate interpolation problems. Relying on the sign sequences of CRD matrices, we show that the associated GKP linear system is accurately solved with an “ideal” componentwise forward error. In particular, a pleasantly small componentwise relative forward error is provided to illustrate that each component of the solution is computed to high relative accuracy. We then present the sign sequences of generalized Vandermonde matrices to show that the associated GKP linear system is accurately solved with the desired componentwise forward errors. Numerical experiments are performed to confirm the high relative accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banoczi, J.M., Chiu, N.C., Cho, G.E., Ipsen, I.C.F.: The lack of influence of the right-hand side on the accuracy of linear system solution. SIAM J. Sci. Comput. 20, 203–227 (1998)

    Article  MathSciNet  Google Scholar 

  2. Björck, A., Pereyra, V.: Solution of Vandermonde systems of equations. Math. Comp. 24, 893–903 (1970)

    Article  MathSciNet  Google Scholar 

  3. Boros, T., Kailath, T., Olshevsky, V.: A fast parallel björck-pereyra-type algorithm for solving Cauchy linear equations. Linear Algebra Appl. 302/303, 265–293 (1999)

    Article  Google Scholar 

  4. Caliari, M., De Marchi, S., Vianello, M.: Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165, 261–274 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Delgado, J., Peña, J.M.: Accurate computations with collocation matrices of rational bases. Appl. Math. Comput. 219, 4354–4364 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Delgado, J., Peña, J.M.: Accurate computations with collocation matrices of q-Bernstein polynomials. SIAM J. Matrix Anal. Appl. 36, 880–893 (2015)

    Article  MathSciNet  Google Scholar 

  7. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci Stat. Comp. 11, 873–912 (1990)

    Article  MathSciNet  Google Scholar 

  8. Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299, 21–80 (1999)

    Article  MathSciNet  Google Scholar 

  9. Demmel, J., Koev, P.: The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl. 27, 142–152 (2005)

    Article  MathSciNet  Google Scholar 

  10. Demmel, J., Koev, P.: Accurate and efficient evaluation of Schur and Jack functions. Math. Comp. 75, 223–239 (2006)

    Article  MathSciNet  Google Scholar 

  11. Demmel, J., Dumitriu, I., Holtz, O., Koev, P.: Accurate and efficient expression evaluation and linear algebra. Acta Numer. 17, 87–145 (2008)

    Article  MathSciNet  Google Scholar 

  12. Dopico, F.M., Koev, P.: Accurate symmetric rank revealing and eigendecompositions of symmetric structured matrices. SIAM J. Matrix Anal. Appl. 28, 1126–1156 (2006)

    Article  MathSciNet  Google Scholar 

  13. Dopico, F.M., Koev, P.: Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices. Numer. Math. 119, 337 (2011)

    Article  MathSciNet  Google Scholar 

  14. Dopico, F.M., Molera, J.M.: Accurate solution of structured linear systems via rank-revealing decompositions. IMA J. Numer. Anal. 32, 1096–1116 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gasca, M., Martínez, J.J.: On the solvability of bivariate Hermite-Birkhoff interpolation problems. J. Comput. Appl. Math. 32, 77–82 (1990)

    Article  MathSciNet  Google Scholar 

  16. Gasca, M., Peña, J.M.: Total positivity and Neville elimination. Linear Algebra Appl. 165, 25–44 (1992)

    Article  MathSciNet  Google Scholar 

  17. Gasca, M., Peña, J.M.: Total positivity, QR factorization and Neville elimination. SIAM J. Matrix Anal. 14, 1132–1140 (1993)

    Article  MathSciNet  Google Scholar 

  18. Gasca, M., Peña, J.M.: A matricial description of Neville elimination with applications to total positivity. Linear Algebra Appl. 202, 33–53 (1994)

    Article  MathSciNet  Google Scholar 

  19. Huang, R., Liu, J.Z., Zhu, L.: Accurate solutions of diagonally dominant tridiagonal linear systems. BIT 54, 711–727 (2014)

    Article  MathSciNet  Google Scholar 

  20. Huang, R.: Rank structure properties of rectangular matrices admitting bidiagonal-type factorizations. Linear Algebra Appl. 465, 1–14 (2015)

    Article  MathSciNet  Google Scholar 

  21. Huang, R.: A periodic qd-type reduction for computing eigenvalues of structured matrix products to high relative accuracy. J. Sci. Comput. 75, 1229–1261 (2018)

    Article  MathSciNet  Google Scholar 

  22. Huang, R.: Accurate solutions of product linear systems associated with rank-structured matrices. J. Comput. Appl. Math. 347, 108–127 (2019)

    Article  MathSciNet  Google Scholar 

  23. Huang, R.: Accurate solutions of weighted least squares problems associated with rank-structured matrices. Appl. Numer. Math. 146, 416–435 (2019)

    Article  MathSciNet  Google Scholar 

  24. Huang, R.: A qd-type method for computing generalized singular values of BF matrix pairs with sign regularity to high relative accuracy. Math. Comp. 89, 229–252 (2020)

    Article  MathSciNet  Google Scholar 

  25. Koev, P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27, 1–23 (2005)

    Article  MathSciNet  Google Scholar 

  26. Koev, P.: Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29, 731–751 (2007)

    Article  MathSciNet  Google Scholar 

  27. Koev, P.: http://math.mit.edu/plamen/software/TNTool.html

  28. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd ed. Oxford University Press (1998)

  29. Marco, A., Martínez, J.J.: A fast and accurate algorithm for solving Bernstein-Vandermonde linear systems. Linear Algebra Appl. 422, 616–628 (2007)

    Article  MathSciNet  Google Scholar 

  30. Marco, A., Martínez, J.J.: Unique solvability in bivariate Hermite interpolation. Electron. Trans. Numer. Anal. 34, 20–30 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Marco, A., Martínez, J.J., Peña, J. M.: Accurate bidiagonal decomposition of totally positive Cauchy-Vandermonde matrices and applications. Linear Algebra Appl. 517, 63–84 (2017)

    Article  MathSciNet  Google Scholar 

  32. Marco, A., Martínez, J.J., Viaña, R.: Accurate polynomial interpolation by using the Bernstein basis. Numer. Algor. 75, 655–674 (2017)

    Article  MathSciNet  Google Scholar 

  33. Martínez, J.J., Peña, J. M.: Factorizations of Cauchy-Vandermonde matrices. Linear Algebra Appl. 284, 229–237 (1998)

    Article  MathSciNet  Google Scholar 

  34. Martínez, J.J.: A generalized Kronecker product and linear systems. Int. J. Math. Educ. Sci. Technol. 30, 137–141 (1999)

    Article  MathSciNet  Google Scholar 

  35. Varsamis, D.N., Karampetakis, N.P.: On the Newton bivariate polynomial interpolation with applications. Syst. Sign. Process. 25, 179–209 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Yang, Z., Huang, R., Zhu, W.: Accurate computations for eigenvalues of products of Cauchy-polynomial-Vandermonde matrices. Numer. Algor. https://doi.org/10.1007/s11075-019-00816-5 (2019)

Download references

Acknowledgments

The authors would like to thank the Editor and the anonymous referees for their valuable comments and suggestions which have helped to improve the overall presentation of the paper.

Funding

Research supported by National Natural Science Foundations of China (Grants No. 11871020 and 11471279), Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant No. 2017JJ1025), Research Foundation of Education Bureau of Hunan Province (Grant No. 18A198), Hunan Provincial Innovation Foundation for Postgraduate (Grant No. XDCX2019B062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Huang, R., Zhu, W. et al. Accurate solutions of structured generalized Kronecker product linear systems. Numer Algor 87, 797–818 (2021). https://doi.org/10.1007/s11075-020-00988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00988-5

Keywords

Navigation