Skip to main content
Log in

A modulus-based iterative method for sparse signal recovery

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Solving large-scale l1 minimization problem is very important and has attracted much attentions in recent years. In this paper, we present an efficient method for solving this problem. To this end, we first reformulate this problem as a nonnegative constrained minimization problem. Then we propose a modulus-based iterative method to solve the nonnegative constrained minimization problem. Convergence analysis and the choice of near optimal parameter are presented. Experimental results are given to illustrate feasibility and effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z., Buccini, A., Hayamic, K., Reichel, L., Yin, J.-F., Zheng, N.: Modulus-based iterative methods for constrained Tikhonov regularization. J. Comput. Appl. Math. 319, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    Article  MathSciNet  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  5. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4, 1–39 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, S.-S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1999)

    Article  MathSciNet  Google Scholar 

  8. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Accademic Press, San Diego (1992)

    MATH  Google Scholar 

  9. Daubechies, I., Defrise, M., Mol, D.C.: An interative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  10. Dong, J.-L., Gao, J.-B., Ju, F.-J., Shen, J.-H.: Modulus methods for nonnegatively constrained image restoration. SIAM J. Imaging Sci. 9, 1226–1246 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  Google Scholar 

  12. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci. USA 100, 2197–2202 (2003)

    Article  MathSciNet  Google Scholar 

  13. Donoho, D.L., Elad, M.: On the stability of the basis pursuit in the presence of noise. Signal Process. 86, 511–532 (2006)

    Article  Google Scholar 

  14. Elad, M.: Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing. Springer, New York (2010)

    Book  Google Scholar 

  15. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Areas Comm. 1, 586–597 (2007)

    Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B. Stat. Methodol. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98, 948–958 (2010)

    Article  Google Scholar 

  18. Xie, J.-X., Liao, A.-P., Lei, Y.: A new accelerated alternating minimization method for analysis sparse recovery. Signal Process. 145, 167–174 (2018)

    Article  Google Scholar 

  19. Yang, J.-F., Zhang, Y.: Alternating direction algorithms for l1-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  20. Zheng, N., Hayami, K., Yin, J.-F.: Modulus-type inner outer iteration methods for nonnegative constrained least squares problems. SIAM J. Matrix Anal. Appl. 37, 1250–1278 (2016)

    Article  MathSciNet  Google Scholar 

  21. Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms 64, 245–262 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JJ., Ye, WZ. A modulus-based iterative method for sparse signal recovery. Numer Algor 88, 165–190 (2021). https://doi.org/10.1007/s11075-020-01035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01035-z

Keywords

Mathematics subject classification (2010)

Navigation