Skip to main content
Log in

On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen-Cahn equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We put forward and analyze the high-order (up to fourth) strong stability-preserving implicit-explicit Runge-Kutta schemes for the time integration of the space-fractional Allen-Cahn equation, which inherits the maximum principle preserving and energy stability. The space-fractional Allen-Cahn equation with homogeneous Dirichlet boundary condition is first discretized in the spatial direction by using a second-order fractional centered difference scheme that preserves the semi-discrete maximum principle. It is subsequently integrated in the temporal direction by a class of strong stability-preserving implicit-explicit Runge-Kutta schemes that are specifically designed to preserve the maximum principle to the optimal time step size. The convergence order in the discrete \(L^{\infty }\) norm and energy boundedness are provided by using the established maximum principle. Finally, a series of numerical experiments are carried out to demonstrate the high-order convergence, maximum principle preserving, and energy stability of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations. Journal of Differential Equations 261 (6), 2935–2985 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2-3), 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics 54(4), 937–954 (2014)

    Article  MathSciNet  Google Scholar 

  4. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34(4), A2145–A2172 (2012)

    Article  MathSciNet  Google Scholar 

  5. Çelik, C., Duman, M.: Crank–nicolson method for the fractional diffusion equation with the Riesz fractional derivative. Journal of Computational Physics 231(4), 1743–1750 (2012)

    Article  MathSciNet  Google Scholar 

  6. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D., O’Neale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical PDEs using the Average Vector Field method. J. Comput. Phys. 231 (20), 6770–6789 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chan, R.H.F., Jin, X.Q.: An introduction to iterative Toeplitz solvers. SIAM (2007)

  8. Chen, C., Yang, X.: Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J. Comput. Phys. 388, 41–62 (2019)

    Article  MathSciNet  Google Scholar 

  9. Cheng, Q.: The generalized scalar auxiliary variable approach (G-SAV) for gradient flows. arXiv:2002.00236 (2020)

  10. Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 78(3), 1467–1487 (2019)

    Article  MathSciNet  Google Scholar 

  11. Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Physica A: Statistical Mechanics and its Applications 388(9), 1791–1803 (2009)

    Article  MathSciNet  Google Scholar 

  12. Conde, S., Gottlieb, S., Grant, Z.J., Shadid, J.N.: Implicit and implicit–explicit strong stability preserving runge–kutta methods with high linear order. J. Sci. Comput. 73(2-3), 667–690 (2017)

    Article  MathSciNet  Google Scholar 

  13. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  14. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. arXiv:2005.11465 (2020)

  15. Du, Q., Ju, L., Lu, J.: Analysis of fully discrete approximations for dissipative systems and application to time-dependent nonlocal diffusion problems. J. Sci. Comput. 78(3), 1438–1466 (2019)

    Article  MathSciNet  Google Scholar 

  16. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45 (9), 1097–1123 (1992)

    Article  MathSciNet  Google Scholar 

  17. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished article, pp 1–15 (1998)

  18. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM Journal on Numerical Analysis 42(3), 1073–1093 (2004)

    Article  MathSciNet  Google Scholar 

  19. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable schemes for gradient flow models using the scalar auxiliary variable approach. arXiv:1907.04254 (2019)

  20. Gu, X.M., Huang, T.Z., Carpentieri, B., Li, L., Wen, C.: A hybridized iterative algorithm of the biCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems. Computers & Mathematics with Applications 70(12), 3019–3031 (2015)

    Article  MathSciNet  Google Scholar 

  21. Gu, X.M., Huang, T.Z., Li, H.B., Li, L., Luo, W.H.: On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Appl. Math. Lett. 42, 53–58 (2015)

    Article  MathSciNet  Google Scholar 

  22. He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Appl. Numer. Math. 151, 44–63 (2020)

    Article  MathSciNet  Google Scholar 

  23. Higueras, I.: Characterizing strong stability preserving additive Runge-Kutta methods. J. Sci. Comput. 39(1), 115–128 (2009)

    Article  MathSciNet  Google Scholar 

  24. Higueras, I., Happenhofer, N., Koch, O., Kupka, F.: Optimized strong stability preserving IMEX Runge–Kutta methods. J. Comput. Appl. Math. 272, 116–140 (2014)

    Article  MathSciNet  Google Scholar 

  25. Hou, T., Leng, H.: Numerical analysis of a stabilized Crank–Nicolson/Adams–Bashforth finite difference scheme for Allen–Cahn equations. Appl. Math. Lett. 102, 106150 (2020)

    Article  MathSciNet  Google Scholar 

  26. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput. 72(3), 1214–1231 (2017)

    Article  MathSciNet  Google Scholar 

  27. Hou, T., Xiu, D., Jiang, W.: A new second-order maximum-principle preserving finite difference scheme for Allen–Cahn equations with periodic boundary conditions. Appl. Math. Lett. 104, 106265 (2020)

    Article  MathSciNet  Google Scholar 

  28. Liao, H.L., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. arXiv:1909.10216 (2019)

  29. Liu, Z., Li, X.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation is published in Numerical Algorithms volume 85, pages 107–132. https://link.springer.com/article/10.1007/s11075-019-00804-9(2020)

  30. Liu, Z., Li, X.: Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. arXiv:2001.00812 (2019)

  31. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics 172(1), 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  32. Nec, Y., Nepomnyashchy, A., Golovin, A.: Front-type solutions of fractional Allen–Cahn equation. Physica D: Nonlinear Phenomena 237 (24), 3237–3251 (2008)

    Article  MathSciNet  Google Scholar 

  33. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006 (2006)

  34. Palatucci, G., Savin, O., Valdinoci, E.: Local and global minimizers for a variational energy involving a fractional norm. Annali di matematica pura ed applicata 192(4), 673–718 (2013)

    Article  MathSciNet  Google Scholar 

  35. Podlubny, I.: Fractional Differential Equations, Vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego, California, USA (1999)

  36. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14(6), 1517–1534 (2016)

    Article  MathSciNet  Google Scholar 

  37. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    Article  MathSciNet  Google Scholar 

  38. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  39. Song, H.: Energy SSP-IMEX Runge–Kutta methods for the Cahn–Hilliard equation. J. Comput. Appl. Math. 292, 576–590 (2016)

    Article  MathSciNet  Google Scholar 

  40. Tang, T., Qiao, Z.: Efficient numerical methods for phase-field equations. SCIENTIA SINICA Mathematica 50(6), 775 (2020)

    Article  Google Scholar 

  41. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math 34(5), 471–481 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  43. Wang, H., Shu, C.W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)

    Article  MathSciNet  Google Scholar 

  44. Xiao, X., He, R., Feng, X.: Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations. Numerical Methods for Partial Differential Equations 36(2), 418–438 (2020)

    Article  MathSciNet  Google Scholar 

  45. Yang, J., Du, Q., Zhang, W.: Uniform lp-bound of the Allen-Cahn equation and its numerical discretization. International Journal of Numerical Analysis & Modeling 15(1-2), 213–227 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  47. Yang, X., Zhang, G.D.: Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn–Hilliard and Allen–Cahn equations with general nonlinear potential. J. Sci. Comput. 82(3), 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  48. Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121 (2020)

    Article  MathSciNet  Google Scholar 

  49. Zhai, S., Ye, C., Weng, Z.: A fast and efficient numerical algorithm for fractional Allen–Cahn with precise nonlocal mass conservation. Appl. Math. Lett. 103, 106190 (2020)

    Article  MathSciNet  Google Scholar 

  50. Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor runge-kutta schemes for allen-cahn equation. Applied Numerical Mathematics (2020)

  51. Zhang, Q., Li, T.: Asymptotic stability of compact and linear 𝜃-methods for space fractional delay generalized diffusion equation. J. Sci. Comput. 81(3), 2413–2446 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

H. Zhang would like to thank “user1551” in https://math.stackexchange.com/questions/3769352for the proof of Lemma 2.3.

Funding

This work was supported by the National Key R&D Program of China (SQ2020YFA070075), the National Natural Science Foundation of China (No. 11901577, 11971481, 12071481), the Natural Science Foundation of Hunan (No. S2017JJQNJJ0764, 2020JJ5652), the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD004), the Research Fund of National University of Defense Technology (No. ZK19-37) and the Basic Research Foundation of National Numerical Wind Tunnel Project (No. NNW2018-ZT4A08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Qian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:: Coefficients of some IMEX Runge-Kutta methods

Appendix:: Coefficients of some IMEX Runge-Kutta methods

  1. 1.

    Optimized SSP2222 (K = 1)

    $$ \begin{aligned} A & = \left[ \begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right],\\ b & = \left[ \begin{array}{cc} 0.5 & 0.5 \end{array} \right]^{T}, \\ \tilde A & = \left[ \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \\ \tilde b &= b. \end{aligned} $$
  2. 2.

    Optimized SSP3333 (K = 1)

    $$ \begin{aligned} A &= \left[ \begin{array}{cccc} 0 & 0 & 0\\ 0.835696619896941& 0 & 0 \\ 0.206998613430894& 0.359713233559212 & 0 \end{array} \right], \\ b &= \left[ \begin{array}{ccc} 0.223244212531201& 0.222329659694216 & 0.554426127774583 \end{array} \right]^{T}, \\ \tilde A &= \left[ \begin{array}{cccc} 0 & 0 & 0\\ 0.626996630922690& 0.208699988974251& 0\\ 0.184038115921842& 0.051324585660262 & 0.331349145408003 \end{array} \right], \\ \tilde b &= b. \end{aligned} $$
  3. 3.

    Optimized SSP4334 (K = 1)

    $$ \begin{aligned} A &= \left[ \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0.450747108014309 & 0 & 0 & 0 \\ 0.176334489487884 & 0.489006055228990 & 0 &0 \\ 0.205978444248877 & 0.153461952023751 & 0.371692342116013 & 0 \end{array} \right], \\ b &= \left[ \begin{array}{cccc} 0.232713406461542 & 0.138692626440902 & 0.335920229077949 & 0.292673738019606 \end{array} \right]^{T}, \\ \tilde A &= \left[ \begin{array}{cccc} 0& 0 &0 & 0 \\ 0.278199085980253 & 0.172548022034056 & 0 & 0 \\ 0.311223289933055 & 0.067501647574067 & 0.286615607209751 & 0 \\ 0.245782336194099 & 0.248157968208214 & 0.098290863121270 & 0.138901570865059 \end{array} \right], \\ \tilde b &= \left[ \begin{array}{cccc} 0.222127817205699 & 0.224274752530891 & 0.088831226489934 & 0.464766203773476 \end{array} \right]^{T}. \end{aligned} $$
  4. 4.

    Optimized SSP5444 (K = 1)

    $$ \begin{aligned} A &= \left[ \begin{array}{ccccc} 0 & 0 & 0 & 0 & 0\\ 0.315011539134757& 0 & 0 & 0 & 0 \\ 0.092321902233778 &0.445552754571477&0 & 0 &0\\ 0.075770251330566 & 0.114390152779218& 0.390310565760801 &0 &0\\ 0.173751459170420 & 0.132589347012580& 0.196012450887862 & 0.457940007330246 & 0 \end{array} \right], \\b & = \left[ \begin{array}{ccccc} 0.133025520352077 & 0.255101129886359 &0.140292259141287& 0.286122212426944& 0.185458878193333 \end{array} \right]^{T},\\ \tilde A & = \left[ \begin{array}{ccccc} 0& 0 & 0& 0 & 0 \\ 0.196366311461557 & 0.118645227673200 & 0& 0 &0\\ 0.256502494758585 &0.034771904397118 &0.246600257649552 &0 &0\\ 0.124682224052501 &0.279820872038586 & 0.063311571463197 & 0.112656302316301 & 0 \\ 0.105880545237959 &0.146474778500675&0.329779897287268&0.361855954830076 & 0.016302088545130 \end{array} \right], \\ \tilde b & = b. \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yan, J., Qian, X. et al. On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen-Cahn equation. Numer Algor 88, 1309–1336 (2021). https://doi.org/10.1007/s11075-021-01077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01077-x

Keywords

Mathematics Subject Classification (2010)

Navigation