Skip to main content
Log in

Two-step modulus-based matrix splitting iteration methods for retinex problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Retinex theory was proposed by Land in the 1970s. Its theoretical basis is that the color of an object is determined by the reflection ability of the object to the light of long wave, medium wave, and short wave, rather than by the absolute value of the reflected light intensity. There is color sense consistency in Retinex theory. The main purpose of Retinex problem is to recover the reflection properties of objects from the images obtained under a certain illumination intensity, so as to obtain the real colors of objects. There are many methods for solving the Retinex problem. In this paper, based on a variational minimization model with physical constraints of reflectance value, we first transform the Retinex problem into a linear complementarity problem, and then propose a class of two-step modulus-based matrix splitting iteration methods to solve this problem. We also prove the convergence of the two-step modulus-based matrix splitting iteration methods for solving the linear complementarity problem. The experimental results show that the convergence speeds of the proposed methods are much faster than the existing methods for solving the Retinex problem, and that the advantages of the new methods over the existing ones could be significant in the quality of the reflectance recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1–32 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27 (1), 1–23 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17 (6), 917–933 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bai, -Z.: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154(1), 195–214 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bai, Z.-Z.: On SSOR-like preconditioners for non-Hermitian positive definite matrices. Numer. Linear Algebra Appl. 23(1), 37–60 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bai, Z.-Z., Tao, M.: Rigorous convergence analysis of alternating variable minimization with multiplier methods for quadratic programming problems with equality constraints. BIT Numer. Math. 56(2), 399–422 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bai, Z.-Z., Tao, M.: On preconditioned and relaxed AVMM methods for quadratic programming problems with equality constraints. Linear Algebra Appl. 516(16), 264–285 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bai, Z.-Z., Golub, G. H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive definite linear systems. SIAM J. Sci. Comput. 26(3), 844–863 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cooper, T. J., Baqai, F. A.: Analysis and extensions of the Frankle-McCann Retinex algorithm. J. Electron. Imag. 13(1), 85–92 (2004)

    Article  Google Scholar 

  11. Cottle, R.W., Pang, J.-S., Stone, R. E.: The linear complementarity problem. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  12. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16(2), 129–143 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dong, J.-L., Gao, J.-B., Ju, F.-J., Shen, J.-H.: Modulus methods for nonnegatively constrained image restoration. SIAM J. Imag. Sci. 9(3), 1226–1246 (2016)

    Article  MathSciNet  Google Scholar 

  14. Funt, B., Ciurea, F.: Retinex in MATLAB. J. Electron. Imag. 13(1), 48–57 (2004)

    Article  Google Scholar 

  15. Hurlbert, A.: Formal connections between lightness algorithms. J. Opt. Soc. Am. 3(10), 1684–1693 (1986)

    Article  Google Scholar 

  16. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround Retinex. IEEE Trans. Imag. Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  17. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for Retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    Article  Google Scholar 

  18. Land, E.H., McCann, J.J.: Lightness and Retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Article  Google Scholar 

  19. Land, E.H.: The Retinex theory of color vision. Sci. Am. 237 (6), 108–128 (1977)

    Article  Google Scholar 

  20. Land, E.H.: Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc. Natl. Acad. Sci. USA. 80(16), 5163–5169 (1983)

    Article  Google Scholar 

  21. Land, E.H.: An alternative technique for the computation of the designator in the Retinex theory of color vision. Proc. Natl. Acad. Sci. USA. 83(10), 3078–3080 (1986)

    Article  Google Scholar 

  22. Li, H.-F., Zhang, L.-P., Shen, H.-F.: A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans. Geosci. Remote Sensing. 50(8), 3053–3065 (2012)

    Article  Google Scholar 

  23. Liang, J.-W., Zhang, X.-Q.: Retinex by higher order total variation l1 decomposition. J. Math. Imag. Vis. 52(3), 345–355 (2015)

    Article  Google Scholar 

  24. Murty, K.: Linear complementarity, linear and nonlinear programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  25. Morel, J.M., Petro, A.B., Sbert, C.: A PDE formalization of Retinex theory. IEEE Trans. Imag. Process. 19(11), 2825–2837 (2010)

    Article  MathSciNet  Google Scholar 

  26. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “Completely Blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  27. Ng, M.K., Wang, W.: A total variation model for Retinex. SIAM J. Imag. Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  Google Scholar 

  28. Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. J. Electron. Imag. 13(1), 100–110 (2004)

    Article  Google Scholar 

  29. Wang, W., He, C.-J.: A variational model with barrier functionals for Retinex. SIAM J. Imag. Sci. 8(3), 1955–1980 (2015)

    Article  MathSciNet  Google Scholar 

  30. Yang, X., Huang, Y.-M., Sun, L.: A modulus iteration method for Retinex problem. Numer. Linear Algebra Appl. 25(6), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  31. Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algorithms 57(1), 83–99 (2011)

    Article  MathSciNet  Google Scholar 

  32. Zosso, D., Tran, G., Osher, S.J.: Non-local Retinex—a unifying framework and beyond. SIAM J. Imag. Sci. 8(2), 787–826 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Fang Chen and Yu Zhu were supported by the National Natural Science Foundation (No. 11501038) and the Science and Technology Planning Projects of Beijing Municipal Education Commission (No. KM201911232010 and No. KM202011232019), P.R. China. Galina V. Muratova was supported by The Grant of the Government of the Russian Federation (No. 075-15-2019-1928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhu, Y. & Muratova, G.V. Two-step modulus-based matrix splitting iteration methods for retinex problem. Numer Algor 88, 1989–2005 (2021). https://doi.org/10.1007/s11075-021-01103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01103-y

Keywords

Navigation