Skip to main content

Advertisement

Log in

Adjusting the energy of Ball surfaces by modifying unfixed control balls

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Ball surfaces play a crucial role in modeling 3D objects with varying thickness. In this paper, energy functionals for surface design are extended to Ball surfaces and the variational problem of finding the energy-minimizing Ball surface within the constraints imposed by the controls is investigated. Besides, owing to the excellent properties of Bernstein bases, we propose a computationally inexpensive algorithm for the construction of energy-minimizing Ball Bézier surfaces. Finally, an efficient design tool is provided for the construction of Cr continuous energy-minimizing blend surface from two disjoint Ball surfaces. The feasibility of the method is verified by several examples. By adjusting the weighted coefficients, different energy functionals are defined and thus Ball surfaces with different shapes and thickness can be obtained, achieving the deformable modeling of Ball surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pasko, A., Adzhiev, V., Comninos, P.: Heterogeneous Objects Modelling: Applications Collection of Papers on Foundations and Practice, vol. 4889. Springer, Berlin (2008)

    Book  Google Scholar 

  2. Song, Y., Yang, Z., Liu, Y., Deng, J.: Function representation based slicer for 3D printing. Comput. Aided. Geom. Des. 62, 276–293 (2018)

    Article  MathSciNet  Google Scholar 

  3. Wu, Z., Seah, H., Zhou, M.: Skeleton based parametric solid models: ball b-spline surfaces. In: 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics, pp 421–424 (2007)

  4. Sederberg, T., Farouki, R.: Approximation by interval Bézier curves. IEEE Comput. Graph. Appl. 12(5), 87–95 (1992)

    Article  Google Scholar 

  5. Lin, Q., Rokne, J. G.: Disk Bézier curves. Comput. Aided. Geom. Des. 15(7), 721–737 (1998)

    Article  Google Scholar 

  6. Liu, X., Wang, X., Wu, Z., Zhang, D., Liu, X.: Extending Ball B-spline by B-spline. Comput Aided Geom Des 82. Article ID 101926, 12 pages (2020)

  7. Wu, Z., Zhou, M., Wang, X., et al.: An interactive system of modeling 3D trees with ball b-spline curves. In: 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics, pp 259–65 (2007)

  8. Zhu, T., Tian, F., Zhou, Y., et al.: Plant modeling based on 3D reconstruction and its application in digital museum. Int. J. Virt. Real. 7(1), 81–88 (2008)

    Google Scholar 

  9. Ao, X., Wu, Z., Zhou, M.: Real time animation of trees based on BBSC in computer games. Int. J. Comput. Games Technol. Article ID 970617, 8 pages (2009)

  10. Leng, C., Wu, Z., Zhou, M.: Reconstruction of tubular object with ball b-spline curve. In: Proceedings of Computer Graphics International (2011)

  11. Wang, X., Wu, Z., Shen, J., et al.: Repairing the cerebral vascular through blending Ball B-Spline curves with G2 continuity. Neurocomputing 173, 768–777 (2016)

    Article  Google Scholar 

  12. Xu, X., Leng, C., Wu, Z.: Rapid 3d human modeling and animation based on sketch and motion database. In: 2011 Workshop on Digital Media and Digital Content Management (DMDCM), pp 121–124 (2011)

  13. Hu, Q., Wang, G.: Exact boundary of ball Bézier surface and its approximation by polynomial form. J. Zhejiang. Univ. (Eng. Sci.) 42(11), 1906–1909 (2008). (in Chinese)

    MATH  Google Scholar 

  14. Wu, H., Deng, J.: Degree reduction of Bézier surfaces with ball control points. J. Univ. Sci. Technol. China. 36(6), 582–589 (2006). (in Chinese)

    MathSciNet  Google Scholar 

  15. Shi, M., Ye, Z., Kang, B.: Degree reduction of ball control point Bézier surfaces. Compu. Eng. Appl. 46(35), 11–13 (2010). (in Chinese)

    Google Scholar 

  16. Chen, Y., Wu, H., Deng, J.: Degree reduction of ball-control-point Bézier surfaces over triangular domain. J. Univ. Sci. Technol. Chin. 37(7), 777–784 (2007). (in Chinese)

    MATH  Google Scholar 

  17. Liu, H., Deng, J.: Fitting scattered data with disk/ball Bézier and b-spline curves/surfaces. J. Univ. Sci..Technol. Chin. 38(2), 113–120 (2008). (in Chinese)

    Article  MathSciNet  Google Scholar 

  18. Xu, G., Wang, G., Chen, W.: Geometric construction of energy-minimizing Bézier curves. Sci. China. Inf. Sci. 54(7), 1395–1406 (2011)

    Article  MathSciNet  Google Scholar 

  19. Juhász, I., Róth, Á.: Adjusting the energies of curves defined by control points. Comput. Aided. Des. 107, 77–88 (2019)

    Article  MathSciNet  Google Scholar 

  20. Xu, G., Rabczuk, T., Güler, E., Wu, Q., Hui, K., Wang, G.: Quasi-harmonic Bézier approximation of minimal surfaces for finding forms of structural membranes. Comput. Struct. 161, 55–63 (2015)

    Article  Google Scholar 

  21. Monterde, J., Ugail, H: On harmonic and biharmonic Bézier surfaces. Comput. Aided. Geom. Des. 7, 697–715 (2004)

    Article  Google Scholar 

  22. Miao, Y., Shou, H., Feng, J., Peng, Q., Forrest, A.R.: Bézier surfaces of minimal internal energy. In: IMA conference on the Mathematics of Surfaces, pp 318–335 (2005)

  23. Wahba, G.: Spline models for observational data. In: Philadelphia: CBMS-NSF Regional Conference Series in Applied Mathematics (1990)

  24. Duchon, J.: Spline minimizing rotation invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables. Lecture notes in mathematics, vol. 571, pp 85–100. Springer, Berlin (1977)

  25. Monterde, J.: Bézier surfaces of minimal area: the Dirichlet approach. Comput. Aided. Geom. Des. 1, 117–136 (2004)

    Article  Google Scholar 

  26. Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern. Anal. Mach. Intell. 28(1), 106–118 (2006)

    Article  Google Scholar 

  27. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object segmentation. IEEE Trans. Pattern. Anal. Mach. Intell. 19, 394–398 (1997)

    Article  Google Scholar 

  28. Christensen, R. M.: Mechanics of cellular and other low-density materials. Int. J. Solids. Struct. 37(1-2), 93–104 (2000)

    Article  MathSciNet  Google Scholar 

  29. Petitjean, S.: A survey of methods for recovering quadrics in triangular meshes. ACM Comput. Surv. 34(2), 211–262 (2002)

    Article  Google Scholar 

  30. Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Comput. Aided. Geom. Des. 18(4), 359–379 (2001)

    Article  MathSciNet  Google Scholar 

  31. Welch, W., Witkin, A.: Free-Form shape design using triangulated surfaces. ACM SIGGRAPH. 94, 247–256 (1994)

    Google Scholar 

  32. Sánchez-Reyes, J.: Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials. Comput. Aided. Geom. Des. 15(9), 909–923 (1998)

    Article  Google Scholar 

  33. Carnicer, J., Peña, J.: On transforming a Tchebycheff system into a strictly totally positive system. J. Approx. Theory 81, 274–295 (1995)

    Article  MathSciNet  Google Scholar 

  34. Mazure, M. L.: Chebyshev-Bernstein bases. Comput. Aided. Geom. Des. 16(7), 649–69 (1999)

    Article  MathSciNet  Google Scholar 

  35. Veron, M., Ris, G., Musse, J.: Continuity of biparametric surface patches. Comput. Aided. Des. 8(4), 267–273 (1976)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 51875454).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchan Zheng or Gang Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Zheng, H. & Hu, G. Adjusting the energy of Ball surfaces by modifying unfixed control balls. Numer Algor 89, 749–768 (2022). https://doi.org/10.1007/s11075-021-01132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01132-7

Keywords

Navigation