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Abstract

This paper focuses on explicit approximations for nonlinear stochastic delay dif-
ferential equations (SDDEs). Under the weakly local Lipschitz and some suitable
conditions, a generic truncated Euler-Maruyama (TEM) scheme for SDDEs is pro-
posed, which numerical solutions are bounded and converge to the exact solutions
in qth moment for q > 0. Furthermore, the 1/2 order convergent rate is yielded.
Under the Khasminskii-type condition, a more precise TEM scheme is given, which
numerical solutions are exponential stable in mean square and P−1. Finally, several
numerical experiments are carried out to illustrate our results.

Keywords. stochastic delay differential equations; the truncated Euler-Maruyama scheme;
the Khasminskii-type condition; the strong convergence; stability.

1 Introduction

This paper considers a stochastic delay differential equation (SDDE) described by dx(t) = f(x(t), x(t− τ))dt+ g(x(t), x(t− τ))dW (t), t > 0,

x(t) = ξ(t), t ∈ [−τ, 0],
(1.1)

where τ > 0 is a constant, f : Rd × Rd → Rd, and g : Rd × Rd → Rd×m. And W (t) =
(W1(t), W2(t), · · · , Wm(t))T is an m-dimensional Brownian motion in the given complete
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probability space (Ω, F , P) and Ft is a natural filtration satisfying the usual conditions
(that is, it is increasing and right continuous while F0 contains all P-null sets). The SDDE
models play a key role in communications, finance, medical sciences, ecology, and many
other branches of industry and science (see, e.g. [1, 2, 4, 7, 16, 17, 19]). However, explicit
solutions can hardly be obtained for SDDEs and hence it is necessary and significant to
develop their numerical methods.

In fact, numerical methods of SDDEs have attracted a lot of attentions. Due to the
easy implementation explicit schemes have been established (see e.g. [2, 3, 4, 6, 8, 9, 12, 13,
18, 19, 20, 25]), such as the Euler-Maruyama (EM) scheme (see e.g.[2, 3, 4, 9, 12, 18, 19]),
the truncated EM scheme [8], the truncated Milstein scheme [25], the projected EM
scheme [13], and the tamed Euler scheme [6]. Since implicit schemes sometimes achieve
the better convergence rate, some concentrated effort have been made into the implicit
schemes (see e.g. [10, 11, 21]). However, to the best of our knowledge, most of the results
on the strong convergence rate of numerical solutions for nonlinear SDDE (1.1) requires
that f and g obey the one-side Lipschitz condition

2〈x− x̄, f(x, y)− f(x̄, ȳ)〉+ |g(x, y)− g(x̄, ȳ)|2 ≤ C(|x− x̄|2 + |y − ȳ|2),

where x, x̄, y, ȳ ∈ Rd and C is a constant. Although a kind of nonlinear SDDEs satisfies
this condition, a large kind of SDDEs is unavailable for it. For an example, consider the
scalar SDDE  dx(t) = (x(t)− 8x3(t)) dt+ |x(t− 1)| 32 dW (t), t > 0,

x(t) = t2, t ∈ [−1, 0].
(1.2)

By computation, one notices

2〈x− x̄, 8x3 − 8x̄3〉+ ||y|
3
2 − |ȳ|

3
2 |2

=2(x− x̄)2 − 16(x− x̄)2(x2 + xx̄+ x̄2) + (|y|
1
2 − |ȳ|

1
2 )2(|y|+ |y|

1
2 |ȳ|

1
2 + |ȳ|)2,

which implies that the one-side Lipschitz condition doesn’t hold for SDDE (1.2). Guo-
Mao-Yue in [8] proposed a truncated EM scheme to approximate SDDE (1.2), and yielded
the mean square convergence rate, which is less than 1/2. Dareiotis-Kumar-Sabanis in [6]
gave the tamed Euler scheme for SDDE (1.2) and its convergence rate can achieve to 1/2
at some special time T . For such kind of SDDEs without one-side Lipschitz condition,
to establish an appropriate numerical scheme and to estimate the Lq-convergence rate in
any time interval is still open for q > 2.

On the other hand, the stability of such SDDEs is one of the major concerns in
stochastic processes, systems theory and control [16]. Especially, Mao-Rassias in [17]
established the exponential moment stability for such SDDEs under the local Lipschitz
condition plus the Khasminskii-type condition

LU(x, y) ≤ −c1U(x) + c2U(y)− c3V (x) + c4V (y), (1.3)

where U(·) is a nonnegative continuously twice differentiable function on Rd, V (·) is a
nonnegative continuously function on Rd, the operator L is defined by (2.1), and constants
ci, i = 1, . . . , 4 are positive with certain restrictions. Li-Mao in [14] provided us with a
criterion on the exponentially almost sure stability of the exact solution for such SDDEs.

2



According to the requirement of numerical experiments and simulations the stability
of the numerical solutions for SDDEs attracts much attention. Wu-Mao-Szpruch in [23]
gave a counterexample that the EM scheme can’t reproduce the exponentially almost sure
stability for a nonlinear SDDE while the Backward EM (BEM) scheme can. Zhao-Yi-Xu
in [26] proved that the implicit split-step theta (SSD) method preserves the exponential
mean square stability under the Khasminskii-type condition for θ ∈ (1

2
, 1]. Nevertheless, it

is known that more computational efforts and cost are required using the implicit equation
in each iteration. Thus easily implementable explicit methods for nonlinear SDDEs are
more desirable in order to capture the stability, which motivated the recent development
of modified EM methods. Cong-Zhan-Guo in [5] proposed the partially truncated Euler-
Maruyama method which reproduces the almost sure exponentially stability of the exact
solution for SDDEs with Markovian Switching under (1.3) with V (·) ≡ 0. Although
the various stable numerical methods are investigated well to design the explicit scheme
keeping the stability for nonlinear SDDEs under the flexible Khasminskii-type condition
(1.3) remains to unsolved. Hence, to establish an easy implementable numerical scheme
capturing the stability of SDDEs is the other main aim.

Motivated by the above works, borrowing the ideas from [15] we develop the explicit
truncated numerical scheme to approximate nonlinear SDDEs. Under the polynomial
growth coefficient conditions the 1/2 order rate of strong convergence is yielded for the
TEM scheme. Moreover, a more precise TEM scheme is constructed, which numerical
solutions realize the underlying exponential stability under the flexible Khasminskii-type
condition. Some simulations are carried out to check the effectiveness of the TEM schemes.

This paper is organized in the following way. Section 2 gives some notations and
preliminary results with respect to the exact solution for SDDE (1.1). Section 3 lists the
main results, including the convergence, the convergence rate and the stability. Section
4 gives two examples and the corresponding simulations to illustrate the main results.
Section 5 concludes the paper.

2 Notations and preliminary results

We firstly present some standard notations and definitions which are necessary for further
consideration. The norm of a vector x ∈ Rd and the Hilbert-Schmidt norm of a matrix
A ∈ Rd×m are respectively denoted by |x| and |A|. The transpose of a vector x ∈ Rd is
denoted by xT and the inner product of two vectors x, y ∈ Rd is denoted by 〈x, y〉 = xTy.
Let [a] denote the integer part of the real number a. For two real numbers a and b, let
a ∨ b = max(a, b) and a ∧ b = min(a, b). Let R+ = [0,∞) and τ > 0. By C([−τ, 0]; Rd),
we denote the space of all continuous Rd-valued functions defined on [−τ, 0] equipped
with the supremum norm ‖ξ‖ = sup−τ≤θ≤0 |ξ(θ)|. By C(Rd; R+), we denote the space
of all continuous nonnegative functions defined on Rd. By V(Rd × Rd; R+), we denote
the space of all nonnegative functions V̂ (x, y) defined on Rd × Rd satisfying V̂ (x, x) =
0. Moreover, denote by C2(Rd; R+) the space of all continuously twice differentiable
nonnegative functions defined on Rd. If U ∈ C2(Rd; R+), define an operator LU : Rd ×
Rd → R by

LU(x, y) =〈f(x, y), Ux(x)〉+
1

2
〈g(x, y), Uxx(x)g(x, y)〉 . (2.1)
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For any set A, 1A(x) = 1 if x ∈ A otherwise 0. Let δ1, δ2 be two Ft-stopping times with
δ1 ≤ δ2 a.s, then define the stochastic interval

[[δ1, δ2]] = {(t, ω) ∈ R+ × Ω : δ1 ≤ t ≤ δ2}.

Denote a generic positive constant by C which value may vary in different appearance.

We impose the following hypotheses.

(H1) (the weakly local Lipschitz condition) For any l1 > 0, there exists a positive
constant Ll1 such that, for any x, x̄, y ∈ Rd with |x| ∨ |x̄| ∨ |y| ≤ l1,

|f(x, y)− f(x̄, y)| ∨ |g(x, y)− g(x̄, y)| ≤ Ll1|x− x̄|.

(H2) (the Khasminskii-type condition) There exist constants q > 0, K1 ≥ 0, K2 ≥ 0
as well as a function V1 ∈ C(Rd; R+) such that

(1 + |x|2)
q
2
−1
(〈

2x, f(x, y)
〉

+
(
(q − 1) ∨ 1

)
|g(x, y)|2

)
≤ K1(1 + |x|q + |y|q)−K2(V1(x)− V1(y)), ∀ x, y ∈ Rd. (2.2)

(H3) For any given positive constant M1 > 0, functions f(x, y) and g(x, y) are
uniformly continuous in the argument corresponding y for any x ∈ Rd satisfying |x| ≤M1,
that is , for any x, y, ȳ ∈ Rd with |x| ≤M1,

lim
y→ȳ

sup
|x|≤M1

[
|f(x, y)− f(x, ȳ)|+ |g(x, y)− g(x, ȳ)|

]
= 0.

Theorem 2.1 Let (H1) and (H2) hold. Then SDDE (1.1) with an initial data ξ ∈
C([−τ, 0]; Rd) has a unique global solution x(t) satisfying

sup
0≤t≤T

E|x(t)|q ≤ C, ∀ T > 0. (2.3)

Furthermore, for any constant M2 > ‖ξ‖, let

ϑM2 = inf {t ≥ −τ : |x(t)| ≥M2} . (2.4)

Then we obtain

P{ϑM2 ≤ T} ≤ C

M q
2

. (2.5)

Proof. Fix a positive constant l, it follows from (2.2) that for any x, y ∈ Rd with |y| ≤ l,〈
2x, f(x, y)

〉
+ |g(x, y)|2

≤ 1

(1 + |x|2)
q
2
−1

[K1(1 + |x|q + |y|q)−K2(V1(x)− V1(y))]

≤2K1(1 + |x|2) + (lqK1 + max
|y|≤l

V1(y)K2)(1 + |x|2) ≤ C(l)(1 + |x|2). (2.6)
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Under (H1) and (2.6), due to [9, Theorem 2.1] SDDE (1.1) admits a unique global solution

with the initial data ξ ∈ C([−τ, 0]; Rd). Let U(x) =
(
1+ |x|2

) q
2 , where q is given in (H2).

Due to (2.2) we compute

LU
(
x(t), x

(
t− τ

))
=
q

2

(
1 + |x(t)|2

) q
2
−2

[(
1 + |x(t)|2

)(〈
2x(t), f

(
x(t), x(t− τ)

)〉
+
∣∣g(x(t), x(t− τ)

)∣∣2)+
(
q − 2

)∣∣〈x(t), g
(
x(t), x(t− τ)

)〉∣∣2]

≤q
2

(
1 + |x(t)|2

) q
2
−2

[(
1 + |x(t)|2

)(〈
2x(t), f

(
x(t), x(t− τ)

)〉
+
∣∣g(x(t), x(t− τ)

)∣∣2)+
(
(q − 2) ∨ 0

)∣∣x(t)
∣∣2∣∣g(x(t), x(t− τ)

)∣∣2]
≤q

2

(
1 + |x(t)|2

) q
2
−1
(〈

2x(t), f
(
x(t), x(t− τ)

)〉
+ ((q − 1) ∨ 1)

∣∣g(x(t), x(t− τ)
)∣∣2)

≤q
2
K1

(
1 +

∣∣x(t)
∣∣q +

∣∣x(t− τ)
∣∣q)− q

2
K2

(
V1

(
x(t)

)
− V1

(
x(t− τ)

))
. (2.7)

By [17, Theorem 3.1] together with the definition of U , it yields

sup
0≤t≤T

E
(
1 + |x(t)|2

) q
2

≤
(
U
(
ξ(0)

)
+
q

2

∫ 0

−τ

[
K1U

(
ξ(s)

)
+K2V1

(
ξ(s)

)]
ds+

q

2
K1T

)
eqK1T =: C.

Due to (2.7) and using Dynkin’s formula we get that, for any 0 ≤ t ≤ T ,

E
(
1 + |x(t ∧ ϑM2)|2

) q
2

≤
(
1 + |ξ(0)|2

) q
2 +

q

2
E
∫ t∧ϑM2

0

[
K1

(
1 +

(
1 + |x(s)|2

) q
2

+
(
1 + |x(s− τ)|2

) q
2

)
−K2

(
V1

(
x(s)

)
− V1

(
x(s− τ)

))]
ds

≤
(
1 + |ξ(0)|2

) q
2 +

q

2
K1T + qK1E

∫ t∧ϑM2

0

(
1 + |x(s)|2

) q
2 ds

+
q

2
K1

∫ 0

−τ

(
1 + |ξ(s)|2

) q
2 ds− q

2
K2E

∫ t∧ϑM2

0

V1

(
x(s)

)
ds

+
q

2
K2E

∫ t∧ϑM2

0

V1

(
x(s)

)
ds+

q

2
K2

∫ 0

−τ
V1

(
ξ(s)

)
ds

≤
(
1 + |ξ(0)|2

) q
2 +

q

2
K1T + qK1E

∫ t∧ϑM2

0

(
1 + |x(s)|2

) q
2 ds

+
q

2
K1

∫ 0

−τ

(
1 + |ξ(s)|2

) q
2 ds+

q

2
K2

∫ 0

−τ
V1

(
ξ(s)

)
ds
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=:C1 + qK1E
∫ t∧ϑM2

0

(
1 + |x(s)|2

) q
2 ds,

which implies

sup
0≤t≤T

E
(
1 + |x(t ∧ ϑM2)|2

) q
2

≤C1 + qK1

∫ T

0

sup
0≤s≤t

E
(
1 + |x(s ∧ ϑM2)|2

) q
2 dt.

Applying the Gronwall inequality [16, p.45, Theorem 8.1] yields that

sup
0≤t≤T

E
(
1 + |x(t ∧ ϑM2)|2

) q
2 ≤ C1e

qK1T .

Thus

P{ϑM2 ≤ T}M q
2 ≤ E

[
|x(ϑM2)|q1{ϑM2

≤T}

]
≤ E

(
1 + |x(T ∧ ϑM2)|2

) q
2 ≤ C.

Then the required inequality (2.5) follows.

3 Main results

In order to construct an appropriate numerical scheme, we firstly estimate the growth
rate of coefficients. Under (H1) and (H3), choose a strictly increasing continuous function
Φ : [1,∞)→ R+ satisfying

sup
|x|∨|y|≤l

(
|f(x, y)|
1 + |x|

∨ |g(x, y)|2

(1 + |x|)2

)
≤ Φ(l), ∀ l ≥ 1. (3.1)

Let Φ−1 : [Φ(1),∞)→ R+ be the inverse function of Φ. For any given stepsize 4 ∈ (0, 1],
let

hΦ,µ(4) = K4−µ, (3.2)

where K := Φ(‖ξ‖ ∨ 1) and µ ∈ (0, 1
2
]. Define a truncation mapping Υ4Φ,µ : Rd → Rd by

Υ4Φ,µ(x) =
(
|x| ∧ Φ−1

(
hΦ,µ(4)

)) x
|x|
,

where x
|x| = 0 when x = 0 ∈ Rd.

Then the truncated Euler-Maruyama(TEM) scheme SDDE (1.1) as follows: Choose
a positive integer N such that 4 = τ

N
∈ (0, 1]. Define ti = i4, ∀ i ≥ −N . And define

z4i = ξ(i4), ∀ i = −N, . . . , 0,

z̆4i+1 = z4i + f(z4i , z
4
i−N)4+ g(z4i , z

4
i−N)4Wi, ∀ i = 0, 1, . . . ,

z4i+1 = Υ4Φ,µ(z̆4i+1),

(3.3)
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where4Wi = W (ti+1)−W (ti). So this scheme prevents the diffusion term from producing
extra-ordinary large value. One observes that

|f(z4i , z
4
i−N)| ≤ hΦ,µ(4)(1 + |z4i |), |g(z4i , z

4
i−N)| ≤ h

1
2
Φ,µ(4)(1 + |z4i |). (3.4)

Define two continuous-time numerical schemes z̆4(t), z4(t) by

z̆4(t) := z̆4i , z4(t) := z4i , ∀t ∈ [ti, ti+1). (3.5)

3.1 Moment boundedness

To study the convergence of the TEM scheme (3.3), we need to get the qth moment
boundedness of the TEM scheme (3.3).

Theorem 3.1 Assume that (H1)-(H3) hold. Then the TEM scheme (3.3) has the follow-
ing property

sup
0<4≤1

sup
0≤i4≤T

E|z4i |q ≤ C, ∀ T > 0. (3.6)

Proof. Define fi = f(z4i , z
4
i−N), gi = g(z4i , z

4
i−N) for short. For any T > 0 and 1 ≤ i ≤

[T/4], one observes from (3.3) that

(1 + |z̆4i |2)
q
2 =
[
1 + |z4i−1 + fi−14+ gi−14Wi−1|2

] q
2

=
(

1 + |z4i−1|2
) q

2
(1 + Γi−1)

q
2 , (3.7)

where

Γi−1 =
(
1 + |z4i−1|2

)−1[|fi−1|242 + |gi−14Wi−1|2 + 2〈z4i−1, fi−1〉4
+ 2〈z4i−1, gi−14Wi−1〉+ 2〈fi−1, gi−14Wi−1〉4

]
.

From (3.7) one observes that Γi−1 > −1. For the given constant q > 0, choose an integer
k such that 2k < q ≤ 2(k + 1). It follows from [24, Lemma 3.3] and (3.7) that

E
[(

1 + |z̆4i |2
) q

2 ∣∣Fti−1

]
≤(1 + |z4i−1|2)

q
2

[
1 +

q

2
E
(
Γi−1

∣∣Fti−1

)
+
q(q − 2)

8
E
(
Γ2
i−1

∣∣Fti−1

)
+ E

(
Γ3
i−1Pk(Γi−1)

∣∣Fti−1

)]
, (3.8)

where Pk(·) represents a kth-order polynomial whose coefficients depend only on q. Notic-
ing that the increment 4Wi−1 is independent of Fti−1

. One has for any A ∈ Rd×m

E((A4Wi−1)|Fti−1
) = 0, E(|A4Wi−1|2|Fti−1

) = |A|24. (3.9)
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Using (3.2), (3.4) and (3.9), we compute

E
[
Γi−1

∣∣Fti−1

]
=(1 + |z4i−1|2)−1

(
2〈z4i−1, fi−1〉4+ |gi−1|24+ |fi−1|242

)
≤(1 + |z4i−1|2)−1

(
2〈z4i−1, fi−1〉4+ |gi−1|24+ h2

Φ,µ(4)(1 + |z4i−1|)242
)

≤(1 + |z4i−1|2)−1
(

2〈z4i−1, fi−1〉+ |gi−1|2
)
4+ C4. (3.10)

To estimate q(q − 2)E
[
Γ2
i−1

∣∣Fti−1

]
/8, we consider two cases.

Case (I). If 0 < q ≤ 2, then q(q − 2)/8 ≤ 0. One observes,

E((A4Wi−1)2j−1|Fti−1
) = 0,

E(|A4Wi−1|j|Fti−1
) ≤ C4

j
2 , ∀ A ∈ Rd×m, j ≥ 2. (3.11)

Using (3.2), (3.4) and (3.11), we have

E
[
Γ2
i−1

∣∣Fti−1

]
≥
(
1 + |z4i−1|2

)−2E

{[
|2〈z4i−1, gi−14Wi−1〉|2 + 4〈z4i−1, gi−14Wi−1〉

×
(
|fi−1|242 + |gi−14Wi−1|2 + 2〈z4i−1, fi−1〉4

+ 2〈fi−1, gi−14Wi−1〉4
)]∣∣∣∣Fti−1

}
≥4
(
1 + |z4i−1|2

)−2∣∣〈z4i−1, gi−1〉
∣∣24− 8

(
1 + |z4i−1|2

)−2|z4i−1||fi−1||gi−1|242

≥4
(
1 + |z4i−1|2

)−2|〈z4i−1, gi−1〉|24− 32K242−2µ.

Case (II). If q > 2, then q(q−2)
8

> 0. By the similar way as Case (I) we have

E
[
Γ2
i−1

∣∣Fti−1

]
=
(
1 + |z4i−1|2

)−2E

{[
|2〈z4i−1, gi−14Wi−1〉|2 + 4〈z4i−1, gi−14Wi−1〉

×
(
|fi−1|242 + |gi−14Wi−1|2 + 2〈z4i−1, fi−1〉4+ 2〈fi−1, gi−14Wi−1〉4

)
+
(
|fi−1|242 + |gi−14Wi−1|2 + 2〈z4i−1, fi−1〉4+ 2〈fi−1, gi−14Wi−1〉4

)2
]∣∣∣∣Fti−1

}
≤4
(
1 + |z4i−1|2

)−2∣∣〈z4i−1, gi−1〉
∣∣24+

(
1 + |z4i−1|2

)−2
[
8|z4i−1||fi−1||gi−1|242

+ 4|fi−1|444 + 4|gi−1|442 + 16|z4i−1|2|fi−1|242 + 16|fi−1|2|gi−1|243)

≤4
(
1 + |z4i−1|2

)−2|〈z4i−1, gi−1〉|24

+
(
1 + |z4i−1|2

)−2
[
8h2

Φ,µ(4)|z4i−1|(1 + |z4i−1|)342

+ 4h4
Φ,µ(4)(1 + |z4i−1|)444 + 4h2

Φ,µ(4)(1 + |z4i−1|)442

+ 16h2
Φ,µ(4)|z4i−1|2(1 + |z4i−1|)242 + 16h3

Φ,µ(4)(1 + |z4i−1|)443
]

≤4
(
1 + |z4i−1|2

)−2|〈z4i−1, gi−1〉|24+ C4.
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Combining both cases implies that

q(q − 2)

8
E
[
Γ2
i−1

∣∣Fti−1

]
≤ q(q − 2)

2

(
1 + |z4i−1|2

)−2|〈z4i−1, gi−1〉|24+ C4. (3.12)

To estimate E
(
Γ3
i−1Pk(Γi−1)

∣∣Fti−1

)
, we begin with E

(
Γ3
i−1

∣∣Fti−1

)
. Using (3.2), (3.4) and

(3.11) we obtain

E
[
Γ3
i−1

∣∣Fti−1

]
=(1 + |z4i−1|2)−3E

{[
(|fi−1|242 + |gi−14Wi−1|2 + 2〈z4i−1, fi−1〉4)

+ (2〈z4i−1, gi−14Wi−1〉+ 2〈fi−1, gi−14Wi−1〉4)
]3∣∣Fti−1

}
=(1 + |z4i−1|2)−3E

{[
(|fi−1|242 + |gi−14Wi−1|2 + 2〈z4i−1, fi−1〉4)3

+ 3(|fi−1|242 + |gi−14Wi−1|2 + 2〈z4i−1, fi−1〉4)

× (2〈z4i−1, gi−14Wi−1〉+ 2〈fi−1, gi−14Wi−1〉4)2
]∣∣Fti−1

}
≥(1 + |z4i−1|2)−3E

{[
− 8|z4i−1|3|fi−1|343 − 6(|fi−1|242 + |gi−14Wi−1|2)2|z4i−1||fi−1|4

− 6|z4i−1||fi−1|4 × (2〈z4i−1, gi−14Wi−1〉+ 2〈fi−1, gi−14Wi−1〉4)2
]∣∣Fti−1

}
≥− C(1 + |z4i−1|2)−3(|z4i−1|3|fi−1|343 + |z4i−1||fi−1|545 + |z4i−1||fi−1||gi−1|443

+ |z4i−1|3|fi−1||gi−1|242 + |z4i−1||fi−1|3|gi−1|244)

≥− C(1 + |z4i−1|2)−3
[
h3

Φ,µ(4)|z4i−1|3(1 + |z4i−1|)343 + h5
Φ,µ(4)|z4i−1|(1 + |z4i−1|)545

+ h3
Φ,µ(4)|z4i−1|(1 + |z4i−1|)543 + h2

Φ,µ(4)|z4i−1|3(1 + |z4i−1|)342

+ h4
Φ,µ(4)|z4i−1|(1 + |z4i−1|)544

]
≥− C(43−3µ +45−5µ +43−3µ +42−2µ +44−4µ) ≥ −C4.

On the other hand,

E
[
Γ3
i−1

∣∣Fti−1

]
≤(1 + |z4i−1|2)−3

[
9(|fi−1|646 + |gi−1|643 + 8|z4i−1|3|fi−1|343)

+ 24(|z4i−1|2|fi−1|2|gi−1|243 + |fi−1|4|gi−1|245 + |z4i−1|2|gi−1|442

+ |fi−1|2|gi−1|444 + 2|z4i−1|3|fi−1||gi−1|242 + 2|z4i−1||fi−1|3|gi−1|244)
]

≤C(1 + |z4i−1|2)−3
[
h6

Φ,µ(4)(1 + |z4i−1|)646 + h3
Φ,µ(4)(1 + |z4i−1|)643

+ h3
Φ,µ(4)|z4i−1|3(1 + |z4i−1|)343 + h3

Φ,µ(4)|z4i−1|2(1 + |z4i−1|)443

+ h5
Φ,µ(4)(1 + |z4i−1|)645 + h2

Φ,µ(4)|z4i−1|2(1 + |z4i−1|)442

+ h4
Φ,µ(4)(1 + |z4i−1|)644 + h2

Φ,µ(4)|z4i−1|3(1 + |z4i−1|)342

+ h4
Φ,µ(4)|z4i−1|(1 + |z4i−1|)544

]
≤ C4.

Thus, both of the above inequality imply E
[
a0Γ3

i−1

∣∣Fti−1

]
≤ C4 for any constant a0,

where aj represents the coefficient of xj term in polynomial Pk(x). We can also show that

9



for any j > 3

E
[
|aj−3Γji−1|

∣∣Fti−1

]
≤C(1 + |z4i−1|2)−j

(
|fi−1|2j42j + |gi−1|2j4j + |z4i−1|j|fi−1|j4j

+ |z4i−1|j|gi−1|j4
j
2 + |fi−1|j|gi−1|j4

3j
2 )

≤C4.

These implies

E
(
Γ3
i−1Pk(Γi−1)

∣∣Fti−1

)
≤ C4. (3.13)

Subsituting (3.10), (3.12), (3.13) into (3.8) and using (H2), we obtain

E
[
(1 + |z̆4i |2)

q
2

∣∣Fti−1

]
≤
(

1 + |z4i−1|2
) q

2
{

1 + C4

+
q4
2

(1 + |z4i−1|2)(2〈z4i−1, fi−1〉+ |gi−1|2) + (q − 2)|〈z4i−1, gi−1〉|2

(1 + |z4i−1|2)2

}
≤ (1 + C4)

(
1 + |z4i−1|2

) q
2

+
q4
2

(1 + |z4i−1|2)
q
2
−1
(
2〈z4i−1, fi−1〉+ ((q − 1) ∨ 1)|gi−1|2

)
≤ (1 + C4)

(
1 + |z4i−1|2

) q
2

+
q

2
4
[
K1

(
1 + |z4i−1|q + |z4i−1−N |

q
)

−K2

(
V1(z4i−1)− V1(z4i−1−N)

)]
≤ (1 + C4)

(
1 + |z4i−1|2

) q
2

+
q

2
K14

(
1 + |z4i−1−N |

2
) q

2

− q

2
K24V1(z4i−1) +

q

2
K24V1(z4i−1−N). (3.14)

Taking expectations on both sides of (3.14) yields

E
[
(1 + |z4i |2)

q
2

]
− E(1 + |z4i−1|2)

q
2

≤E
{
E
[
(1 + |z̆4i |2)

q
2

∣∣Fti−1

]}
− E(1 + |z4i−1|2)

q
2

≤C4E(1 + |z4i−1|2)
q
2 +

q

2
K14E

(
1 + |z4i−1−N |

2
) q

2

− q

2
K24EV1(z4i−1) +

q

2
K24EV1(z4i−1−N), (3.15)

which implies

E
[
(1 + |z4i |2)

q
2

]
≤(1 + |ξ(0)|2)

q
2 + C4

i−1∑
k=0

E(1 + |z4k |
2)

q
2 +

q

2
K14

i−1∑
k=0

E(1 + |z4k−N |
2)

q
2

− q

2
K24

i−1∑
k=0

EV1(z4k ) +
q

2
K24

i−1∑
k=0

EV1(z4k−N)

≤(1 + |ξ(0)|2)
q
2 + C4

i−1∑
k=0

E(1 + |z4k |
2)

q
2 +

Nq

2
K14(1 + ‖ξ‖2)

q
2

10



+
q

2
K14

(i−1−N)∨0∑
k=0

E(1 + |z4k |
2)

q
2 − q

2
K24

i−1∑
k=0

EV1(z4k )

+
Nq

2
K24 max

−N≤j≤0
V1(ξ(tj)) +

q

2
K24

(i−1−N)∨0∑
k=0

EV1(z4k )

≤C4
i−1∑
k=0

E(1 + |z4k |
2)

q
2 + C1,

where C1 := (1 + |ξ(0)|2)
q
2 + qτ

2
K1(1 + ‖ξ‖2)

q
2 + qτ

2
K2 max−N≤j≤0 V1(ξ(tj)). Applying the

discrete Gronwall inequatity and the fact i4 ≤ T yield

E
[(

1 + |z4i |2
) q

2

]
≤ C1e

Ci4 ≤ C1e
CT ≤ C.

3.2 The strong convergence

This section concerns the strong convergence of the TEM scheme. We begin with a
probability estimation.

Lemma 3.1 Assume that (H1)-(H3) hold. For any 4, 41 ∈ (0, 1], let

%441
:= inf{t ≥ 0 : |z̆4(t)| ≥ Φ−1(hΦ,µ(41))}. (3.16)

Then for any T > 0 and 4 ∈ (0,41] ⊆ (0, 1],

P{%441
≤ T} ≤ C(

Φ−1(hΦ,µ(41))
)q . (3.17)

Proof. Set ζ441
:= inf{i ≥ 0 : |z̆4i | ≥ Φ−1(h(41))}. Define

f̆i = f(z̆4i , z̆
4
i−N), ği = g(z̆4i , z̆

4
i−N),

and
f̆i∧ζ441

:= f(z̆4
i∧ζ441

, z̆4
(i−N)∧ζ441

), ği∧ζ441

:= g(z̆4
i∧ζ441

, z̆4
(i−N)∧ζ441

).

For any i ≥ 1, if ω ∈ {ζ441
≥ i}, it is obvious that z4i−1 = z̆4i−1, z4i−1−N = z̆4i−1−N and

z̆4
i∧ζ441

= z̆4i =z̆4i−1 + f̆i−14+ ği−14Wi−1.

Otherwise, ω ∈ {ζ441
< i}, we can then write

z̆4
i∧ζ441

= z̆4
ζ441

= z̆4
(i−1)∧ζ441

.

Combining both cases we have

z̆4
i∧ζ441

= z̆4
(i−1)∧ζ441

+
[
f̆(i−1)∧ζ441

4+ ğ(i−1)∧ζ441

4Wi−1

]
1[[0,ζ441

]](i).

11



Then, (
1 + |z̆4

i∧ζ441

|2
) q

2

=

(
1 + |z̆4

(i−1)∧ζ441

|2
) q

2 (
1 + Γ̆(i−1)∧ζ441

1[[0,ζ441
]](i)
) q

2
,

where

Γ̆(i−1)∧ζ441

=
(
1 + |z̆4

(i−1)∧ζ441

|2
)−1[|f̆(i−1)∧ζ441

|242 + |ğ(i−1)∧ζ441

4Wi−1|2

+ 2〈z̆4
(i−1)∧ζ441

, f̆(i−1)∧ζ441

〉4+ 2〈z̆4
(i−1)∧ζ441

, ğ(i−1)∧ζ441

4Wi−1〉

+ 2〈f̆(i−1)∧ζ441

, ğ(i−1)∧ζ441

4Wi−1〉4
]
.

Similar, we obtain that 1 ≤ i ≤ [T/4]

E
[
(1 + |z̆4

i∧ζ441

|2)
q
2

∣∣Ft
(i−1)∧ζ441

]
≤(1 + |z̆4

(i−1)∧ζ441

|2)
q
2

[
1 +

q

2
E(Γ̆(i−1)∧ζ441

1[[0,ζ441
]](i)|Fti−1∧ζ441

)

+
q(q − 2)

8
E(Γ̆2

(i−1)∧ζ441

1[[0,ζ441
]](i)|Fti−1∧ζ441

)

+ E(Γ̆3

(i−1)∧ζ441

Pk(Γ̆(i−1)∧ζ441

)1[[0,ζ441
]](i)|Fti−1∧ζ441

)
]
. (3.18)

By virtue of the martingale property of W (t) and the Doob martingale stopping time
theorem [16, p.11, Theorem 3.3], we have

E
(

(A4Wi)1[[0,ζ441
]](i)
∣∣Ft

(i−1)∧ζ441

)
= 0,

E
(
|A4Wi|21[[0,ζ441

]](i)
∣∣Ft

(i−1)∧ζ441

)
= |A|24E

(
1[[0,ζ441

]](i)
∣∣Ft

(i−1)∧ζ441

)
, (3.19)

and

E
(

(A4Wi)
2j−11[[0,ζ441

]](i)
∣∣Ft

(i−1)∧ζ441

)
= 0,

E
(
|A4Wi|j1[[0,ζ441

]](i)
∣∣Ft

(i−1)∧ζ441

)
≤ C4

j
2E
(
1[[0,ζ441

]](i)
∣∣Ft

(i−1)∧ζ441

)
, (3.20)

where A ∈ Rd×m, j ≥ 2. Using these and (H2), by the same way as Theorem 3.1 we yield

E
[
(1 + |z̆4

i∧ζ441

|2)
q
2

∣∣Ft
(i−1)∧ζ441

]
≤(1 + C4)

(
1 + |z̆4

i∧ζ441

|2
) q

2

+
q

2
K14

(
1 + |z̆4

(i−1−N)∧ζ441

|2
) q

2

− q

2
K24V1(z̆4

(i−1)∧ζ441

)E
(
1[[0,ζ441

]](i)|Ft(i−1)∧ζ441

)
+
q

2
K24V1(z̆4

(i−1−N)∧ζ441

)E
(
1[[0,ζ441

]](i)|Ft(i−1)∧ζ441

)
, (3.21)
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which implies

E

[(
1 + |z̆4

i∧ζ441

|2
) q

2

]

≤(1 + |ξ(0)|2)
q
2 + C4

i−1∑
k=0

E
(

1 + |z̆4
k∧ζ441

|2
) q

2

+
Nq

2
K14

(
1 + ‖ξ‖2

) q
2 +

q

2
K14

(i−1−N)∨0∑
k=0

E
(

1 + |z̆4
k∧ζ441

|2
) q

2

− q

2
K24

i−1∑
k=0

E
[
V1(z̆4

k∧ζ441

)E
(
1[[0,ζ441

]](k + 1)|Ft
k∧ζ441

)]
+
Nq

2
K24 max

−N≤j≤0
V1(ξ(tj))

+
q

2
K24

(i−1−N)∨0∑
k=0

E
[
V1(z̆4

k∧ζ441

)E
(
1[[0,ζ441

]](k + 1 +N)|Ft
(k+N)∧ζ441

)]
.

Due to the fact 1[[0,ζ441
]](k + 1 +N) ≤ 1[[0,ζ441

]](k + 1), one observes

E

[(
1 + |z̆4

i∧ζ441

|2
) q

2

]
≤C4

i−1∑
k=0

E
(

1 + |z̆4
k∧ζ441

|2
) q

2

+ C1, (3.22)

where C1 := (1 + |ξ(0)|2)
q
2 + qτ

2
K1 (1 + ‖ξ‖2)

q
2 + qτ

2
K2 max−N≤j≤0 V1(ξ(tj)). Applying the

discrete Gronwall inequality together with i4 ≤ T implies

E

[(
1 + |z̆4

i∧ζ441

|2
) q

2

]
≤ C1e

Ci4 ≤ C1e
CT .

Therefore the required assertion follows from(
Φ−1(hΦ,µ(41))

)qP{%441
≤ T} ≤ E

[
|z̆(T ∧ %441

)|q
]
≤E

(
1 + |z̆4

[ T4 ]∧ζ441

|2
) q

2

≤ C.

Now we establish the qth moment convergence of the TEM scheme (3.5) for q > 0.

Theorem 3.2 Assume that (H1)-(H3) hold. Then for any p ∈ (0, q),

lim
4→0+

E|x(T )− z4(T )|p = 0, ∀ T > 0. (3.23)

Proof. For any M > Φ−1(hΦ,µ(1)), choose 41 ∈ (0, 1) such that Φ−1(hΦ,µ(41)) = M .

Define θ41

M = ϑM ∧ %441
, where ϑM and %441

are defined by (2.4) and (3.16), respectively.
For any κ1 > 0, by Young’s inequality

E|x(T )− z4(T )|p =E
(
|x(T )− z4(T )|p1{θ41

M >T}

)
+ E

(
|x(T )− z4(T )|p1{θ41

M ≤T}

)
≤E

(
|x(T )− z4(T )|p1{θ41

M >T}

)
+
pκ1

q
E (|x(T )− z4(T )|q)

+
q − p

qκ
p/(q−p)
1

P{θ41

M ≤ T}. (3.24)
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It follows from Theorem 2.1 and Theorem 3.1 that

pκ1

q
E (|x(T )− z4(T )|q) ≤ pκ1

q
2q(E|x(T )|q + E|z4(T )|q) ≤ C

pκ1

q
.

For any ε1 > 0, choose κ1(ε1) > 0 small sufficiently such that Cpκ1/q ≤ ε1/3. Then

pκ1

q
E (|x(T )− z4(T )|q) ≤ ε1

3
. (3.25)

Then we go a further step to chooseM > ‖ξ‖∨Φ−1(hΦ,µ(1)) such that C(q − p)/(M qqκ
p/(q−p)
1 ) ≤

ε1/6 and choose 41 ∈ (0, 1] such that Φ−1(hΦ,µ(41)) = M. From (2.5) and (3.17) we ob-
tain that

q − p
qκ

p/(q−p)
1

P{θ41

M ≤ T}

≤ q − p
qκ

p/(q−p)
1

(
P{ϑM ≤ T}+ P{%41

4 ≤ T}
)

≤ q − p
qκ

p/(q−p)
1

(
C

M q
+

C

[Φ−1(hΦ,µ(41))]q

)
=

2C(q − p)
M qqκ

p/(q−p)
1

≤ ε1

3
. (3.26)

So it is sufficient for (3.23) to show

lim
4→0+

E
(
|x(T )− z4(T )|p1{θ41

M >T}

)
= 0.

For this purpose, we define

fM(x, y) = f

(
(|x| ∧M)

x

|x|
, (|y| ∧M)

y

|y|

)
,

gM(x, y) = g

(
(|x| ∧M)

x

|x|
, (|y| ∧M)

y

|y|

)
.

Then (H1) implies that for any x, x̄, y ∈ Rd,

|fM(x, y)− fM(x̄, y)| ∨ |gM(x, y)− gM(x̄, y)| ≤ LM |x− x̄|. (3.27)

Clearly, by (3.27) and (H3), we have

|fM(x, y)| ∨ |gM(x, y)| ≤(LM ∨ max
|y|≤M

|f(0, y)| ∨ max
|y|≤M

|g(0, y)|)(1 + |x|). (3.28)

So we consider the linear SDDE

du(t) = fM(u(t), u(t− τ))dt+ gM(u(t), u(t− τ))dW (t), (3.29)

with the initial data ξ ∈ C([−τ, 0]; Rd). Due to [9, Theorem 2.1] SDDE (3.29) has a
unique global solution u(t) on t ≥ −τ . Let Y4(t) be the piecewise EM solution of (3.29).
By (H3), (3.27) and (3.28) and according to [12, Theorem 1], it has the property

lim
4→0+

E
[

sup
0≤t≤T

|u(t)− Y4(t)|p̃
]

= 0, ∀ T > 0, p̃ > 0. (3.30)
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Obviously,
x(t ∧ ϑM) = u(t ∧ ϑM), ∀ t ≥ 0, a.s. (3.31)

For any 4 ∈ (0,41], the fact Φ−1(hΦ,µ(4)) ≥ Φ−1(hΦ,µ(41)) = M implies

z4(t ∧ θ41

M ) = z̆4(t ∧ θ41

M ) = Y4(t ∧ θ41

M ), . ∀ t ≥ 0, a.s. (3.32)

Combining (3.30)-(3.32) derives

lim
4→0+

E
(
x(T )− z4(T )|p1{θ41

M >T}

)
≤ lim
4→0+

E
(
|x(T ∧ θ41

M )− z4(T ∧ θ41

M )|p
)

= lim
4→0+

E
(
|u(T ∧ θ41

M )− Y4(T ∧ θ41

M )|p
)

≤ lim
4→0+

E
(

sup
0≤t≤T

|u(t ∧ θ41

M )− Y4(t ∧ θ41

M )|p
)

≤ lim
4→0+

E
(

sup
0≤t≤T

|u(t)− Y4(t)|p
)

= 0. (3.33)

Hence the proof is completed.

3.3 Convergence rate

Furthermore, we shall obtain the 1
2

order convergent rate of the TEM scheme z4(t) defined
in (3.5). We first state below the relevant assumptions.

(H4) Assume that the initial data ξ(t) satisfies the Hölder continuous with the index
λ ≥ 1

2
, i.e., for any s1, s2 ∈ [−τ, 0], there exists a positive constant K3 such that

|ξ(s1)− ξ(s2)| ≤ K3|s1 − s2|λ. (3.34)

(H5) Assume that there is a pair of positive constants α, K4 such that for any
x, x̄, y, ȳ ∈ Rd,

|f(x, y)− f(x̄, ȳ)| ≤ K4(|x− x̄|+ |y − ȳ|)(1 + |x|α + |x̄|α + |y|α + |ȳ|α), (3.35)

|g(x, y)− g(x̄, ȳ)|2 ≤ K4(|x− x̄|2 + |y − ȳ|2)(1 + |x|α + |x̄|α + |y|α + |ȳ|α). (3.36)

(H6) Assume that there exist positive constants 2 ≤ r ≤ q
α+3
∧ q

2α
, β > r − 1, K5,

and a function V̂ (·, ·) ∈ V(Rd × Rd; R+), such that

|x− x̄|r−2[2〈x− x̄, f(x, y)− f(x̄, ȳ)〉+ β|g(x, y)− g(x̄, ȳ)|2]

≤K5(|x− ȳ|r + |y − ȳ|r)− V̂ (x, x̄) + V̂ (y, ȳ), ∀ x, x̄, y, ȳ ∈ Rd.

One notices from (3.36) that

|g(x, y)| ≤|g(x, y)− g(0,0)|+ |g(0,0)|
≤
√
K4(|x|+ |y|)(1 + |x|

α
2 + |y|

α
2 ) + |g(0,0)|

≤C(1 + |x|
α
2

+1 + |y|
α
2

+1). (3.37)
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Remark 3.1 Due to (3.1) and (H5), we may take

Φ(l) =[|f(0,0)|+ 3lα+1K4] ∨ 2[|g(0,0)|2 + 3lα+2K4] ≤ |f(0,0)| ∨ 2|g(0,0)|2 + 6lα+2K4,

where l ≥ 1. Then

Φ−1(l) =

(
l − |f(0,0)| ∨ 2|g(0,0)|2

6K4

) 1
α+2

, (3.38)

where l ≥ |f(0,0)| ∨ 2|g(0,0)|2 + 6K4. And let µ = r(α+2)
2(q−r) ∈ (0, 1

2
]. Thus (3.2) implies

hΦ,µ(4) = [|f(0,0)| ∨ 2|g(0,0)|2 + 6(‖ξ‖ ∨ 1)α+2K4]4−
r(α+2)
2(q−r) . (3.39)

In order to estimate the convergence rate of the TEM scheme, we prepare a auxiliary
process z̃4(t) described by z̃4(t) = z4i + f(z4i , z

4
i−N)(t− ti) + g(z4i , z

4
i−N)(W (t)−W (ti)),∀ t ∈ [ti, ti+1),

z̃4(t) = ξ(t),∀ t ∈ [−τ, 0].

(3.40)

Obviously, z̃4(ti) = z4(ti) = z4i for i ≥ −N .

Lemma 3.2 Assume that (H2) and (H5) hold. Then for any r̃ ∈ (0, 2q/(α + 2)],

sup
0≤t≤T

E
(
|z̃4(t)− z4(t)|r̃

)
≤ C4

r̃
2 , ∀ T > 0. (3.41)

Proof. Fix r̃ ∈ (0, 2q/(α + 2)]. Recalling (3.40), we have that for any t ∈
[
ti, ti+1

)
E
(
|z̃4(t)− z4(t)|r̃

)
= E

(
|z̃4(t)− z4(ti)|r̃

)
≤ 2r̃E|f(z4i , z

4
i−N)|r̃4r̃ + 2r̃E

(
|g(z4i , z

4
i−N)|r̃|W (t)−W (ti)|r̃

)
≤ C

(
E|f(z4i , z

4
i−N)|r̃4r̃ + E|g(z4i , z

4
i−N)|r̃4

r̃
2

)
.

By (3.2), (3.4), (3.37) and Theorem 3.1,

E
(
|z̃4(t)− z4(t)|r̃

)
≤Chr̃Φ,µ(4)E(1 + |z4i |)r̃4r̃ + CE

(
1 + |z4i |

α
2

+1 + |z4i−N |
α
2

+1
)r̃4 r̃

2

≤C
(
1 + (E|z4i |q)

r̃
q
)
4

r̃
2 + C

(
1 + (E|z4i |q)

(α+2)r̃
2q + (E|z4i−N |

q)
(α+2)r̃

2q
)
4

r̃
2

≤C4
r̃
2 ,

which implies the required assertion.

By the similar way as the Theorem 3.1 and Lemma 3.1, we yield the results for the
auxiliary process.

Lemma 3.3 Assume that (H1)-(H3) hold. Then the auxiliary process (3.40) has the
property

sup
0<4≤1

sup
0≤t≤T

E|z̃4(t)|q ≤ C, ∀ T > 0. (3.42)
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Lemma 3.4 Assume that (H1)-(H3) hold. For any 4 ∈ (0, 1], let

%̃4 := inf{t ≥ −τ : |z̃4(t)| ≥ Φ−1(hΦ,µ(4))}. (3.43)

Then we have that for any T > 0,

P{%̃4 ≤ T} ≤ K(
Φ−1(hΦ,µ(4))

)q . (3.44)

We go a further step to estimate the error between the auxiliary process z̃4(t) and
the exact solution x(t). Define e(t) = x(t)− z̃4(t) for short, which satisfies

de(t) =

∫ t

0

[
f(x(s), x(s− τ))− f(z4(s), z4(s− τ))

]
ds

+

∫ t

0

[
g(x(s), x(s− τ))− g(z4(s), z4(s− τ))

]
dW (s).

Lemma 3.5 Assume that (H2), (H4)-(H6) hold. Then one has the property

E
∣∣e(T )

∣∣r ≤ C4
r
2 , ∀ T ≥ 0. (3.45)

Proof. Define χ4 = ϑΦ−1(hΦ,µ(4))∧%44 ∧ %̃4, where ϑM , %44 and %̃4 are defined in (2.4),
(3.16) and (3.43), respectively. By Young’s inequality

E|e(T )|r =E
(
|e(T )|r1{χ4>T}

)
+ E

(
|e(T )|r1{χ4≤T}

)
≤E

(
|e(T )|r1{χ4>T}

)
+
r4 r

2

q
E|e(T )|q +

q − r

q4
r2

2(q−r)

P(χ4 ≤ T ). (3.46)

By Theorem 2.1 and Lemma 3.3

r4 r
2

q
E|e(T )|q ≤ 2q−1 r4

r
2

q
(E|x(T )|q + E|z̃4(T )|q) ≤ C4

r
2 . (3.47)

Using (2.5), (3.17), (3.44), and then by (3.38) and (3.39), we have

q − r

q4
r2

2(q−r)

P(χ4 ≤ T )

≤ q − r

q4
r2

2(q−r)

(
P{ϑΦ−1(hΦ,µ(4)) ≤ T}+ P{%44 ≤ T}+ P{%̃4 ≤ T}

)
≤ q − r

q4
r2

2(q−r)

3C

(Φ−1(hΦ,µ(4)))q
≤ C4

qr
2(q−r)−

r2

2(q−r) = C4
r
2 . (3.48)

Next we estimate the first term on the right hand of (3.46). Using the Itô formula, we
have ∣∣e(T ∧ χ4)

∣∣r
≤
∫ T∧χ4

0

r

2
|e(s)|r−2

[
2〈e(s), f(x(s), x(s− τ))− f(z4(s), z4(s− τ))

〉
+ (r − 1)

∣∣g(x(s), x(s− τ))− g(z4(s), z4(s− τ))
∣∣2]ds

+

∫ T∧χ4

0

r|e(s)|r−2〈e(s), g(x(s), x(s− τ))− g(z4(s), z4(s− τ))
〉
dW (s). (3.49)
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Due to r ∈ [2, β + 1), one chooses a constant κ2 > 0, such that (1 + κ2)(r − 1) ≤ β. It
follows from the elementary inequality and (H5) that

2〈e(s), f(x(s), x(s− τ))− f(z4(s), z4(s− τ))
〉

+ (r − 1)
∣∣g(x(s), x(s− τ))− g(z4(s), z4(s− τ))

∣∣2
≤2〈e(s), f(x(s), x(s− τ))− f(z̃4(s), z̃4(s− τ))

〉
+ 2〈e(s), f(z̃4(s), z̃4(s− τ))− f(z4(s), z4(s− τ))

〉
+ (1+ κ2)(r − 1)|g(x(s), x(s− τ))− g(z̃4(s), z̃4(s− τ))|2

+
(

1 +
1

κ2

)
(r − 1)|g(z̃4(s), z̃4(s− τ))− g(z4(s), z4(s− τ))|2

≤2〈e(s), f(x(s), x(s− τ))− f(z̃4(s), z̃4(s− τ))
〉

+ β|g(x(s), x(s− τ))− g(z̃4(s), z̃4(s− τ))|2

+ 2K4|e(s)|(|z̃4(s)− z4(s)|+ |z̃4(s− τ)− z4(s− τ)|)(1 + |z̃4(s)|α

+ |z̃4(s− τ)|α + |z4(s)|α + |z4(s− τ)|α)

+ (1+
1

κ2

)(r − 1)K4(|z̃4(s)− z4(s)|2 + |z̃4(s− τ)− z4(s− τ)|2)(1 + |z̃4(s)|α

+ |z̃4(s− τ)|α + |z4(s)|α + |z4(s− τ)|α).

Inserting the above inequality into (3.49) and using (H6), we derive

(|e(T ∧ χ4)|r)

≤r
2

∫ T∧χ4

0

[
K5|e(s)|r +K5|e(s− τ)|r − V̂ (x(s), z̃(s))

+ V̂ (x(s− τ), z̃4(s− τ)) + 2K4|e(s)|r−1|z̃4(s)− z4(s)|(1 + |z̃4(s)|α

+ |z̃4(s− τ)|α + |z4(s)|α + |z4(s− τ)|α)

+ 2K4|e(s)|r−1|z̃4(s− τ)− z4(s− τ)|(1 + |z̃4(s)|α + |z̃4(s− τ)|α + |z4(s)|α

+ |z4(s− τ)|α) +K4

(
1 +

1

κ2

)
(r − 1)|e(s)|r−2|z̃4(s)− z4(s)|2(1 + |z̃4(s)|α

+ |z̃4(s− τ)|α + |z4(s)|α + |z4(s− τ)|α)

+K4

(
1 +

1

κ2

)
(r − 1)|e(s)|r−2|z̃4(s− τ)− z4(s− τ)|2(1 + |z̃4(s)|α

+ |z̃4(s− τ)|α + |z4(s)|α + |z4(s− τ)|α)
]
ds

+

∫ T∧χ4

0

r|e(s)|r−2〈e(s), g(x(s), x(s− τ))− g(z4(s), z4(s− τ))
〉
dW (s). (3.50)

Owing to V̂ (x, x) = 0 for any x ∈ Rd, we have∫ T∧χ4

0

−V̂ (x(s), z̃4(s)) + V̂ (x(s− τ), z̃4(s− τ))ds

≤
∫ 0

−τ
V̂ (x(s), z̃4(s))ds =

∫ 0

−τ
V̂ (ξ(s), ξ(s))ds = 0. (3.51)
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By (3.50), (3.51), the Young inequality and the elementary inequality, we yield

E(|e(T ∧ χ4)|r)

≤
(
rK5 + 2K4(r − 1) +K4(1 +

1

κ2

)(r − 1)(r − 2)
)
E
∫ T∧χ4

0

|e(s)|rds

+K4E
∫ T

0

|z̃4(s)− z4(s)|r(1 + |z̃4(s)|α + |z̃4(s− τ)|α + |z4(s)|α + |z4(s− τ)|α)rds

+K4E
∫ T

0

|z̃4(s− τ)− z4(s− τ)|r(1 + |z̃4(s)|α + |z̃4(s− τ)|α + |z4(s)|α

+ |z4(s− τ)|α)rds

+K4(1 +
1

κ2

)(r − 1)E
∫ T

0

|z̃4(s)− z4(s)|r(1 + |z̃4(s)|α + |z̃4(s− τ)|α

+ |z4(s)|α + |z4(s− τ)|α)
r
2 ds

+K4(1 +
1

κ2

)(r − 1)E
∫ T

0

|z̃4(s− τ)− z4(s− τ)|r(1 + |z̃4(s)|α + |z̃4(s− τ)|α

+ |z4(s)|α + |z4(s− τ)|α)
r
2 ds

≤CE
∫ T∧χ4

0

|e(s)|rds+ J1 + J2, (3.52)

where

J1 :=CE
∫ T

0

|z̃4(s)− z4(s)|r(1 + |z̃4(s)|rα + |z̃4(s− τ)|rα + |z4(s)|rα

+ |z4(s− τ)|rα)ds,

J2 :=CE
∫ T

0

|z̃4(s− τ)− z4(s− τ)|r(1 + |z̃4(s)|rα + |z̃4(s− τ)|rα + |z4(s)|rα

+ |z4(s− τ)|rα)ds.

By Hölder’s inequality, Theorem 3.1, Lemma 3.2, and Lemma 3.3, we have

J1 ≤C
∫ T

0

(E|z̃4(s)− z4(s)|2r)
1
2 (1 + E|z̃4(s)|2rα + E|z̃4(s− τ)|2rα

+ E|z4(s)|2rα + E|z4(s− τ)|2rα)
1
2 ds

≤C
∫ T

0

4
r
2

[
1 + (E|z̃4(s)|q)

2rα
q + (E|z4(s)|q)

2rα
q + (E|z̃4(s− τ)|q)

2rα
q

+ (E|z4(s− τ)|q)
2rα
q
] 1

2 ds ≤ C4
r
2 . (3.53)

By the same way as J1, together with (H4), we obtain

J2 ≤C
∫ T

0

(E|z̃4(s− τ)− z4(s− τ)|2r)
1
2

[
1 + (E|z̃4(s)|q)

2rα
q

+ (E|z̃4(s− τ)|q)
2rα
q + (E|z4(s)|q)

2rα
q + (E|z4(s− τ)|q)

2rα
q
] 1

2 ds

≤C
∫ T

0

(E|z̃4(s)− z4(s)|2r)
1
2 ds+ C

∫ 0

−τ
|z̃4(s)− z4(s)|rds
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≤C4
r
2 + C

∫ 0

−τ
|ξ(s)− ξ([ s

4
]4)|rds

≤4
r
2 +Kr

3C

∫ 0

−τ
|s− [

s

4
]4|λrds ≤ C4

r
2 . (3.54)

Inserting (3.53), (3.54) into (3.52) and applying the Gronwall inequality yields that

E(|e(T ∧ χτ )|r) ≤ CeCT4r/2. (3.55)

Subsituting (3.47), (3.48) and (3.55) into (3.46), we get the desired assertion.

Theorem 3.3 Assume that (H2), (H4)-(H6) hold. Then for any r̄ ∈ (0, r], the TEM
scheme z4(t) defined in (3.5) has the property

E
∣∣x(T )− z4(T )

∣∣r̄ ≤ C4
r̄
2 , ∀ T > 0.

Proof. For any T > 0, by (3.41) and (3.45), we obtain

E
∣∣x(T )− z4(T )

∣∣r ≤ 2rE
∣∣x(T )− z̃4(T )

∣∣r + 2rE
∣∣z̃4(T )− z4(T )

∣∣r ≤ C4
r
2 ,

which together with the Hölder inequality implies the desired.

3.4 Exponential stability

This section focuses on the exponential stability of SDDE (1.1). We firstly give the
corresponding results on the exact solutions. Then we construct a more precise scheme to
approximate the long-time behaviors of the system. Without loss of generality, we assume
f(0,0) = 0, g(0,0) = 0. Moreover,

(H7) Assume that there exist constants K̄6 > K6 > 0, K̄7 > K7 ≥ 0 and a function
V2(·) ∈ C(Rd; R+) such that for any x, y ∈ Rd,

〈2x, f(x, y)〉+ |g(x, y)|2 ≤ −K̄6|x|2 +K6|y|2 − K̄7V2(x) +K7V2(y). (3.56)

(H8) For any positive constant l2, there exist a positive constant L̂l2 such that for
any |y| ≤ l2

|f(0, y)|+ |g(0, y)| ≤ L̂l2|y|.

Using the techniques of [17, Theorem 3.4] and [14, Theorem 2.1], we may get the
exponential stability of SDDE (1.1).

Theorem 3.4 Assume that (H1) and (H7) hold. Then the solution x(t) of SDDE (1.1)
with an initial data ξ ∈ C([−τ, 0]; Rd) has the property

E|x(t)|2 ≤ Ce−γt, ∀ t > 0,

where γ satisfies K6e
γτ + γ ≤ K̄6 and K7e

γτ ≤ K̄7.
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Theorem 3.5 Assume that (H1) and (H7) hold. Then the solution x(t) of SDDE (1.1)
with an initial data ξ ∈ C([−τ, 0]; Rd) has the property

lim sup
t→∞

1

t
log |x(t)| ≤ −γ

2
, a.s,

where γ is defined in Theorem 3.4.

Next we will give a more precise numerical method keeping the underlying exponential
stability in mean square and P − 1. Under (H1) and (H8), choose a strictly increasing
continuous function Φ̂ : [1,∞)→ R+ such that

sup
|x|∨|y|≤l

(
|f(x, y)|
|x|+ 1 ∧ |y|

∨ |g(x, y)|2

(|x|+ 1 ∧ |y|)2

)
≤ Φ̂(l), ∀ l ≥ 1. (3.57)

For any given stepsize 4 ∈ (0, 1], by (3.2) we may take

hΦ̂,µ(4) = K̂4−µ, (3.58)

where K̂ := Φ̂(‖ξ‖ ∨ 1) and µ ∈ (0, 1
2
). Then the more precise TEM scheme is defined by

y4i = ξ(i4), ∀ i = −N, · · · , 0,

ŷ4i+1 = y4i + f(y4i , y
4
i−N)4+ g(y4i , y

4
i−N)4Wi, ∀ i = 0, 1, · · · ,

y4i+1 = Υ4
Φ̂,µ

(ŷ4i+1).

(3.59)

So we have ∣∣f(y4i , y
4
i−N)

∣∣ ≤hΦ̂,µ(4)
(
|y4i |+ 1 ∧ |y4i−N |

)
, ∀ x, y ∈ Rd. (3.60)

Theorem 3.6 Assume that (H1), (H7) and (H8) hold. Then for any ε ∈ (0, γ), there is
4̄ ∈ (0, 1] such that for any 4 ∈ (0, 4̄]

E|y4i |2 ≤ Ce(γ−ε)ti , (3.61)

where γ is defined in Theorem 3.4.

Proof. Define fi = f(y4i , y
4
i−N), gi = g(y4i , y

4
i−N), ∀ i ≥ 0. By (3.59)

E
[∣∣ŷ4i+1

∣∣2∣∣Fti]
=E
[∣∣y4i + fi4+ gi4Wi

∣∣2∣∣Fti]
=E
[(
|y4i |2 + |fi|242 + |gi4Wi|2 + 2〈y4i , fi〉4+ 2〈y4i , gi4Wi〉+ 2〈fi, gi4Wi〉4

)∣∣Fti]
=|y4i |2 + |fi|242 + |gi|24+ 2〈y4i , fi〉4,
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By (H7), (3.58) and (3.60), we have

E
[
|ŷ4i+1

∣∣2|Fti]
≤|y4i |2 +

[
− K̄6|y4i |2 +K6|y4i−N |

2 − K̄7V2(y4i ) +K7V2(y4i−N)
]
4

+ h2
Φ̂,µ

(4)
(
|y4i |+ 1 ∧ |y4i−N |

)242

≤[1− (γ4− 2K̂42(1−µ))]|y4i |2 −K6e
γτ4|y4i |2

+ (K64+ 2K̂42(1−µ))|y4i−N |
2 −K7e

γτ4V2(y4i ) +K74V2(y4i−N), (3.62)

where constant γ satisfies

K6e
γτ + γ ≤ K̄6, K7e

γτ ≤ K̄7.

Then taking the expectations on both sides of (3.62) we derive

E|y4i+1|2 − E|y4i |2 ≤ E
[
E(|ŷ4i+1|2|Fti)

]
− E|y4i |2

≤− (γ4− 2K̂42(1−µ))E|y4i |2 −K6e
γτ4E|y4i |2

+ (K64+ 2K̂42(1−µ))E|y4i−N |
2 −K7e

γτ4EV2(y4i ) +K74EV2(y4i−N), (3.63)

which implies

E|y4i+1|2 ≤ |ξ(0)|2 − (γ4− 2K̂42(1−µ))
i∑

k=0

E|y4k |
2 −K6e

γτ4
i∑

k=0

E|y4k |
2 (3.64)

+ (K64+ 2K̂42(1−µ))N‖ξ‖2 + (K64+ 2K̂42(1−µ))

(i−N)∨0∑
k=0

E|y4k |
2

−K7e
γτ4

i∑
k=0

EV2(y4k ) +K7τ max
−N≤j≤0

V2(ξ(tj)) +K74
(i−N)∨0∑
k=0

EV2(y4k ). (3.65)

For any ε ∈ (0, γ), choose a constant 4̄ ∈ (0, 1] small sufficiently such that for any
4 ∈ (0, 4̄]

2K̂42(1−µ) ≤ ε4, K64+ 2K̂42(1−µ) ≤ K6e
γτ4. (3.66)

This together with (3.64) implies

E|y4i+1|2 ≤− (γ − ε)4
i∑

k=0

E|y4k |
2 + C.

A direct application of the discrete Gronwall inequatity derives

E|y4i+1|2 ≤ Ce−(γ−ε)(i+1)4 = Ce−(γ−ε)ti+1 . (3.67)

Therefore the desired result follows.

Using the technique of [22, Theorem 3.4], we yield the almost sure exponential sta-
bility of the TEM scheme (3.59).

Theorem 3.7 Under the conditions of Theorem 3.6, for any ε ∈ (0, γ), there is 4̄ ∈ (0, 1]
such that for any 4 ∈ (0, 4̄]

lim sup
i→∞

1

i4
log |y4i | ≤ −

γ − ε
2

a.s. (3.68)
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4 Numerical examples

In this section to illustrate our results, we give two nonlinear SDDE examples.

Example 4.1 Let us recall SDDE (1.2) and let q = 15. By virtue of [16, p.211, Lemma
4.1] we know

|a+ b|p ≤ |a|
p

δp−1
+

|b|p

(1− δ)p−1
,

where a, b ∈ R, p > 1, δ ∈ (0, 1). This together with the Young inequality implies

(1 + |x|2)
q
2
−1
(〈

2x, f(x, y)
〉

+ 14|g(x, y)|2
)
≤ (26.5 +

14

δ5.5
+

14

(1− δ)5.5
)

+ 27.5|x|15 +
14

δ5.5
|y|15 − (16− 182

16(1− δ)5.5
)|x|17 +

42

16(1− δ)5.5
|y|17.

Choose δ small sufficiently such that 16 − 182
16(1−δ)5.5 ≥ 42

16(1−δ)5.5 . So (H2) holds with

V1(x) = (16 − 140
16(1−δ)5.5 )|x|17. By virtue of Theorem 2.1, (1.2) exists a unique global

solution.

Let r = 3 and β > 2. By the elementary inequality we have

2|x− x̄|〈x− x̄, f(x, y)− f(x̄, ȳ)〉 ≤ 2|x− x̄|3 − 8|x− x̄|3(x2 + x̄2).

Using Young’s inequality and the elementary inequality implies

β|x− x̄||g(x, y)− g(x̄, y)|2 ≤β|x− x̄||y − ȳ|2(|y|
1
2 + |ȳ|

1
2 )2

≤β
3

3
|x− x̄|3 +

8

3
|y − ȳ|3(y2 + ȳ2) +

16

3
|y − ȳ|3.

So we derive

|x− x̄|[2〈x− x̄, f(x, y)− f(x̄, ȳ)〉+ β|g(x, y)− g(x̄, ȳ)|2]

≤(2 +
β3

3
)|x− x̄|3 +

16

3
|y − ȳ|3 − 8|x− x̄|3(x2 + x̄2) + 8|y − ȳ|3(y2 + ȳ2).

This implies (H6) holds with V̂ (x, x̄) = 8|x− x̄|3(x2 + x̄2). Obviously, (H4) and (H5) hold

with λ = 1, K4 = 12 and α = 2. By (3.38), we take Φ−1(l) = ( l
72

)
1
4 , ∀ l ≥ 72. By (3.39)

and ‖ξ‖ = 1, then choose h(4) = 724− 1
2 , ∀ 4 ∈ (0, 1]. By virtue of Theorem 3.3, the

TEM scheme (3.5) satisfies that for any 4 ∈ (0, 1]

E
∣∣x(T )− z4(T )

∣∣3 ≤ C4
3
2 , ∀ T > 0.

We regard the numerical solution with small stepsize 4 = 2−20 as the exact solution
x(t), and carry out numerical experiments to compute the error E (|x(T )− z4(T )|3) be-
tween the exact solution x(T ) and the numerical solution z4(T ) of the TEM scheme using
MATLAB. In Figure 1, the red solid line depicts E (|x(T )− z4(T )|3) as the function of
4 for 1000 sample points as T = 1, 2, 3, and 4 ∈ {2−14, 2−12, 2−10, 2−8, 2−6}. The

blue solid line plots the reference function 4 3
2 . Figure 1 supports the result of Theorem

3.3 that the rate of L3-convergence is 3/2.
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Figure 1: The red solid line depicts the 3th moment approximation error
E (|x(T )− z4(T )|3) between the exact solution x(T ) and the TEM scheme z4(T ), as the
function of4 for 1000 sample points as T = 1, 2, 3, and4 ∈ {2−14, 2−12, 2−10, 2−8, 2−6}.
The blue solid line plots the reference function 4 3

2 .

Example 4.2 Consider 2-dimensional SDDE dx1(t) =
(
−3

2
x1(t)− x3

1(t)
)

dt+ x2
2(t− 1)dW1(t),

dx2(t) = (−x2(t)− x3
2(t)) dt+ x2

1(t− 1)dW2(t), t > 0,
(4.1)

with the initial data (ξ1(θ), ξ2(θ))T = (e−1.3θ, 0)T , θ ∈ [−1, 0]. We compute that for any
x, y, x̄, ȳ ∈ R2

|f(x, y)− f(0, y)| ≤ 3

2
(1 + |x|2)|x|, |g(x, y)− g(0, y)|2 ≤ 2|y|4,

f(0, y) = 0, |g(0, y)|2 ≤ 2|y|4,

and

〈2x, f(x, y)〉+ |g(x, y)|2

≤− 2|x|2 − 2(|x1|4 + |x2|4) + (|y1|4 + |y2|4).

Then (H1), (H7) and (H8) hold with V2(x) = |x1|4 + |x2|4, where K̄6 = 2, K6 = 0.6, K̄7 =
2, K7 = 1. Choose γ = 0.69 such that

1.8862 ≈ K6e
γτ + γ < K̄6 = 2, 1.9937 ≈ K7e

γτ < K̄7 = 2.

By virtue of Theorem 3.4 and Theorem 3.5, (4.1) is the exponential stable in mean square
and P− 1.

By (3.57), we take Φ̂(l) = 2(1+ l2), where l ≥ 1. By (3.58) and ‖ξ‖ = e1.3, we choose

hΦ̂,µ(4) = 2(1 + e2.6)4− 1
100 , ∀4 ∈ (0, 1]. Let ε = 0.5 ∈ (0, γ). we choose 4̄ = 2−7 such
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that for any 4 ∈ (0, 4̄], (3.66) holds. It follows from Theorem 3.6 and Theorem 3.7 that
for any 4 ∈ (0, 2−7]

E|y4i |2 ≤ Ce−0.19ti , ∀ i ≥ 0, lim sup
i→∞

1

i4
log |y4i | ≤ −

0.19

2
, a.s.

Figure 2 depicts the sample mean of the TEM scheme y4i defined in (3.59). Figure 3
depicts a sample path of the EM solution Y 4i and a sample path of the TEM solution
y4i .
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Figure 2: The sample mean of y4i with 1000 sample points, 4 = 2−7 and t ∈ [0, 8].

0 0.5 1 1.5 2 2.5

t

-4

-2

0

2

4

6

8

10

12

14

ln(Y
i" )

the EM scheme

"=2-7

0 1 2 3 4

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y i"

the TEM scheme

"=2-7

Figure 3: The sample paths of lnY 4i by the EM and of the TEM solution y4i defined in
(3.59) with 4 = 2−7 and t ∈ [0, 4].
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5 Conclusions

In this paper we construct an explicit numerical scheme under the weakly local Lipschitz
condition and the Khasminskii-type condition, which numerical solutions are bounded and
converge to the exact solutions in qth moment for q > 0. The 1/2 order convergence rate
is obtained for the TEM scheme. Moreover, in order to realize the long time dynamical
behavior we propose a more precise TEM scheme. The exponential stability is kept well
by the numerical solutions of the TEM for a large kind of nonlinear SDDEs.
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