Skip to main content
Log in

Revisiting subgradient extragradient methods for solving variational inequalities

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, several extragradient algorithms with inertial effects and adaptive non-monotonic step sizes are proposed to solve pseudomonotone variational inequalities in real Hilbert spaces. The strong convergence of the proposed methods is established without the prior knowledge of the Lipschitz constant of the mapping. Some numerical experiments are given to illustrate the advantages and efficiency of the proposed schemes over previously known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonacker, E, Gibali, A, Küfer, K. H.: Nesterov perturbations and projection methods applied to IMRT. J. Nonlinear Var. Anal. 4, 63–86 (2020)

    MATH  Google Scholar 

  2. Gibali, A, Iyiola, OS, Akinyemi, L, Shehu, Y: Projected-reflected subgradient-extragradient method and its real-world applications. Symmetry 13, Article ID 489 (2021)

  3. Cubiotti, P, Yao, JC: On the Cauchy problem for a class of differential inclusions with applications. Appl. Anal. 99, 2543–2554 (2020)

    Article  MathSciNet  Google Scholar 

  4. Cuong, TH, Yao, JC, Yen, ND: Qualitative properties of the minimum sum-of-squares clustering problem. Optimization 69, 2131–2154 (2020)

    Article  MathSciNet  Google Scholar 

  5. Korpelevich, GM: The extragradient method for finding saddle points and other problems. Èkonom. i Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  6. He, BS: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  Google Scholar 

  7. Tseng, P: A modified forward-backward splitting method for maximal monotone mappings. SIAM. J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y, Gibali, A, Reich, S: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y, Gibali, A, Reich, S: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y, Gibali, A, Reich, S: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  Google Scholar 

  11. Malitsky, Y: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dong, QL, Jiang, D, Gibali, A: A modified subgradient extragradient method for solving the variational inequality problem. Numer. Algorithms 79, 927–940 (2018)

    Article  MathSciNet  Google Scholar 

  13. Thong, DV, Hieu, DV: Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms 79, 597–610 (2018)

    Article  MathSciNet  Google Scholar 

  14. Dadashi, V, Iyiola, OS, Shehu, Y: The subgradient extragradient method for pseudomonotone equilibrium problems. Optimization 69, 901–923 (2020)

    Article  MathSciNet  Google Scholar 

  15. Tan, B, Fan, J, Li, S: Self-adaptive inertial extragradient algorithms for solving variational inequality problems. Comput. Appl. Math. 40, Article ID 19 (2021)

  16. Kraikaew, R, Saejung, S: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  Google Scholar 

  17. Shehu, Y, Iyiola, OS: Strong convergence result for monotone variational inequalities. Numer. Algorithms 76, 259–282 (2017)

    Article  MathSciNet  Google Scholar 

  18. Thong, DV, Hieu, DV: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78, 1045–1060 (2018)

    Article  MathSciNet  Google Scholar 

  19. Yang, J, Liu, H, Liu, Z: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67, 2247–2258 (2018)

    Article  MathSciNet  Google Scholar 

  20. Yang, J, Liu, H: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms 80, 741–752 (2019)

    Article  MathSciNet  Google Scholar 

  21. Shehu, Y, Iyiola, OS: Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Appl. Numer. Math. 157, 315–337 (2020)

    Article  MathSciNet  Google Scholar 

  22. Liu, H, Yang, J: Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput. Optim. Appl. 77, 491–508 (2020)

    Article  MathSciNet  Google Scholar 

  23. Shehu, Y, Cholamjiak, P: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56, Article ID 4 (2019)

  24. Shehu, Y, Iyiola, OS, Li, XH, Dong, QL: Convergence analysis of projection method for variational inequalities. Comput. Appl. Math. 38, Article ID 161 (2019)

  25. Shehu, Y, Li, XH, Dong, QL: An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer. Algorithms 84, 365–388 (2020)

    Article  MathSciNet  Google Scholar 

  26. Vuong, PT, Shehu, Y: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81, 269–291 (2019)

    Article  MathSciNet  Google Scholar 

  27. Reich, S, Thong, DV, Dong, QL, Li, XH, Dung, VT: New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings. Numer. Algorithms 87, 527–549 (2021)

    Article  MathSciNet  Google Scholar 

  28. Cai, G, Dong, QL, Peng, Y: Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz Operators. J. Optim. Theory Appl. 188, 447–472 (2021)

    Article  MathSciNet  Google Scholar 

  29. Tan, B, Cho, SY: Inertial extragradient methods for solving pseudomonotone variational inequalities with non-Lipschitz mappings and their optimization applications. A. Set-Valued Anal. Optim. 3, 165–192 (2021)

    Google Scholar 

  30. Polyak, B: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4, 1–17 (1964)

    Article  Google Scholar 

  31. Alvarez, F, Attouch, H: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  32. Shehu, Y, Yao, JC: Rate of convergence for inertial iterative method for countable family of certain quasi-nonexpansive mappings. J. Nonlinear Convex Anal. 21, 533–541 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Gibali, A, Hieu, DV: A new inertial double-projection method for solving variational inequalities. J. Fixed Point Theory Appl. 21, Article ID 97 (2019)

  34. Shehu, Y, Gibali, A: New inertial relaxed method for solving split feasibilities. Optim. Lett. 15, 2109–2126 (2021)

    Article  MathSciNet  Google Scholar 

  35. Shehu, Y, Liu, L, Mu, X, Dong, QL: Analysis of versions of relaxed inertial projection and contraction method. Appl. Numer. Math. 165, 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  36. Ceng, LC, Shang, M: Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings. Optimization 70, 715–740 (2021)

    Article  MathSciNet  Google Scholar 

  37. Saejung, S, Yotkaew, P: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

    Article  MathSciNet  Google Scholar 

  38. Thong, DV, Hieu, DV, Rassias, TM: Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim. Lett. 14, 115–144 (2020)

    Article  MathSciNet  Google Scholar 

  39. Thong, DV, Shehu, Y, Iyiola, OS: Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numer. Algorithms 84, 795–823 (2020)

    Article  MathSciNet  Google Scholar 

  40. Thong, DV, Shehu, Y, Iyiola, OS: A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators. Comput. Appl. Math. 39, Article ID 108 (2020)

  41. Preininger, J, Vuong, PT: On the convergence of the gradient projection method for convex optimal control problems with bang-bang solutions. Comput. Optim. Appl. 70, 221–238 (2018)

    Article  MathSciNet  Google Scholar 

  42. Cai, G, Gibali, A, Iyiola, OS, Shehu, Y: A new double-projection method for solving variational inequalities in Banach spaces. J. Optim. Theory Appl. 178, 219–239 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are would like to thank the anonymous referees for their valuable suggestions, which helped us to present this paper in a better way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Qin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Qin, X. & Cho, S.Y. Revisiting subgradient extragradient methods for solving variational inequalities. Numer Algor 90, 1593–1615 (2022). https://doi.org/10.1007/s11075-021-01243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01243-1

Keywords

Mathematics Subject Classification (2010)

Navigation