Skip to main content
Log in

Balanced-norm error estimate of the local discontinuous Galerkin method on layer-adapted meshes for reaction-diffusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the local discontinuous Galerkin (LDG) method on layer-adapted meshes for singularly perturbed problems. For these problems of reaction-diffusion type, the balanced norm is suitable to capture the contribution of boundary layer component of the solution. However, it is rather difficult to derive optimal balanced-norm error estimate of the LDG method in the general case. That is, one can only obtain suboptimal error estimate of the LDG method in the mentioned “artificial” norm by using the traditional technique. In this paper, we propose a novel projection which combines the local Gauss-Radau projection with the local L2 projection in a subtle way. We obtain an improved balanced-error estimate. In particular, this estimate is optimal in the case that the regular component of the solution belongs to the finite element space. Numerical experiments are also given to test the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bakhvalov, N.: The optimalization of methods of solving boundary value problems with a boundary layer. USSR Comput. Math. Math. Phys. 9(4), 139–166 (1969)

    Article  Google Scholar 

  2. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comp. 71(238), 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ciarlet, P. G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. North-Holland Publishing Co, Amsterdam (1978)

    Google Scholar 

  4. Cheng, Y.: On the local discontinuous Galerkin method for singularly perturbed problem with two parameters. J. Comput. Appl. Math. 392, 113485 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clavero, C., Gracia, J. L., O’riordan, E.: A parameter robust numerical method for a two dimensional reaction-diffusion problem. Math. Comp. 74(252), 1743–1758 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C. W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, H., Kellogg, R. B.: Differentiability properties of solutions of the equation − εΔu + ru = f(x,y) in a square. SIAM J. Math. Anal. 21, 394–408 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, R., Stynes, M.: A balanced finite element method for singularly perturbed reaction-diffusion problems. SIMA J. Numer. Anal. 50(5), 2729–2743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Linß, T.: Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 192(9-10), 1061–1105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, F., Madden, N., Stynes, M., Zhou, A.: A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions. IMA J. Numer. Anal. 29(4), 986–1007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Madden, N., Stynes, M.: A weighted and balanced FEM for singularly perturbed reaction-diffusion problems. Calcolo. https://doi.org/10.1007/s10092-021-00421-w(2021)

  13. Melenk, J. M., Xenophontos, C.: Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo. 53, 105–132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mei, Y. J., Cheng, Y., Wang, S., Xu, Z.: Local discontinuous Galerkin method on layer-adapted meshes for singularly perturbed reaction-diffusion problems in two dimensions. arXiv:2103.01083

  15. Miller, J. J. H., Riordan, E.O., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific, Singapore (1996)

    Book  Google Scholar 

  16. Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory report LA-UR-73-479, Los Alamos (1973)

  17. Roos, H. G., Schopf, M.: Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems. ZAMM Z. Angew. Math. Mech. 95(6), 551–565 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Roos, H. G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  19. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38, 837–875 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shishkin, G.: Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations (Second Doctorial Thesis). Keldysh Institute, Moscow (in Russian (1990)

    Google Scholar 

  21. Xie, Z., Zhang, Z. Z., Zhang, Z. Z.: A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems. J. Comput. Math. 27(2-3), 280–298 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Xie, Z., Zhang, Z.: Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comp. 79(269), 35–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, Y., Shu, C. W.: Local discontinous Galerkin methods for high-order time-dependent partial differetial equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  Google Scholar 

  24. Zarin, H., Roos, H.G.: On the discontinuous Galerkin finite element method for reaction-diffusion problems:, error estimates in energy and balanced norms. arXiv:1705.04126

  25. Zhu, H., Tian, H., Zhang, Z.: Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems. Comm. Math. Sci. 9(4), 1013–1032 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, H., Zhang, Z.: Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer. Math. Comp. 83(286), 635–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the editor and the two anonymous referees for their time and invaluable suggestions, which considerably improved the quality of the paper.

Funding

This research was supported by National Natural Science Foundation of China (No. 11801396), Natural Science Foundation of Jiangsu Province (No. BK20170374), and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB110016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

All data generated or analyzed during this study are included in this published article.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Yan, L. & Mei, Y. Balanced-norm error estimate of the local discontinuous Galerkin method on layer-adapted meshes for reaction-diffusion problems. Numer Algor 91, 1597–1626 (2022). https://doi.org/10.1007/s11075-022-01316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01316-9

Keywords

Mathematics Subject Classification (2010)

Navigation