Skip to main content
Log in

Uncoupling evolutionary groundwater-surface water flows: stabilized mixed methods in both porous media and fluid regions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper considers the robust numerical methods for solving the time-dependent Stokes-Darcy multiphysics problem that can be implemented by use of existing surface water and groundwater codes. Porous media problem for the groundwater flow is preferable to employ the mixed discretization due to their superior conservation property and the convenience to compute flux on the large domain with relatively coarse meshes. However, the theory of mixed spatial discretizations for the time-dependent problems is far less developed than the non-mixed approaches, even for the one domain problems. Herein, we develop a stabilized mixed discretization technique for the porous media problem coupled with the fluid region across an interface with the physically appropriate coupling conditions. Time discretization is constructed to allow a non-iterative splitting of the coupled problem into two subproblems. The stability and convergence analysis of the coupled and decoupled algorithms are derived rigorously. If the time scale is bounded by a constant which only depends on the physical parameters, we prove the unconditional stability of both schemes. Four numerical experiments are conducted to show the efficiency and accuracy of the numerical methods, which illustrate the exclusive features of the Stokes-Darcy interface system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jäger, W., Mikelic, M.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Payne, L.E., Song, J.C., Straughan, B.: Continuous dependence and convergence results for Brinkman and Forcheimer models with variable viscosity. Proc. Royal Soc, London A 455, 2173–2190 (1999)

    Article  MATH  Google Scholar 

  5. Payne, L.E., Straughan, B.: Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modeling questions. J. Math. Pure Appl. 77, 1959–1977 (1998)

    MATH  Google Scholar 

  6. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Robin-robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83, 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, X. -M., Li, J., Liu, Y.P., Ming, J.: A domain decomposition method for the steady-state Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Discacciati, M., Quarteroni, A., Valli, A.: Robin-robin domain decomposition methods for the Stokes-Darcy coupling. SIAMJ. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun, Y., Sun, W., Zheng, H.: Domain decomposition method for the fully-mixed Stokes-Darcy coupled problem 374, 113578 (2021)

  12. Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zuo, L., Hou, Y.: A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition. Numer. Methods Partial Differ. Equ. 30, 1066–1082 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, G., Li, Q., Zhang, Y.: A two-grid method with backtracking for the mixed Navier-Stokes/Darcy model. Numer. Methods Partial Differ. Equ. 36(6), 1601–1610 (2020)

    Article  MathSciNet  Google Scholar 

  17. Nasu, N.J., Mahbub, M.A.A., Hussain, S., Zheng, H.: Two-grid finite element method for the dual-permeability-Stokes fluid flow model. Numer. Algo. 88, 1703–1731 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, Y., Shi, F., Zheng, H., Li, H., Wang, F.: Two-grid domain decomposition methods for the coupled Stokes-Darcy system. Comput. Methods Appl. Mech. Engrg. 385, 114041 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gatica, G.N., Heuer, N., Meddahi, S.: On the numerical analysis of nonlinear twofold saddle point problems. IMA J. Numer. Anal. 23(2), 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gatica, G.N., Oyarzúa, R., Sayas, F. -J.: Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem. Numer. Methods Partial Differ. Equ. 27(3), 721–748 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gatica, G.N., Oyarzúa, R., Sayas, F. -J.: Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comput. 80(276), 1911–1948 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Du, G., Zuo, L.: Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Math. Sci. 37(5), 1331–1347 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Layton, W., Tran, H., Trenchea, S.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(1), 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kubacki, M.: Uncoupling evolutionary groundwater-surface water flows using the Crank-Nicolson Leapfrog method. Numer. Methods Partial Differ. Equ. 29(03), 1192–1216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79(270), 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shan, L., Zhang, Y.: Error estimates of the partitioned time stepping method for the evolutionary Stokes-Darcy flows. Comput Math. Appl. 73(4), 713–726 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Connors, J., Howell, J.S., Layton, W.: Partitioned time stepping methods for a parabolic two-domain problem. SIAM J. Numer. Anal. 47(5), 3526–3549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Connors, J., Howell, J.S., Layton, W.: Decoupled time stepping methods for fluid-fluid interaction. SIAM J. Numer. Anal. 50(3), 1297–1319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shan, L., Zheng, H., Layton, W.J.: A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer. Methods Partial Differ. Equ. 29(2), 549–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qin, Y., Hou, Y., Pei, W., Li, J.: A variable time-stepping algorithm for the unsteady Stokes/Darcy model. J. Comput. Appl. Math. 394, 113521 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272, 327–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Y., Hou, Y.: A second-order partitioned method with different subdomain time steps for the evolutionary Stokes-Darcy system. Numer Methods Partial Differ. Equ. 41(5), 2178–2208 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Qin, Y., Hou, Y.: The time filter for the non-stationary coupled Stokes/Darcy model. Appl. Numer. Math. 146, 260–275 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lai, M.-C., Shiue, M.-C., Ong, K.C.: A simple projection method for the coupled Navier-Stokes and Darcy flows. Comput. Geosci. 23, 21–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Y., Li, S., Si, Z.: A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem. ESAIM: M2AN 52(4), 1477–1500 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J., Yao, M., Mahbub, M.A.A., Zheng, H.: The efficient rotational pressure-correction schemes for the coupling Stokes/Darcy problem. Comput. Math. Appl. 79(2), 337–353 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer Math. 126, 321–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rivière, B.: Analysis of a discontinuous finite element method for coupled Stokes and Darcy problems. J. Sci. Comput. 22-23(1-3), 479–500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gatica, G.N., Sequeira, F.A.: Analysis of the HDG method for the Stokes-Darcy coupling. Numer. Methods Partial Differ. Equ. 33(3), 885–917 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Egger, H., Waluga, C.: A Hybrid Discontinuous Galerkin Method for Darcy-Stokes Problems. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds.) Domain decomposition methods in science and engineering xx. lecture notes in computational science and engineering, vol. 91. Springer, Berlin (2013)

  43. Igreja, I., Loula, A.F.D.: A stabilized hybrid mixed DGFEM naturally coupling Stokes-Darcy flows. Comput. Methods Appl. Mech. Engrg. 339, 739–768 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Camaño, J., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R., Venegas, P.: New fully-mixed finite element methods for the Stokes-Darcy coupling. Comput. Methods Appl. Mech. Engrg. 295, 362–395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu, J., Mahbub, M.A.A., Shi, F., Zheng, H.: Stabilized finite element method for the stationary mixed Stokes-Darcy problem. Adv. Diff. Equa., vol. 46, https://doi.org/10.1186/s13662-018-1809-2 (2018)

  46. Mahbub, M.A.A., He, X. -M., Nasu, N.J., Qiu, C., Zheng, H.: Coupled and decoupled stabilized mixed finite element methods for non-stationary dual-porosity-Stokes fluid flow model. Int. J. Numer. Methods Eng. 120 (6), 803–830 (2019)

    Article  Google Scholar 

  47. Mahbub, M.A.A., Shi, F., Nasu, N.J., Wang, Y., Zheng, H.: Mixed stabilized finite element method for the stationary Stokes-dual-permeability fluid flow model. Comput. Methods Appl. Mech. Engrg. 358, 112616 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu, J., Sun, Y., Shi, F., Zheng, H.: Nitsche’s type stabilized finite element method for the fully mixed Stokes-Darcy problem with Beavers-Joseph conditions. ppl. Math. Lett. 110, 106588 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yu, J., Zhang, Y.: Nitsche’s type stabilization for the fully mixed Navier-Stokes/Darcy problem. J. Appl. Anal. Comput. 11(3), 1481–1493 (2021)

    MathSciNet  Google Scholar 

  50. Burman, E., Fernández, M. A.: Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method. Comptes Rendus Mathematique 345(8), 467–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Burman, E., Fernández, M. A.: Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Engrg. 198, 766–784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Fernández, M. A., Gerbeau, J.F., Smaldone, S.: Explicit coupling schemes for a fluid-fluid interaction problem arising in hemodynamics. SIAM J. Sci. Comput. 36(6), A2557–A2583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Blank, L., Caiazzo, A., Chouly, F., Lozinski, A., Mura, J.: Analysis of a stabilized penalty-free Nitsche method for the Brinkman, Stokes, and Darcy problems. ESAIM:, M2AN 52, 2149–2185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Burman, E.: A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50(4), 1959–1981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. He, X.-M., Jiang, N., Qiu, C.: An artificial compressibility ensemble algorithm for a stochastic Stokes-Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Methods. Eng. 121, 712–739 (2020)

    Article  MathSciNet  Google Scholar 

  56. Li, Y., Hou, Y., Rong, Y.A.: Second-order artificial compression method for the evolutionary Stokes-Darcy system. Numer. Algo. 84, 1019–1048 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lee, H., Rife, K.: Least squares approach for the time-dependent nonlinear Stokes-Darcy flow. Comput. Math. Appl. 67(10), 1806–1815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Münzenmaier, S.: First-order system least squares for generalized-Newtonian coupled Stokes-Darc flow. Numer. Methods Partial Differ. Equ. 31(4), 1150–1173 (2015)

    Article  MATH  Google Scholar 

  59. Mohapatra, S., Dutt, P., Kumar, B.V.R., Gerritsma, M.I.: Non-conforming least-squares spectral element method for Stokes equations on non-smooth domains. J. Comput. Appl. Math. 372, 112696 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Danisch, G., Starke, G.: First-order system least-squares for Darcy-Stokes flow. SIAM J. Numer. Anal. 45(2), 731–745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hessari, P.: Psedospectral least square method for Stokes-Darcy equations. SIAM J. Numer. Anal. 53(3), 1195–1213 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Li, R., Gao, Y., Li, J., Chen, Z.-X.: Discontinuous finite volume element method for a coupled nonstationary Stokes-Darcy problem. J. Sci. Comput. 74, 693–727 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Li, R., Li, J., He, X.-M., Chen, Z.-X.: Stabilized finite volume element method for a coupled Stokes-Darcy problem. Appl. Numer. Math. 133, 2–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Li, Y., Hou, Y., Li, R.: A stabilized finite volume method for the evolutionary Stokes-Darcy system. Comput. Math. Appl. 75(2), 596–613 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Discacciati, M.: Iterative methods for Stokes/Darcy coupling. In: Domain decomposition methods in science and engineering. Lect. Notes Comput. Sci. Eng. vol. 40, pp. 563–570. Springer, Berlin (2005)

  66. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6, 93–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Huang, P., Chen, J., Cai, M.: A mixed and nonconforming FEM with nonmatching meshes for a coupled Stokes-Darcy model. J. Sci. Comput. 53, 377–394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236, 3198–3217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ervin, V.J., Jenkins, E.W., Lee, H.: Approximation of the Stokes-Darcy system by optimization. J. Sci. Comput. 59, 775–794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. Moraiti, M.: On the quasistatic approximation in the Stokes–Darcy model of groundwater-surface water flows. J. Math. Anal. Appl. 394, 796–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes-Darcy model with Beavers-Joseph interface boundary conditio. Comm. Math. Sci. 8, 1–25 (2010)

    Article  MATH  Google Scholar 

  72. Kim, M.-Y., Park, E.-J.: Fully discrete mixed finite element approximations for non-Darcy flows in porous media. Comput. Math. Appl. 38, 113–129 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  73. Ansari, S.U., Hussain, M., Rashid, A., Mazhar, S., Ahmad, S.M.: Numerical solution and analysis of three-dimensional transient Darcy flow. Trans. Porous Med. 123, 289–305 (2018)

    Article  MathSciNet  Google Scholar 

  74. Bernardi, C., Maarouf, S., Yakoubi, D.: Spectral discretization of an unsteady flow through a porous solid. Calcolo 53, 659–690 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  75. Hussain, M., Ansari, S.U., Manzoor, T., Ahmad, A., Khan, K.I.: Performance analysis of parallel stabilized mixed Galerkin method for three-dimensional transient Darcy flow using mesh reordering techniques. J. Petrol. Sci. Eng. 176, 621–631 (2019)

    Article  Google Scholar 

  76. Ansari, S.U., Hussain, M., Ahmad, S.M., Rashid, A., Mazhar, S.: Stabilized mixed finite element method for transient Darcy flow. Trans. Cana. Soci. Mech. Eng. 41(1), 85–97 (2017)

    Article  Google Scholar 

  77. Ibragimov, A., Kieu, T.T.: An expanded mixed finite element method for generalized Forchheimer flows in porous media. Comput. Math. Appl. 72, 1467–1483 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Qian, Y., Wang, F., Zhang, Y., Han, W.: A mixed discontinuous Galerkin method for an unsteady incompressible Darcy equation. Appl. Anal. 101(4), 1176–1198 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  79. Wilfrid, H.K., Jamal, A., Mohamed, A.: A posteriori error analysis for a new fully mixed isotropic discretization of the stationary Stokes-Darcy coupled problem. Abst. Appl. Anal., (8628739), pp. 1-12 (2020)

  80. Almonacid, J.A., Díaz, H. S., Gatica, G.N., Márquez, A.: A fully mixed finite element method for the coupling of the Stokes and Darcy-Forchheimer problems. IMA J. Numer. Anal. 40(2), 1454–1502 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  81. Caucao, S., Gatica, G.N., Oyarzúa, R., Šebestová, I.: A fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity. J. Numer. Math. 25(2), 55–88 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  82. Caucao, S., Gatica, G.N., Sandoval, F.: A fully-mixed finite element method for the coupling of the Navier-Stokes and Darcy-Forchheimer equations. Numer. Methods Partial Differ. Equ. 37(3), 2550–2587 (2021)

    Article  MathSciNet  Google Scholar 

  83. Peng, H., Zhai, Q., Zhang, R., Zhang, S.: A weak Galerkin-mixed finite element method for the Stokes-Darcy problem. Sci. China Math. 64, 2357–2380 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  84. Wang, G., Wang, F., Chen, L., He, Y.: A divergence free weak virtual element method for the Stokes-Darcy problem on general meshes. Comput. Methods Appl. Mech. Engrg. 344, 998–1020 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  85. Gatica, G.N., Meddahi, S., Oyarzú, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  86. D’Angelo, C., Zunino, P.: Numerical approximation with Nitsche’s coupling of transient Stokes’/Darcy’s flow problems applied to hemodynamics. Appl. Numer. Math. 62, 378–395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  87. Zhou, G., Kashiwabara, T., Oikawa, I., Chung, E., Shiue, M.-C.: An analysis on the penalty and Nitsche’s methods for the Stokes-Darcy system with a curved interface. Appl. Numer. Math. 165, 83–118 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  88. Zhang, J., Rui, H.: A stabilized Crouzeix-Raviart element method for coupling stokes and Darcy-Forchheimer flows. Numer. Methods Partial Differ. Equ. 33(4), 1070–1094 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  89. Fu, G., Lehrenfeld, C.: A strongly conservative hybrid DG/mixed FEM for the coupling of Stokes and Darcy flow. J. Sci. Comput. 77, 1605–1620 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  90. Beavers, G., Joseph, D.: Boundary conditions at a naturally impermeable wall. J. Fluid Mech. 30(1), 197–207 (1967)

    Article  Google Scholar 

  91. Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 93–101 (1971)

    Article  MATH  Google Scholar 

  92. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  93. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, 2nd edn.,Pure Appl. Mat (Amst.), vol. 140. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  94. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  95. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  96. Brezzi, F., Douglas, J.J., Marini, L.D.: Two families of mixed elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  97. Brezzi, F., Douglas, Jr.J., Fortin, M., Marini, L.D.: Efficient rectangular mixed finite elements in two and three space variables. Math. Modeling Numer. Anal. 21, 581–604 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  98. Yu, J., Zheng, H., Shi, F., Zao, R.: Two-grid finite element method for the stabilization of mixed Stokes-Darcy model, Discrete. Contin. Dyn. Syst.-Ser. B 24(1), 387–402 (2019)

    MathSciNet  MATH  Google Scholar 

  99. Li, R., Li, J., Chen, Z.-X., Gao, Y.L.: A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem. J. Comput. Appl. Math. 292, 92–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

H. Zheng is partially supported by NSF of China (Grant No. 11971174), NSF of Shanghai (Grant No. 19ZR1414300) and Science and Technology Commission of Shanghai Municipality (Grant Nos. 22JC1400900, 21JC1402500, 18dz2271000). L. Shan is supported by Shantou University Scientific Research Fund for Talents (NTF21006) and Scientific Research Fund of Liaoning Provincial Education Department (LJ2020JCL009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

This paper is in final form and no version of it will be submitted for publication elsewhere.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahbub, M.A.A., Shan, L. & Zheng, H. Uncoupling evolutionary groundwater-surface water flows: stabilized mixed methods in both porous media and fluid regions. Numer Algor 92, 1837–1874 (2023). https://doi.org/10.1007/s11075-022-01370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01370-3

Keywords

Mathematics Subject Classification (2010)

Navigation