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Abstract

A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the form A = T (a) + E where
T (a) is the Toeplitz matrix with entries (T (a))i,j = aj−i, for aj−i ∈ C, i, j ≥ 1, while E is a
matrix representing a compact operator in `2. The matrix A is finitely representable if ak = 0
for k < −m and for k > n, given m,n > 0, and if E has a finite number of nonzero entries.
The problem of numerically computing eigenpairs of a finitely representable QT matrix is
investigated, i.e., pairs (λ,v) such that Av = λv, with λ ∈ C, v = (vj)j∈Z+ , v 6= 0, and∑∞

j=1 |vj |
2 < ∞. It is shown that the problem is reduced to a finite nonlinear eigenvalue

problem of the kind WU(λ)β = 0, where W is a constant matrix and U depends on λ and
can be given in terms of either a Vandermonde matrix or a companion matrix. Algorithms
relying on Newton’s method applied to the equation detWU(λ) = 0 are analyzed. Numerical
experiments show the effectiveness of this approach. The algorithms have been included in
the CQT-Toolbox [Numer. Algorithms 81 (2019), no. 2, 741–769].

1 Introduction

A quasi-Toeplitz (QT) matrix A is a semi-infinite matrix that can be written as A = T (a) + E
where T (a) = (ti,j)i,j∈Z+ is Toeplitz, i.e., ti,j = aj−i for a given sequence {ak}k∈Z, and E is
compact, that is, E is the limit of a sequence of semi-infinite matrices Ei of finite rank. Here,
convergence means that limi→∞ ‖E − Ei‖s = 0, where ‖ · ‖s is the operator norm induced by the

vector norm ‖v‖s = (
∑∞
i=1 |vi|s)

1
s , for v = (vi)i∈Z+ , and the value of s ≥ 1 depends on the specific

context where the mathematical model originates.
Matrices of this kind are encountered in diverse applications related to semi-infinite domains.

For instance, the analysis of queuing models, where buffers have infinite capacity, leads to QT
matrices where the compact correction reproduces the boundary conditions of the model while
the Toeplitz part describes the inner action of the stochastic process. A typical paradigm in this
framework is given by random walks in the quarter plane. Some references in this regard can be
found in the books [5], [26], [28], and in the more recent papers [24], [30], [31]. Another classical
and meaningful example concerns the class of matrices that discretize boundary value problems
by means of finite differences. In this case, the Toeplitz part of the QT matrix describes the inner
action of the differential operator, while the compact correction expresses the boundary conditions
imposed on the differential system. In this framework, it is worth citing the two books [19], [20],
that are a relevant reference on a very close subject concerning generalized locally Toeplitz matrices
(GLT) and their applications, where a rich literature is cited.
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Figure 1: Isolated eigenvalues (blue dots) and dense set of eigenvalues (green area) of the QT matrix associated
with a(z) = z−3 − 3z−2 + 2z−1 − 2z + z2 + 2z3 and with the correction E = (ei,j), e1,j = −2j, e2,j = −2(10− j),
e3,j = −2, for j = 1, . . . , 9, ei,j = 0 elsewhere.

Computational aspects in the solution of matrix equations with QT matrices in bidimensional
random walk have been recently investigated in [6], [7], [11], while generalizations including prob-
abilistic models with restarts are analyzed in [8]. Other applications of QT matrices have been
considered in [3], [4], [10], concerning matrix functions and means, and in [25], [32] concerning
Sylvester equations. Important sources of theoretical properties of QT matrices are given in the
books [12], [13], and [16]. In [9] a suitable Matlab toolbox, the CQT-toolbox, has been introduced
for performing arithmetic operations with QT matrices including the four arithmetic operations
and the more relevant matrix factorizations.

1.1 Main results

In this paper, we deal with the computation of the eigenvalues of QT matrices, a topic that was
not covered in the CQT-Toolbox of [9]. Namely, we are interested in the design and analysis of
algorithms for computing the eigenvalues λ and the corresponding eigenvectors v of a given QT
matrix A, that is, v is such that Av = λv and v ∈ `s where 1 ≤ s < ∞. Here `s is the set
of vectors x = (xi)i≥1 such that ‖x‖s < ∞. For the sake of simplicity, in the following we will
set s = 2 and use ‖ · ‖ to denote the 2-norm. The attention is restricted to the case where A is
finitely representable, i.e., A = T (a) + E, where T (a) is a band Toeplitz matrix determined by
a finite number of parameters a−m, . . . , an for m,n > 0, E is a matrix having infinitely many
rows and columns but a finite number of nonzero entries. A matrix of this kind represents a
bounded linear operator from `2 in `2. We associate with the matrix A the Laurent polynomial
a(z) =

∑n
i=−m aiz

i.
Recall that the spectrum of a bounded operator A is the set of λ ∈ C such that A − λI is

not invertible, and the essential spectrum is the set of λ ∈ C such that A − λI is not Fredholm.
We wish to point out that, not all the points of the spectrum or of the essential spectrum are
necessarily eigenvalues of A. Moreover, while for a Toeplitz matrix A the set of eigenvalues does
not contain isolated points and can be explicitly determined by the image a(T) of the unit circle
T through the Laurent polynomial a(z) and by the winding number of a(z) − λ (see [12]), for a
general QT matrix having a nontrivial compact correction the set of eigenvalues may contain a
continuous part and a discrete part, the latter is formed by a set of isolated eigenvalues. As an
example, see Figure 1.

We prove that any isolated eigenvalue λ of a QT matrix A is the solution of a finite nonlinear
eigenvalue problem of the form

WU(λ)γ = 0, γ ∈ Cp \ {0},

where W is a q × k constant matrix and U(λ) is a k × p matrix-valued function whose size p and
entries depend on λ in an implicit way. Here k, q > 0 are integers depending on the given matrix
A, while p is the number of zeros ξj , j = 1, . . . , p of modulus less than 1 of the Laurent polynomial
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a(z)−λ. It is well-known that the value of p is given by p = m+w where w is the winding number
of a(z) − λ. Thus, it takes constant values on each connected component Ω of the set C \ a(T)
(see Figure 2 for an example). Note that while p depends on λ, it is locally constant on C \ a(T),
and thus we will not write explicitly the dependence on λ.

We consider two different forms of U = (ui,j): the Vandermonde version and the Frobenius
version. In the former version, U can be chosen as the Vandermonde matrix with entries ui,j =
ξi−1j , i = 1, . . . , k, j = 1, . . . , p, provided that ξi 6= ξj for i 6= j. In the latter, U is the truncation

to size k × p of the matrix [I;G;G2; . . .] (we adopted the Matlab notation where “;” separates
block rows of the matrix), where G = F p is the p-th power of the p × p companion (Frobenius)

matrix F associated with the monic polynomial s(z) =
∏p
j=1(z − ξj) = zp +

∑p−1
j=0 sjz

j .
This formulation of the problem allows us to detect those components Ω that constitute con-

tinuous sets of eigenvalues (for q < p), and to design numerical algorithms for computing the
isolated eigenvalues of A (for q ≥ p) by solving the corresponding nonlinear eigenvalue problem.
Nonlinear eigenvalue problems have recently received much attention in the literature. Here we
refer to the survey paper [22], to the subsequent paper [21], to the more recent works [18] and
[23], and to the references there in.

Our algorithms follow the classical approach of applying Newton’s iteration, as done in [18]
and [22], to the scalar equation f(λ) = 0, where f(λ) = det(WU(λ)) by relying on the Jacobi
identity f(λ)/f ′(λ) = 1/trace((WU(λ))−1WU ′(λ)). Here, the main problem is to exploit the
specific features of the function f(λ) through the design of efficient algorithms to compute U(λ)
and U ′(λ) in both the Vandermonde and in the Frobenius formulation. This analysis leads to
the algorithmic study of some interesting computational problems such as computing the winding
number of a(z) − λ, or computing the coefficients of the polynomial factor s(z) having zeros of
modulus less than 1 together with their derivatives with respect to λ, or computing G = F p and
the derivative of Gj for j = 1, 2, . . ., with respect to λ. We will accomplish the above tasks by
relying on the combination of different computational tools such as Graeffe’s iteration [29], the
Wiener-Hopf factorization of a(z) − λ computed by means of the cyclic reduction algorithm [5],
and the Barnett factorization of F p [1].

The algorithms based on the Vandermonde and on the Frobenius versions require either the
computation of the zeros of the Laurent polynomial a(z) − λ and the selection of those ze-
ros ξ1, . . . , ξp having modulus less than 1, or the computation of the coefficients of the factor∏p
j=1(z − ξj). In principle, the latter approach is less prone to numerical instabilities and avoids

the theoretical difficulties encountered when there are multiple or clustered zeros. This fact is
confirmed by numerical tests and analysis.

Our procedure uses Newton’s iteration as an effective tool for refining a given approximation
to an eigenvalue. In order to numerically compute all the eigenvalues we have combined Newton’s
iteration with a heuristic strategy based on choosing as starting approximations the eigenvalues
of the N ×N matrix AN given by the leading principal submatrix of A of sufficiently large size.
In fact, we may show that for any ε > 0, the ε-pseudospectrum of AN gets closer to any isolated
eigenvalue of A as N gets large.

One could argue that a large value of N would provide an approximation of the isolated
eigenvalues of A, directly. Nevertheless, our approach requires only a rough approximation of the
isolated eigenvalues and thus a smaller value of N , followed by Newton’s iteration, to compute the
eigenvalues with the same accuracy. Numerical experiments show the effectiveness of this approach:
examples are shown where in order to obtain full-precision approximations of the eigenvalues of
A from the eigenvalues of AN would require large values of N (of the order of millions), while
starting Newton’s iteration with the eigenvalues of AN for moderate values of N (of the order of
few hundreds) provides very accurate approximations in few steps.

1.2 Paper organization

The paper is organized as follows. In Section 2 we recall some preliminary properties that are
useful in the subsequent analysis. In particular, Section 2.1 deals with the eigenvalues of T (a)
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while Section 2.2 deals with the eigenvalues of T (a) + E. Section 3 concerns the reduction of
the original eigenvalue problem for QT operators to the form of a nonlinear eigenvalue problem
for finite matrices in the Frobenius and in the Vandermonde versions. Section 4 concerns further
algorithmic issues. In particular, an efficient method for computing the winding number of a
Laurent polynomial is designed based on the Graeffe iteration; the problem of computing a factor
of the polynomial a(z) − λ together with its derivative with respect to λ is analyzed relying
on the Barnett factorization and on the solution of a linear system associated with a resultant
matrix; morever, in the same section we prove the regularity of the function det(WU(λ)) to which
Newton’s iteration is applied. In Section 5 we investigate on the relationships between the isolated
eigenvalues of A and the eigenvalues of AN when N gets large. The results of some numerical
experiments are reported in Section 6. Finally, Section 7 draws the conclusions and describes some
open problems.

The algorithms, implemented in Matlab, have been added to the CQT-Toolbox of [9]. The main
functions are eig_single and eig_all. The former computes a single eigenvalue of a QT matrix
starting from a given approximation, and, optionally, an arbitrary number of components of the
corresponding eigenvector, the latter provides the computation of all the eigenvalues. Other related
functions integrate the package. More information, together with the description of other auxil-
iary functions and optional parameters can be found at https://numpi.github.io/cqt-toolbox
while the software can be downloaded at https://github.com/numpi/cqt-toolbox.

2 Preliminaries

Let a(z) =
∑n
i=−m aiz

i be a Laurent polynomial where ai ∈ C for i = −m, . . . , n, and a−m, an 6= 0.
Define T (a) = (ti,j)i,j=1,2,..., ti,j = aj−i, the Toeplitz matrix associated with a(z). Given a semi-
infinite matrix E = (ei,j)i,j=1,2,..., such that ei,j = 0 for i > k1, or j > k2, the matrix A = T (a)+E
represents a bounded linear operator from the set `2 = {(vi)i∈Z+ : vi ∈ C,

∑∞
i=1 |vi|2 < ∞} to

itself. Denote by B(`2) the set of bounded linear operators from `2 to itself and by T the unit
circle in the complex plane.

Recall that A is invertible if there exists B ∈ B(`2) such that AB = BA = I, where I is the
identity on B(`2). Moreover, A is Fredholm if there exists B ∈ B(`2) such that AB−I and BA−I
are compact, i.e., A is invertible modulo compact operators. Recall also that for A ∈ B(`2) the
spectrum of A is defined as

sp(A) = {λ ∈ C : A− λI is not invertible}

while the essential spectrum is defined as

spess(A) = {λ ∈ C : A− λI is not Fredholm},

so that spess(A) ⊂ sp(A).
It is well known that for a Laurent polynomial a(z), T (a) is invertible in `s if and only if

a(z) 6= 0 for z ∈ T and wind(a) = 0 (see [13, Corollary 1.11]), where wind(a) is the winding
number of the curve a(T).

In the case where a(z) is a Laurent polynomial, we may write

wind(a) =
1

2π

∫ 2π

0

eit
a′(eit)

a(eit)
dt, (1)

where a′(z) =
∑n
j=−m jajz

j−1 is the first derivative of a(z). Notice that wind(a− λ) is constant
for λ in each connected component Ω of the set C\a(T). Consequently, we have (see [13, Corollary
1.12])

sp(T (a)) = a(T) ∪ {λ ∈ C \ a(T) : wind(a− λ) 6= 0}, (2)

moreover,
spess(T (a)) = a(T). (3)

We say that (λ,v) is an eigenpair (eigenvalue, eigenvector) if Av = λv and v ∈ `2.
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Figure 2: Connected components of C\a(T) for the Laurent polynomial a(z) = 3z−3−2z−2 +z−1−z−4z2−3z3.
In green and orange the components with winding numbers 1 and 2, respectively. In white the components with
winding number 0.

2.1 Eigenvalues of T (a)

The following results from [13] characterize the eigenpairs of the Toeplitz operator T (a). In this
statement and throughout the paper, we used a slightly different notation with respect to [13].
Namely, we denote the entries of T (a) as (T (a))i,j = aj−i, while in the classical literature they
are denoted as (T (a))i,j = ai−j . The reason is that this notation is more suited to fit the context
of Markov chains and queueing models where these matrices play an important role.

Lemma 2.1. [13, Proposition 1.20] Let 1 ≤ s ≤ ∞. For a Laurent polynomial a(z), a point
λ /∈ a(T) is an eigenvalue of T (a) as an operator on `s if and only if r := wind(a − λ) > 0.
Moreover, the kernel of T (a)−λI has dimension r and if v ∈ ker(T (a)−λI) then v is exponentially
decaying.

If λ ∈ a(T) a similar result can be given. Let τ1, . . . , τq be the distinct zeros of a(z) − λ of
modulus 1 and multiplicity α1, . . . , αq, respectively. Define

c(z) = (a(z)− λ)/

q∏
j=1

(
1− z

τj

)αj

, (4)

so that c(z) is a Laurent polynomial having no zero on T. Then we have the following.

Lemma 2.2. [13, Proposition 1.22] Let 1 ≤ s ≤ ∞. For a Laurent polynomial a(z), a point
λ ∈ a(T) is an eigenvalue of T (a) as an operator on `s if and only if r := wind(c) > 0. Moreover,
the kernel of T (a)−λI has dimension r and if v ∈ ker(T (a)−λI) then v is exponentially decaying.

Observe that according to the above lemmas, the eigenvalues of T (a) belong to the set sp(T (a)),
that, in turn, can be explicitly described by means of (2).

Let Ω be a connected component of the set C \ a(T). The function wind(a− λ) is constant on
Ω, and this means that if the winding number is r > 0 then all the values λ ∈ Ω are eigenvalues
of T (a) of (geometric) multiplicity r, while if r ≤ 0 then no λ ∈ Ω is eigenvalue of T (a). We recall
Proposition 1.25 from [13].

Lemma 2.3. If λ ∈ a(T) is in the boundary of Ω, and ξ = wind(a−µ) for µ ∈ Ω, then ξ ≥ wind(c),
where c(z) is defined in (4).

From the above results it follows that (compare with Corollary 1.26 in [13]) if λ lies on the
boundary of Ω such that wind(a−µ) ≤ 0 for µ ∈ Ω then λ cannot be an eigenvalue of T (a). That
is, the eigenvalues of T (a) belong necessarily to those components Ω for which wind(a − λ) > 0
and to their boundaries. Therefore T (a) cannot have isolated eigenvalues.
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2.2 Eigenvalues of T (a) + E

From the definition of spectrum and of essential spectrum it follows that

spess(T (a)) = spess(T (a) + E) ⊂ sp(T (a) + E)

for any compact operator E. In fact, to prove the equality, if A = T (a) +E is a QT matrix, then
A − λI is not Fredholm iff B(A − λI) − I and (A − λI)B − I are not compact for any bounded
operator B. That is, iff B(T (a)−λI)− I+BE and (T (a)−λI)B− I+EB are not compact. This
is equivalent to say that B(T (a)− λI)− I and (T (a)− λI)B − I are not compact, i.e., T (a)− λI
is not Fredholm.

Another interesting property is given by the following.

Proposition 2.4. If A = T (a) + E is a QT matrix, then sp(T (a)) ⊂ sp(A).

The above result is an immediate consequence of the following

Lemma 2.5. If the QT matrix A = T (a) +E is invertible on `s (1 ≤ s ≤ ∞) , then T (a) is also
invertible on `s.

Proof. Since A = T (a)+E is invertible, then 0 /∈ sp(A). This implies 0 /∈ spess(A) = spess(T (a)) =
a(T) so that a(z) 6= 0 for all z ∈ T. To show T (a) is invertible, it is sufficient to show that the
winding number of a(z) is 0, that is, wind(a) = 0. To this end, suppose wind(a) = m and m 6= 0,
then A is a Fredholm operator and it follows from [33, Theorem 2.8] and [13, Theorem 1.9] that
the index of A is Ind A = Ind T (a) = m 6= 0. On the other hand, since A is invertible, it follows
that dim Ker A = dim Coker A = 0, where dim Ker A is the dimension of the kernel of A and
dim Coker A is the dimension of the cokernel of A. It follows from [13, page 9] that the index of
A is Ind A = dim Ker A− dim Coker A = 0, from which we get a contradiction. Hence, we must
have wind(a) = 0.

Observe that, in general, λ ∈ sp(T (a) + E) does not imply λ ∈ sp(T (a)), as the following
example shows. Denote by trid(α, β, γ) the tridiagonal Toeplitz matrix associated with the Laurent
polynomial αz−1 + β + γz. Let T (a) = trid(−2, 5,−2), so that T (a) = UUT , U = trid(0, 2,−1).
Set A = T (a)− 4e1e

T
1 , where e1 = [1, 0, . . .]T , so that A = Udiag(0, 1, 1, . . .)UT . Then 0 ∈ sp(A)

since A is not invertible (but it is Fredholm), while 0 6∈ sp(T (a)) since T (a) is invertible being
U and UT invertible operators. That is, adding a compact correction E to T (a) there may be
eigenvalues of A = T (a) + E not belonging to sp(T (a)).

The following two results are useful for our analysis.

Proposition 2.6. Let λ /∈ a(T) and w = wind(a− λ). Then the Laurent polynomial a(z)− λ has
p = m+ w zeros of modulus less than 1.

Proof. Since a(eit)′ = ieita′(eit), from (1) we get 1
2πi

∫ 2π

0
a(eit)′

a(eit)−λdt = w, which implies that the

number p of zeros and the number m̂ of poles of a(z) − λ in the open unit disk are such that
p− m̂ = w. Since m̂ = m, it follows p = m+ w.

A similar result holds for λ ∈ a(T).

Proposition 2.7. Let λ ∈ a(T) and suppose that a(z) − λ has q zeros τ1, . . . , τq of modulus
1 with multiplicities α1, . . . , αq, let c(z) be the Laurent polynomial in (4). Then, a(z) − λ has
p = m+ w − (α1 + . . .+ αq) zeros of modulus less than 1, where w = wind(c).

3 Computational analysis

In this section, we aim at the design and analysis of numerical algorithms for computing the
eigenvalues of thefinitely representable QT matrix A = T (a) + E belonging to a given connected
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component Ω of C\a(T), together with the corresponding eigenvectors. For the sake of simplicity,
the case λ ∈ a(T) is not treated in this paper.

If E = 0 then the spectrum and the essential spectrum of T (a) are explicitly known (see (2),
and (3)). Moreover, an eigenvalue λ, together with its multiplicity, can be explicitly characterized
in terms of the winding number wind(a− λ), if λ /∈ a(T) (see Lemma 2.1). Therefore the case of
interest is E 6= 0.

Recall the following notations: a(z) =
∑n
i=−m aiz

i, while k1 is the row size of the non zero part
of the correction E. We set q = max(m, k1), and denote p the number of zeros of modulus less
than 1 of the Laurent polynomial a(z)−λ. In view of Proposition 2.6 we have p = m+wind(a−λ),
moreover p is constant for λ ∈ Ω. Finally, for a given matrix A, we denote by Ar×s the leading
principal submatrix of A of size r× s, i.e., the submatrix formed by the entries in the first r rows
and in the first s columns. If r = s we write Ar in place of Ar×s.

3.1 Reduction to a nonlinear eigenvalue problem

Consider an eigenpair (λ,v) of A = T (a) + E so that u := (A − λI)v = 0. Observe that the
condition uk = 0 for k ≥ q + 1 can be written as the linear difference equation

n∑
j=−m

ajvk+j − λvk = 0, k ≥ q + 1, (5)

whose characteristic polynomial is b(z) = (a(z) − λ)zm. The dimension of the space of solutions
of (5) that belong to `2 depends on λ and coincides with the number p of roots of a(z)− λ with
modulus less than 1. Our two approaches differ in the way the basis of the latter space is chosen.

If v(j), j = 1, . . . , p is a basis of the space of solutions, then we may write the eigenvector v
as a linear combination of v(j), i.e., v =

∑p
j=1 αjv

(j). Therefore, we may say that (λ,v) is an

eigenpair for A if and only if v =
∑p
j=1 αjv

(j) and the conditions u1 = . . . = uq = 0 are satisfied.
The latter conditions form a nonlinear system in q equations and p unknowns which can be

written as
HV (λ)α = λVq×p(λ)α, H = Aq×∞

V (λ) = [v(1),v(2), . . . ,v(p)], α ∈ Cp, wind(a− λ) = p−m.
(6)

In fact, λ and the p components of α, normalized such that ‖α‖ = 1, form a set of p unknowns.
It is clear that the system (6) is in the form of a nonlinear eigenvalue problem (NEP).

This system has a non-trivial solution α for a given λ if and only if λ is eigenvalue of A
corresponding to the eigenvector v = V (λ)α. Notice that, for p > q, this system has always a
solution since the matrix HV (λ) − λVq×p(λ) has more columns than rows so that ker(HV (λ) −
λVq×p(λ)) 6= {0} and the multiplicity of λ is given by p− rank(HV (λ)− λVq×p(λ)).

If p = q, equation (6) provides a balanced nonlinear eigenvalue problem that we are going to
analyze.

If p < q and if the pair (λ,α) solves (6), then it solves also the balanced nonlinear eigenvalue
problem

Hp×∞V (λ)α = λVp(λ)α, (7)

formed by the first p equations of (6). Thus, we may look for solutions (λ,α) of (7), and, if any,
we may check if these are also solutions of (6).

We may express the NEP (6) in a more convenient form by using the Toeplitz structure of
T (a). This is the subject of the next section.

3.2 A different formulation

Let Z = (zi,j) be the shift matrix defined by zi,i+1 = 1, zi,j = 0 elsewhere. Then for any solution
v of the linear difference equation (5), the shifted vector Zkv is still a solution for any k ≥ 0.
Moreover, if v ∈ `2 then also Zkv ∈ `2, and if v(1) and v(2) are linearly independent, then also
Zkv(1) and Zkv(2) are linearly independent. To show the latter implication, assume that there
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exists a linear combination v = α1v
(1) +α2v

(2) 6= 0 such that Zkv = 0. Then, vi = 0 for i ≥ k+1.
But since a−m 6= 0, we find that vk = . . . = v1 = 0, i.e., v = 0 that is a contradiction.

Therefore, if the columns of V (λ) are a basis of the space of the solutions in `2, then also the
columns of U(λ) = ZmV (λ) form a basis of the same space. This implies that the columns of
U(λ) are linear combinations of the columns of V (λ). That is, there exists a non singular p × p
matrix S(λ) such that U(λ) = V (λ)S(λ) whence we have ZmV (λ) = V (λ)S(λ).

If we multiply the rows from m+ 1 to 2m of the Toeplitz matrix T (a)− λI by V (λ) we geta−m . . . a−1 a0 − λ a1 . . . an
. . .

. . .
. . .

. . .
. . .

. . .
. . .

a−m · · · a−1 a0 − λ a1 · · · an

V (λ) = 0.

Observing that V (λ) = [Vm×p(λ);ZmV (λ)], we may rewrite the identity as

[
B (T (a)− λI)m,∞

] [Vm×p(λ)
ZmV (λ)

]
= 0, B =

a−m . . . a−1
. . .

...
a−m

 .
Since ZmV (λ) = V (λ)S(λ), we get

(T (a)− λI)V (λ) =

[
−B

0∞×m

]
Vm×p(λ)S(λ)−1.

On the other hand, relying once again on the property ZmV (λ) = V (λ)S(λ), we find that

(A− λI)V (λ) = −
[

B
0∞×m

]
Vm×p(λ)S(λ)−1 + EV (λ)

=

(
−
[

B 0m×∞
0∞×m 0∞×∞

]
V (λ) + EZmV (λ)

)
S(λ)−1

so that

(A− λI)V (λ) = MV (λ)S(λ)−1, M =

[
−B 0m×∞

0∞×m 0∞×∞

]
+ EZm. (8)

The possibly nonzero rows of the matrix M are the first q = max(m, k1) rows, which form the
q ×∞ matrix N = Mq×∞, i.e., M = [N ; 0]. It is interesting to observe that the matrix EZm is
obtained by shifting the columns of E to the right of m places. This implies that the matrix N
takes one of the following forms

N =

[
−B E1

0(q−m)×m E2

]
, N =

[
−B E1

]
,

depending on whether q > m or q = m, respectively, where E = [E1;E2], and E1 has size m×∞
while E2 has size (q −m) ×∞. In other words, the submatrices E and B do not overlap. This
fact allows us to rewrite (6) as a set of q equations in p unknowns in the more convenient form

NV (λ)β = 0, N =

[
−B E1

0(q−m)×m E2

]
, β = S(λ)−1α. (9)

Another observation is that multiplying equation (9) on the left by any invertible matrix
provides an equivalent formulation of the NEP. In particular, if q > m, consider the rank revealing
QR factorization E2 = QR of the matrix E2, assume that rank(E2) = r2 and denote R̃ the

r2 × ∞ matrix formed by the first r2 rows of R so that R = [R̃; 0] and we may write E2 =

Q[R̃; 0(q−m−r2)×∞].
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Multiplying (9) to the left by diag(Im, Q
∗), where Q∗ is the transposed Hermitian of Q, yields

WV (λ)β = 0, W =

[
−B E1

0r2×m R̃

]
, v = V (λ)S(λ)β = ZmV (λ)β. (10)

Observe that W is a constant matrix of full rank, with m + rank(E2) = m + r2 rows, while
V (λ) is a matrix depending on λ. The eigenvalue problem for QT matrices is reduced to the NEP
(10) which can take different forms according to the way a basis of the solution of the difference
equation (5) is chosen.

We may conclude with the following result.

Theorem 3.1. Let Ω be a connected component of the set C \ a(T), let λ ∈ Ω and p = m +
wind(a− λ). Let V (λ) be a matrix whose p columns form a basis of the space of solutions of the
difference equation (5) belonging to `2. If p > q then all λ ∈ Ω are eigenvalues of T (a) + E. If
p ≤ q then λ ∈ Ω is eigenvalue of A = T (a) + E corresponding to the eigenvector v ∈ `2 iff there
exists β ∈ Cp \ {0} which solves the nonlinear eigenvalue problem WV (λ)β = 0 of (10). In this
case, v = ZmV (λ)β.

3.3 Choosing a basis: Vandermonde and Frobenius versions

Let the zeros ξi of a(z)− λ be simple and ordered as

|ξ1| ≤ · · · ≤ |ξp| < 1 ≤ |ξp+1| ≤ · · · ≤ |ξm+n|,

and let V (λ) = (ξi−1j )i∈Z+,j=1,...,p be the ∞× p Vandermonde matrix associated with ξ1, . . . , ξp.

The columns v(1), . . . ,v(p) of V (λ) provide a basis of the set of solutions of the difference equation
(5) that belong to `2, so that v is an eigenvector of A corresponding to λ if and only if there exists
α = (αi) ∈ Cp \ {0} such that v =

∑p
j=1 αjv

(j) and (6) is satisfied. The same argument can be
applied in the case of confluent zeros considering a generalized Vandermonde matrix.

The formulation (10) where V (λ) is the (generalized) Vandermonde matrix associated with the
roots ξi of a(z) − λ is referred to as the Vandermonde version of the problem. It is well known
that the zeros of a polynomial are severely ill-conditioned if they are clustered. This may make
the choice of the basis v(i), given by the columns of the Vandermonde matrix, unsuited in some
problems. A way to overcome this issue is to consider the Frobenius version of the NEP obtained
in the following way.

For the sake of notational simplicity, in the following we write V in place of V (λ). For
simple roots, write the Vandermonde matrix V in the form V = [Vp;VpD

p;VpD
2p; . . .], with

D = diag(ξ1, . . . , ξp), and define U := V V −1p . Recall that VpD
pV −1p = F p, where F = Zp −

ep[s0, s1, . . . , sp−1] denotes the companion (Frobenius) matrix associated with the polynomial

s(z) = (z − ξ1) · · · (z − ξp) =
∑p−1
i=0 siz

i + zp, see for instance [5]. Here, ep = [0, . . . , 0, 1]T ∈ Rp.
For multiple roots, a similar construction can be made with the generalized Vandermonde matrix
and where D is a block diagonal matrix whose diagonal blocks are Jordan blocks associated with
the distinct roots of a(z)− λ having modulus smaller than 1.

Denote G := F p so that the columns of U = V V −1p = [I;G;G2; . . .] provide a different basis
of the set of solutions of the linear difference equation (5). The NEP (10) can be equivalently
rewritten as

WUγ = 0, v = ZmUγ, (11)

We refer to (11) as the Frobenius version of the problem. Observe that in the Frobenius form,
it is not relevant if the roots of a(z)− λ are multiple or numerically clustered, in fact the matrix
G = F p exists and can be computed independently of the location of the roots of s(z).

Notice that if m + r2 = p, then the matrix W can be partitioned into p × p blocks as W =
[W0,W1,W2, . . .] and WU can be rewritten in terms of a matrix power series as WU =

∑∞
i=0WiG

i.
The following result provides information in this regard [5, Chapter 3].
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Theorem 3.2. Assume that a(z) =
∑n
i=−m aiz

i, where a−m, an 6= 0, has roots ξi, i = 1, . . . ,m+n
such that |ξ1| ≤ · · · ≤ |ξp| < 1 ≤ |ξp+1| ≤ . . . ≤ |ξm+n| and denote s(z) =

∏p
i=1(z − ξi). Define

Ak = (aj−i+kp−m+p)i,j=1,p for k = −1, 0, 1, . . . where we assume a` = 0 if ` < −m or ` > n. Let
F be the Frobenius matrix associated with the factor s(z). Then G = F p is the unique solution of
the matrix equation

∞∑
k=−1

AkX
k+1 = 0, (12)

having minimum spectral radius ρ(G), moreover, ρ(G) = |ξp|.

Notice that the blocks Ak defined in the above theorem are obtained by partitioning the
Toeplitz matrix T

(
zm−pa(z)

)
into p × p blocks which are themselves Toeplitz. Moreover, since

T
(
zm−pa(z)

)
is a banded matrix, then Ak = 0 for k sufficiently large. In the literature, there are

several effective algorithms for the numerical computation of G, based on fixed point iterations or
on doubling techniques. We refer the reader to [2], [5], [14], and [15], for more details.

4 The numerical algorithms

In this section we describe our algorithms to refine a given approximation of an eigenvalue λ of
A = T (a) + E, while in Section 5 we will discuss how to get the initial approximation. The
algorithms require: a function g(x) : C → C such that the fixed point iteration λν+1 = g(λν)
converges locally to the eigenvalue λ, solution of the NEP (10), and a choice of the basis V (λ) of
the solutions of (5) belonging to `2.

The general scheme is reported in the Template Algorithm 1. This algorithm, for an initial
approximation λ0 ∈ Uw := {λ ∈ C \ a(T) : wind(a − λ) = w} of the eigenvalue, provides either
a more accurate approximation to the corresponding eigenpair, or a message with the following
possible cases: 1) all the elements in the set Uw are eigenvalues; 2) the generated sequence exited
from Uw; 3) it holds p < q and the approximated solution solves the first p equations but not the
full NEP (10); 4) convergence did not occur after the maximum number of allowed iterations.

Now, we deal with algorithmic issues encountered in the design of the fixed point iterations
to solve the nonlinear eigenvalue problem (10). This analysis is needed to design algorithms to
implement the function g(x) used in the Template Algorithm 1. Without loss of generality, we
assume that the nonlinear eigenvalue problem is balanced. This case is encountered if p = q or if
p < q where we consider the subset of the first p equations in (10).

We essentially analyze Newton’s iteration applied to the determinantal versions of the problem,
that is, det(WV ) = 0, det(WU) = 0, in the Vandermonde and in the Frobenius forms, respectively.
Before doing that, we discuss on how to compute the winding number of a(z)− λ, since this is a
fundamental step in the design of the overall algorithm.

4.1 Computing the winding number

The winding number w of the Laurent polynomial a(z) − λ can be computed in different ways.
The most elementary one is to express w as w = p−m, where p is the number of zeros of a(z)−λ
of modulus less than 1. Any root-finding algorithm applied to the polynomial zm(a(z) − λ) can
be used for this purpose, for instance, the command roots of Matlab provides approximations to
all the roots of zm(a(z)− λ), and we may count how many roots have modulus less than 1. This
approach has the drawback that polynomial roots are ill-conditioned when clustered, so that we
may encounter instability if there are clusters of roots of modulus close to 1.

A second approach is based on equation (1) that expresses w as ratio of two integrals. The
integrals can be approximated by the trapezoid rule at the Fourier points using two FFTs. In this
case, the presence of roots of the polynomial close to the unit circle may lead to a large number
of Fourier points with a consequent slow down of the CPU time.

A third approach, that is the one we have implemented, relies on Graeffe’s iteration [29], that
is based in the following observations. Given a polynomial b(z) of degree m + n, the polynomial
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Algorithm 1 Template Algorithm

Input: the coefficients of a(z) =
∑n
i=−m aiz

i and the correction matrix E; an error bound ε > 0;
an initial approximation λ0 ∈ C; an upper bound maxit to the number of iterations; a function
g(x) : C→ C defining a fixed point iteration to solve the NEP (10); a rule to generate V (λ).

Output: An approximation µ to an eigenvalue λ, the vector β providing an approximation to
the corresponding eigenvector according to (10), together with a message.

1: Construct the matrix W of (10) together with the scalar r2; compute w0 = wind(a − λ0),
p0 = m+ w0 and q = m+ r2. Set ν = 0.

2: while ν <maxit do
3: Compute w = wind(a− λν), p = m+ w.
4: if w 6= w0 then output ‘out of Uw0’ and stop; otherwise set w0 = w.
5: if p > q then output ‘continuous set of eigenvalues’ and stop.
6: if p = q then perform one step of the fixed point iteration λν+1 = g(λν); set ν = ν+ 1, com-

pute β and v according to (10), compute the residual error res = ‖((A−λνI)v)q×1‖/‖vq×1‖;
if res ≤ ε, output ‘isolated eigenvalue (p=q)’ together with µ = λν , β and exit, oth-
erwise continue from step 3;

7: if p < q then perform one step of the fixed point iteration λν+1 = g(λν) applied to (10)
restricted to the first p components. Check if the residual error in the first p components
is less than ε. If not, continue from step 3, otherwise check if rank(WV (λν)) is less than
p. If so, output ‘isolated eigenvalue (p<q)’ together with µ = λν and β, and exit;
otherwise output ‘non converging sequence (p<q)’ and exit;

8: Stop if the maximum number of iterations maxit has been reached; in this case, output
‘Maximum number of iterations exceeded’.

9: end while

c(z) = b(z)b(−z) is formed by monomials of even degree, i.e., there exists a polynomial b1(z) of
degree m+ n such that b1(z2) = c(z). Therefore, the roots of b1(z) are the square of the roots of
b(z). Consider the sequence defined by the Graeffe iteration bk+1(z2) = bk(z)bk(−z) with initial
value b0(z) = b(z). It turns out that the winding number of bk(z) is constant. Moreover, if b(z)
has m zeros of modulus less than 1 and n zeros of modulus greater than 1, then the limit for
k → ∞ of bk(z)/θk is zm. Here θk is the coefficient of maximum modulus of bk(z). This means
that there exists an index k such that the coefficient of zm in bk(z) has modulus greater than
1
2‖bk(z)‖1, where ‖bk(z)‖1 is the sum of the moduli of all the coefficients of bk(z). In view of
Rouché theorem, the latter inequality is a sufficient condition to ensure that bk(z) has m roots of
modulus less than 1.

Indeed, if there are zeros of modulus 1 then this procedure might not terminate. Therefore,
if the number of Graeffe iterations exceeds a given upper bound, then the explicit computation
of the polynomial roots is performed. These arguments support Algorithm 2 for counting the
number of roots of a polynomial of modulus less than 1.

4.2 Implementing Newton’s iteration

In this section we analyze the computational issues concerning the implementation of Newton’s
iteration applied either to fV (λ) = det ΦV (λ), where ΦV (λ) = WV (λ) in the Vandermonde
approach, or to fF (λ) = det ΦF (λ), where ΦF (λ) = WU(λ) in the Frobenius approach. We use
the symbol Φ(λ) to denote either ΦV (λ) or ΦF (λ), similarly we do for f(λ). In all cases, Φ(λ) is
assumed to be a p × p matrix. This is true if q = p, and also in the case where q > p when we
consider only the first p rows of WV (λ) or of WU(λ).

Since U(λ) = V (λ)V −1p then we have ΦV (λ) = ΦF (λ)Vp so that fV (λ) = fF (λ) detVp(λ). We
recall that if the function f(λ) has continuous second derivative, then Newton’s method applied
to the equation f(λ) = 0, given by zν+1 = zν − f(λν)/f ′(λν), locally converges to a zero of f(λ).
The convergence is at least quadratic if the zero is simple, it is linear if the zero is multiple. If Φ(λ)
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Algorithm 2 Count roots

Input: The coefficients of a polynomial b(z) =
∑d
i=0 biz

i of degree d; an upper bound maxit to
the number of iterations.

Output: Either the number of zeros of b(z) of modulus less than 1, or the message ‘failure’.
1: Set b0(z) = b(z), ν = 0.
2: while ν <maxit do
3: Compute the coefficients of c(z) =

∑d
i=0 ciz

i such that c(z2) = bν(z)bν(−z), let h be the
minimum index such that |ch| = maxi |ci|, and set bν+1(z) = c(z)/ch.

4: ν = ν + 1
5: If ‖bν(z)‖1 < 2 then output h and exit
6: end while
7: Compute the zeros of c(z) and output the number of zeros of modulus less than 1 together

with the warning: ‘Reached the maximum number of iterations’

has entries with continuous second derivative, then also f(λ) = det Φ(λ) has continuous second
derivative and for the Newton’s correction f(λ)/f ′(λ) we have

f(λ)/f ′(λ) = 1/trace(Φ(λ)−1Φ′(λ)). (13)

A simple calculation shows that if Φ(λ) = P (λ)Q(λ) then

f(λ)/f ′(λ) = 1/
(
trace(P (λ)−1P ′(λ)) + trace(Q(λ)−1Q′(λ))

)
. (14)

In particular, since U(λ) = V (λ)Vp, assuming fF (λ) and fV (λ) differentiable, we have

fF (λ)/f ′F (λ) = fV (λ)/f ′V (λ) + trace(Vp(λ)−1V ′p(λ)).

4.2.1 Vandermonde version

In order to apply Newton’s iteration in the Vandermonde version, we have to assume that the
roots ξi(λ) of the polynomial a(z) − λ have continuous second derivative. It is well known that
if the coefficients of a polynomial pλ(z) of degree ν are analytic functions of λ, and if for a given
λ0 the polynomial has simple roots ξ1, . . . , ξν , then for λ in a neighbourhood of λ0, there exist
ξ1(λ), . . . , ξν(λ) analytic functions that are roots of pλ(z) and ξi(λ0) = ξi, for i = 1, . . . , ν. Indeed,
the polynomial zm(a(z)−λ) has coefficients that are analytic for λ ∈ C, therefore ξi(λ) are analytic
functions as long as the zeros remain simple. In this subsection we assume this condition.

In order to compute the Newton correction by means of (13) we need to compute the entries of
the Vandermonde matrix V (λ). Therefore we assume we are given a polynomial rootfinder which
approximates the roots of zm(a(z)− λ) so that we may select the p roots of modulus less than 1.
For this task we rely on the Matlab command ‘roots’. Then we need to compute V ′(λ), i.e., the
derivative of the entries of V (λ). Concerning this task we have (ξij)

′ = iξi−1j ξ′j . Moreover, since
a(ξj)− λ = 0, taking the derivative of this equation yields a′(ξj)ξ

′
j − 1 = 0, whence ξ′j = 1/a′(ξj).

Therefore, we are able to implement the Newton iteration where the Newton correction takes the
form (13) with (V ′(λ))i,j = (i− 1)ξi−2j /a′(ξj).

4.2.2 Frobenius version

Consider the case Φ(λ) = WU(λ), where U(λ) is the matrix defined in Section 3.3. In order to
evaluate the Newton correction, we have to compute the matrix G of minimal spectral radius
which solves the matrix equation (12), then evaluate, the powers Gj and their derivatives (Gj)′,
for j ≥ 0.

Firstly, we discuss on how to compute G. This matrix can be obtained by the coefficients of the
polynomial s(z) collecting the zeros of a(z)− λ of modulus less than 1, that yields the Frobenius
matrix F and in turn G = F p. In our implementation we compute directly the matrix G as the
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solution of minimal spectral radius of equation (12) (compare Theorem 3.2). For this task, the
algorithm of Cyclic Reduction, having a quadratic convergence, can be effectively applied [2]. It
is worth pointing out that the first row of −G contains the coefficients s0, . . . , sp−1 of the sought
monic factor s(z), so that these coefficients are known once the matrix G has been computed.

Secondly, we show how to compute the derivative of the coefficients s0, . . . , sp−1 of s(z) with
respect to λ. The polynomial zm(a(z) − λ) can be factorized as zm(a(z) − λ) = s(z)u(z), where
u(z) has zeros of modulus greater than or equal to 1, and s(z) has zeros of modulus less than 1.
Therefore, setting p̂ = m+ n− p, we have the equation



a−m

...
a0 − λ

...
an

 =



u0

u1 u0

...
. . .

. . .

up̂

. . .
. . .

. . .

. . .
. . .

. . . u0

. . .
. . . u1

. . .
...
up̂




s0
s1
...
sp

 =



s0
s1 s0
...

. . .
. . .

sp
. . .

. . .
. . .

. . .
. . .

. . . s0
. . .

. . . s1

. . .
...
sp




u0

u1

...
up̂

 . (15)

Denote by U and S the two matrices in the above equation and observe that they have size
(m+ n+ 1)× (p+ 1) and (m+ n+ 1)× (p̂+ 1). Since sp = 1 and up̂ = an, then s′p = u′p̂ = 0. Set

u = [u1, . . . , up̂]
T , s = [s0, . . . , sp]

T . Taking derivatives with respect to λ, and denoting em+1 the
vector with null components except the (m+1)-st which is 1, yields the system −em+1 = Us′+Su′

which can be rewritten as

[Û , Ŝ]

[
ŝ′

û′

]
= −em+1, (16)

where ŝ = [s0, . . . , sp−1]T , û = [u0, . . . , up̂−1]T , and Û and Ŝ are the matrices obtained from U and
S, respectively, by removing the last column and the last row. This is a system formed by m+ n
equations and m + n unknowns. Moreover, the matrix [Û , Ŝ] is invertible since it is a resultant
matrix associated with polynomials having no zeros in common. Therefore we have[

ŝ′

û′

]
= −[Û , Ŝ]−1em+1.

Thirdly, we explain how to compute G′ using the derivatives of s0, . . . , sp−1. We rely on the
Barnett factorization [1] that provides an LU factorization of the matrix G = F p

F p = −L−1U , L =


sp
sp−1 sp

...
. . .

. . .

s1 . . . sp−1 sp

 , U =


s0 s1 . . . sp−1

s0
. . .

...

. . . s1
s0

 , (17)

where L and U are lower triangular and upper triangular Toeplitz matrices, respectively. Applying
the Barnett factorization (17) to our problem, we have

(F p)′ = −L−1U ′ + L−1L′L−1U , (18)

where L′ and U ′ are the derivatives of L and U , respectively, that are determined by the derivative
s′j , j = 0, 1, . . . , p. We may observe that the cost of computing (F p)′ by means of (18) amounts

to O(p3) arithmetic operations which, due to the triangular Toeplitz structure and to the fast
algorithms for triangular Toeplitz matrix inversion and for Toeplitz-vector multiplication can be
lowered to O(p2 log p).
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Finally, we discuss on how to compute Gj and (Gj)′ given G′. From the relation Gj = Gj−1G
we obtain (Gj)′ = (Gj−1)′G + Gj−1G′. This expression allows us to compute (Gi)′ and Gi for
i = 1, . . . , k according to the following equations

Gi = GGi−1

(Gi)′ = (Gi−1)′G+Gi−1G′
i = 2, . . . , k.

Clearly, the cost of this computation is 2(k−1) matrix multiplications and k−1 matrix additions,
for an overall cost of 2(k − 1)p3 +O(kp2) arithmetic operations.

In our implementation, we have adopted the algorithm based on the Barnett factorization
for its simplicity, but other effective techniques can be used. For instance, a different approach
is based on the structure of F and on the fact that F ′ = −eps′T . Indeed, (F k)′ is such that

(F k)′ = (F k−1)′F + F k−1F ′, F ′ = −eps′T . This implies that

(F k)′ = (F k−1)′F + fk−1s
′T , fk = Ffk−1, k = 1, . . . , p,

where f0 = −ep. A careful computational analysis shows that this computation can be performed
in O(p2) arithmetic operations.

A slightly different approach can be carried out as follows. Recall that the last row of F is
−sT and that F ′ = −eps′T . Given s and s′, write

(F p)′ = −
p−1∑
`=0

F p−1−`eps
′TF ` = −

p−1∑
`=0

vp−1−`s
′TF `,

where v`=F `ep. Observe that the vector v` is such that v`=
[
0 . . . 0 σp . . . σp−`

]T
, with

σp = 1 and σp−` =−
∑`
h=1 sp−hσp−`+h, for ` = 1, . . . , p − 1. For the rows rT1 , . . . , r

T
p of (F p)′ we

have
rT` = σp−`+1s

′T + rT`−1F

= σp−`+1s
′T + (F p)′`−1,ps

T + [0 (F p)′`−1,1 · · · (F p)′`−1,p−1], ` = 2, . . . , p

and rT1 = σps
′T = s′T . The cost of the procedure is given by the computation of σ1, . . . , σp that

requires p2 − p operations, and the recursion for rT1 , . . . , r
T
p that requires about 4p2 operations.

4.2.3 Convergence of Newton’s iteration

We have seen that in the Vandermonde formulation, the function fV (λ) is holomorphic in C\a(T)
as long as the roots of the Laurent polynomial a(z)−λ are simple. Here we prove that the function
fF (λ) is holomorphic in C \ a(T) under no additional condition. We rely on the implicit function
theorem for functions of complex variable given in the following form [17, Theorem 15].

Theorem 4.1. Let F : V ⊂ Ck×Cq → Cq be a holomorphic mapping such that the linear mapping
∂F
∂w (z0, w0) : Cq → Cq is invertible, where (z0, w0) ∈ V. Then there are neighborhoods U and A,
(z0, w0) ∈ U , z0 ∈ A, and a holomorphic mapping g : A → Cq, such that F (z, w) = F (z0, w0) if
and only if w = g(z) for (z, w) ∈ U .

Observe that for λ ∈ Ω the winding number of a(z) − λ is constant, where Ω is a connected
component of C \ a(T). Therefore, the polynomial zm(a(z)− λ) has p = m+ w roots of modulus
less than 1 and p̂ = m + n − p roots of modulus greater than 1. Thus, there exists the Wiener-
Hopf factorization zm(a(z) − λ) = s(z)u(z), where s(z) is the monic polynomial of degree p,
with coefficients si, i = 0, . . . , p, having roots of modulus less than 1, while u(z), of degree p̂
and coefficients ui, i = 0, . . . , p̂, has roots of modulus greater than 1. Consider the function
F (λ; s0, . . . , sp−1, u0, . . . , up̂) = Us− â = Su− â, where s = (s0, . . . , sp−1, 1)T , u = (u0, . . . , up̂)

T ,
â = (a−m, . . . , a−1, a0 − λ, a1, . . . , an)T , and where the matrices U and S are defined in (15). The
function F is defined in C × Cm+n+1 and takes values in Cm+n+1. A direct computation shows
that the matrix of partial derivatives of F with respect to si and to uj is given by [Ũ , S], where

14



Ũ is the matrix obtained by removing the last column of U . This matrix is invertible since its
last row is [0, . . . , 0, 1] and the leading principal submatrix of size m + n coincides with [Û , Ŝ] in
equation (16) that is invertible.

Therefore, we may apply Theorem 4.1 to the function F with k = 1, q = m + n + 1, where
F (z0, w0) = 0, and conclude with the following result.

Theorem 4.2. Let Ω be any connected component of C \ a(T). Then, for λ ∈ Ω the function
fF (λ) = det ΦF (λ) is holomorphic.

5 Choosing the initial approximation

The algorithms presented in the previous sections can be used for refining a given approximation to
an isolated eigenvalue of a QT matrix A, once an initial approximation is available. In this section,
we investigate the problem of determining initial approximations to each isolated eigenvalue of A.
More specifically, we show that, if A is Hermitian then for any isolated eigenvalue λ of A, and for
any ε > 0 there exists an integer N and an eigenvalue µ of the N ×N leading principal submatrix
AN (finite section) of A such that |λ−µ| ≤ ε. That is, for each isolated eigenvalue λ of A we may
find a sufficiently close approximation to λ among the eigenvalues of the N ×N matrix AN for a
sufficiently large value of N .

For non-Hermitian matrices we have a weaker result: we show that for any eigenvalue λ of
A and for any positive ε, there exists N0 > 0 such that for any N ≥ N0 λ belongs to the
ε-pseudospectrum spε of AN defined as spε(AN ) = {z ∈ C : ‖(AN − zI)−1‖ ≥ ε−1}.

This fact enables us to implement a heuristic approach that, given A, selects a sufficiently large
value of N , computes all the eigenvalues of AN and applies to each eigenvalue of AN one of the
fixed-point methods described in the previous section, and finally selects the values for which the
numerical convergence occurs.

Since we do not have an explicit formal relation between ε and N , and since we do not have
a theoretical bound to the radius of the convergence neighborhood of Newton’s iteration, this
strategy remains a heuristics approach. Nevertheless, from our implementation and from the
experiments that we performed, this strategy turns out to be practically effective.

5.1 The case of Hermitian matrices

If A is Hermitian then the Bauer-Fike theorem provides a helpful tool to show that the isolated
eigenvalues of A can be approximated by the eigenvalues of AN .

Let A = T (a) + E be a QT matrix, a(z) =
∑n
j=−m ajz

j , E compact correction with support
h1×h2, i.e., its entries outside the leading h1×h2 submatrix are zero. Let AN be the N×N leading
principal submatrix of A. Let Av = λv be such that λ is an isolated eigenvalue of A and v = (vi)

has exponential decay, i.e., limj |vj |
1
j = ξ for 0 < ξ < 1, and

∑
j |vj |2 = 1. Denote Y ∈ Cn×n the

lower triangular Toeplitz matrix with first column (an, . . . , a1)T . Due to the exponential decay of
vi, for any ε > 0 there exists N0 > 0 such that for any N ≥ N0 it holds that ‖YwN‖ ≤ ‖Y ‖ ‖wN‖ε,
where wN = (vN+1, . . . , vN+n)T .

If N > max(m,n, h1, h2, N0) set vN = (v1, . . . , vN )T , uN = [0N−n;YwN ] and rewrite the
condition Av = λv as

ANvN + uN = λvN . (19)

Defining CN = 1
v∗NvN

uNv
∗
N , we may rewrite (19) as (AN +CN )vN = λvN . That is, λ is eigenvalue

of an N × N matrix which differs from AN by the correction CN . Observe also that the matrix
CN satisfies the inequality ‖CN‖ ≤ 1

‖vN‖‖Y ‖ · ‖wN‖ ≤
1
‖vN‖ε.

That is, we may look at an isolated eigenvalue λ of A as an eigenvalue of a finite matrix
obtained by perturbing the finite matrix AN . Therefore we may invoke the classical perturbation
theorems for eigenvalues of finite matrices. For instance we can apply the Bauer-Fike theorem.
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Theorem 5.1 (Bauer-Fike). Let A be a diagonalizable matrix, i.e., there exists S such that
S−1AS = D, D diagonal, and let ‖ · ‖ be an absolute norm. Then, for any eigenvalue λ of A+C
there exists an eigenvalue µ of A such that |λ− µ| ≤ ‖C‖ · ‖S‖ · ‖S−1‖.

Observe that the p-norms are absolute, i.e., ‖v‖ = ‖(|vi|)‖ for any v = (vi).
Therefore, if A is Hermitian, then AN is Hermitian and consequently S can be chosen to be

unitary so that for the 2-norm we have ‖S‖ = ‖S−1‖ = 1 and by the Bauer-Fike theorem we may
conclude that for any eigenvalue λ of AN + CN , that is for any isolated eigenvalue λ of A, there
exists an eigenvalue λN of AN such that |λ − λN | ≤ ‖CN‖ ≤ ε/‖vN‖. Therefore, |λN − λ| → 0
exponentially with N .

5.2 The general case

The case of nonsymmetric matrices seems more tricky. In fact, the Bauer-Fike theorem can be
still applied if AN is diagonalizable but the bound turns into

|λN − λ| ≤
‖wN‖
‖vN‖

‖Y ‖ · ‖SN‖ · ‖S−1N ‖

where S−1N ANSN = D is a diagonal matrix. Therefore, in this case we need that AN be diago-
nalizable and that limN ‖wN‖ · ‖SN‖ · ‖S−1N ‖ = 0. This condition is satisfied if, say, the condition
number ‖SN‖ · ‖S−1N ‖ is uniformly bounded from above by a constant.

Unfortunately, the condition number of SN may grow very fast with N . Think for instance
to the tridiagonal matrix trid(1/2, 0, 2) = D̂−1trid(1, 0, 1)D̂ where D̂ = diag(1, 2, 22, . . . , 2N−1),

having SN = QN D̂ as eigenvector matrix with Q orthogonal. Clearly cond(SN ) = cond(D̂) =
2N−1.

On the other hand, from (19) we find that if λ is not eigenvalue of AN , then (AN −λI)−1uN =
−vN , that is, ‖(AN − λI)−1‖ ≥ ‖vN‖/‖uN‖ ≥ γε−1 for some constant γ > 0. This implies that
λ ∈ spγ−1ε(AN ) for any N > N0.

Therefore, we may say that for any eigenvalue λ of the QT matrix A and for any ε > 0 there
exists an integer N0 such that for any N ≥ N0 the matrix AN has an ε-pseudo eigenvalue µ equal
to λ. This fact motivates using the eigenvalues of AN , for sufficiently large values of N , as starting
approximations for Newton’s iteration.

6 Implementation and numerical results

We have implemented the algorithms described in the previous sections in Matlab and added
them to the CQT-Toolbox of [9]. The functions allow the computation in high precision arithmetic
relying on the package Advanpix, see https://advanpix.com. The main functions are eig_single
and eig_all. The function eig_single computes the approximation of a single eigenvalue by
relying on Newton’s iteration, in both the Vandermonde and the Frobenius version, starting from
a given approximation λ0. The function eig_all computes approximations to all the eigenvalues
starting from the eigenvalues of the matrix AN for N = γmax(h1, h2,m + n), the value of γ
can be optionally changed, by default γ = 3. The iterations are halted if the modulus of the
difference between two subsequent approximations is less than 103u, where u is the machine
precision, and if this value is not less than the value obtained at the previous step. After that
the halting condition is satisfied, a further Newton step is applied to refine the approximation.
The iterations are halted with the failure flag if wind(λk) 6= wind(λk−1) for some k or if |λk| is
larger than ‖A‖∞ or if the maximum number of 20 iterations has been reached. More information,
together with the description of other auxiliary functions and optional parameters, can be found
at https://numpi.github.io/cqt-toolbox, while the software can be downloaded at https:

//github.com/numpi/cqt-toolbox.
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The tests

We have performed several tests to validate our algorithms. Here, we describe the results of the
most meaningful ones. In the following, we denote by am and ap two vectors such that am =
[a0, a−1, . . . , a−m] and ap = [a0, a1, . . . , an], where a(z) =

∑n
i=−m aiz

i is the Laurent polynomial
associated with the QT matrix A = T (a) + E. We refer to Algorithm V for the Vandermonde
approach and Algorithm F for the Frobenius approach. The tests have been run on a laptop with
Intel I5 CPU and with Matlab version R2021b.

In Test 1 we have set m = 3 and n = 2, where am = [0,−1, 1,−1], ap = [0,−1,−1]. We have
applied two kinds of corrections, namely, the 20×100 matrix E2 having null entries except the last
column which is equal to [1, 2, 3, . . . , 20]T , and the 3 × 100 matrix E1 having null entries except
in the last column which is equal to 8[1, 2, 3]T . We refer to these two corrections as Case 1 and
Case 2, respectively.

In Test 2 we have set m = 7 and n = 2 where am=[0,−1, 1,−1, 0, 0, 0, 1], ap = [0,−1,−1]. We
have applied two kinds of corrections, namely, E1 and E2, where E1 is the same as in Test 1, while
E2 has size 7× 100 with null entries except the last column which is equal to 8[1, 2, 3, . . . , 7]T . We
refer to these two corrections as Case 1 and Case 2, respectively.

Test 3 has been designed in order to show that the Vandermonde approach may strongly suffer
of numerical instability when the characteristic equation a(z) − λ = 0 has some clustered roots
that, consequently, are ill conditioned. For this test, we have constructed a(z) in terms of a
Mignotte-like polynomial [27]. More precisely, we set a(z) = z−mb(z), where b(z) is of the form
b(z) = (10−1 + z)3 + 10zn+m. This polynomial has a very tight cluster of 3 zeros close to 10−1.
In our test we set m = 10 and n = 2 and E = 10−5[012, I12].

In all the three tests the matrix A is not symmetric.

Details on the implementation

The algorithms have been applied in the double precision floating point arithmetic. The basins
of attraction have been constructed as follows. A generic point in the picture, corresponding to
the complex number λ0 has been coloured with a colour depending on the limit of the sequence
generated by fixed point iteration λk+1 = g(λk) for k ≥ 0. Different colours, randomly generated,
have been used for different limits. Different levels of gray have been used to denote that the
iteration has been halted with no convergence. The colour green has been used for the values λ0
belonging to a continuous set of eigenvalues.

The results

In the figures where the eigenvalues are reported, red circles indicate the eigenvalues of the finite
section AN , blue dots represent isolated eigenvalues of A, while red circles containing a green
dot represent eigenvalues of AN that belong to a continuous set of eigenvalues. The light blue
curve denotes the set a(T). In the figures displaying the basins of attraction, the light green area
indicates a continuous set of eigenvalues. For this set of figures, Algorithm V has been applied.

Figure 3 displays the eigenvalues of A+E1, for the matrix of Test 1, and the basins of attraction
of Newton’s iteration, together with a zoom of a specific area.

Figure 4 displays the analogous images for the matrix A+E2 of Test 1. Here, it is interesting
to observe the existence of a connected component formed by a continuous set of eigenvalues
denoted by a green triangle-shaped figure. Observe also that the corresponding red circles in this
component contain a green dot.

The smallest value of N0 for which the number of computed eigenvalues is constant for N ≥ N0

is N0 = 400 for the Case 1, while it is N0 = 200 for the Case 2. In both cases, the geometry
of the basins of attraction, together with the distribution of the eigenvalues of AN , explains why
Newton’s iteration converges to all the eigenvalues, when starting from the eigenvalues of AN for
a quite small value of N , even though the latter eigenvalues are far from the eigenvalues of A.
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Figure 3: Test 1, Case 1: Eigenvalues of the QT matrix A (blue dots) and of the finite section AN (red circles),
together with the basins of attraction for Newton’s iteration computed by Algorithm V. On the right the zoom of
a portion.

Figure 4: Test 1, Case 2: Eigenvalues of the QT matrix A (blue dots) and of the finite section AN (red circles),
together with the basins of attraction for Newton’s iteration computed by Algorithm V. On the right the zoom of
a portion.
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λ \ N 200 400 800 1600 3200 6400
-4.0e-01±1.2e+00i 4.1e-04 1.3e-08 –
-3.1e-01±1.3e+00i 3.0e-03 3.9e-06 5.3e-12 –
-2.2e-01±1.5e+00i 5.4e-03 6.1e-05 5.9e-09 –
-1.4e-01±1.6e+00i 2.6e-02 2.0e-03 2.7e-05 1.9e-10 –
-5.9e-02±1.6e+00i 6.5e-02 3.5e-02 1.1e-02 3.5e-04 9.2e-07 3.8e-13

Table 1: Test1, Case 1: Distances of some eigenvalues of A from the closest eigenvalue of AN for different values
of N . A “–” denotes a value below 1.e-15.

Figure 5: Test 1. Relative errors in each eigenvalue computed with Algorithm V (blue circle) and with Algorithm
F (red cross). Case 1 and case 2 on the left and on the right, respectively. Eigenvalues are sorted with respect to
the real part.

This latter property is more evident in Case 1, where several blue dots are not contained inside
red circles, see Figure 3, zoomed part.

The number of iterations to arrive at convergence is quite small and is the same for both
algorithms. Namely, concerning Case 1, it ranges from 3 to 18 with the avergae value of 7.5;
concerning Case 2, it ranges from 3 to 10 with average 3.3.

Another interesting issue to investigate, independently of the algorithm used, is to analyze how
large must be N in order that the eigenvalues of AN approximate all the eigenvalues of A within
the machine precision u = 2.22e − 16 so that no step of Newton’s iteration would be necessary.
It turns out that for the Test 1, Case 1, almost all the eigenvalues are well approximated already
for N = 800, while there are few eigenvalues that require a pretty larger size. Table 1 shows a few
significant cases. Typically, the eigenvalues closest to the light blue curve are the ones that need a
large value of the truncation level N to be properly approximated by a corresponding eigenvalue
of AN . For instance, from Table 1 it turns out that N = 3200 is not enough to approximate the
rightmost eigenvalue. Even N = 6400 does not provide a full accuracy approximation. A similar
situation holds for the Case 2.

Concerning the accuracy of approximation, Figure 5 shows the relative errors of approximating
the eigenvalues of A with the Vandermonde approach (blue circle) and with the Frobenius approach
(red cross) in the two cases of Test 1. Here, the eigenvalues have been sorted according to the
real part. The relative errors have been obtained by comparing the eigenvalues computed in
the standard floating point arithmetic with those computed in the quadruple precision relying on
Advanpix. Observe that the results obtained by the Frobenius version are generally more accurate
than the ones obtained with the Vandermonde version.

Finally, concerning the CPU time, the two algorithms have similar performances even though,
for this test, Algorithm F generally requires a double time.

Test 2, Case 1, points out in a more evident manner that the eigenvalues of A which are close
to the curve a(T) can be hardly approximated by the eigenvalues of a finite section AN of A,
unless N is extremely large. In fact, as clearly shown in Figure 6 and in the zoomed areas, out
of the 8 eigenvalues of A, there is a group of few eigenvalues that lie very close to the light blue
curve. In particular, the second (from the left) eigenvalue and the last one. The distances of these
eigenvalues to the closest eigenvalue of AN for different values of N are reported in Table 2. It
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Figure 6: Test 2, In the first line the eigenvalues of Case 1 (left) and Case 2 (right) are displayed with a blue dot.
In the second line, some portion of the domain where the eigenvalues of Case 1 are located are displayed; more
specifically, from the left, the area with all the eigenvalues, the second leftmost eigenvalue, and the last rightmost
eigenvalue are zoomed, respectively.

Figure 7: Test 2. Relative errors in each eigenvalue computed with Algorithm V (blue circle) and with Algorithm
F (red cross). Case 1 and case 2 on the left and on the right, respectively. Eigenvalues are sorted with respect to
the real part.

turns out that in order to approximate such eigenvalues within the machine precision u without
applying Newton’s iteration, one would need truncation levels larger than 1.6 millions, whereas
Newton’s iteration converges quickly just starting from the eigenvalues of AN , with N = 3200.

Also in this test, the number of iterations required by Algorithm V and Algorithm F is the
same. Namely, for Case 1 it ranges between 5 and 12 with average value 7.25, for Case 2 it
ranges between 2 and 4 with average value 3.0. Algorithm F turns out to be more accurate than
Algorithm V as shown in Figure 7.

Concerning Test 3, the matrix A has a set S of 22 eigenvalues, shown in Figure 8, that can be
grouped into 3 subsets S1, S2, S3. The subset S1 is formed by 4 entries of modulus in the range
[0.25, 1.7], while S2 and S3 are formed by 9 entries of modulus roughly 20, and 30, respectively.
Recall that the Mignotte-like polynomial zma(z) has a tight cluster formed by three ill-conditioned
zeros. For λ ∈ S the polynomial zm(a(z) − λ) still has a cluster of ill-conditioned zeros, where
the cluster is tighter and consequently the zeros are more ill-conditioned the smaller is |λ|. This
explains why the errors of the algorithm based on the Vandermonde formulation are much higher
in the leftmost part of the graph shown in Figure 8.
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λ \ N 400 1600 6400 25600 102400 409600 1638400
-1.9 1.4e-01 8.3e-02 4.1e-05 –
-1.6 7.6e-01 2.3e-01 9.8e-02 5.8e-02 2.9e-03 2.6e-03 1.4e-07
-1.3 4.2e-01 1.2e-01 1.5e-04 –

-9.6e-01 1.6e-01 5.2e-06 –
-5.8e-01 3.0e-03 7.3e-11 –
-8.5e-04 6.8e-02 1.0e-01 9.2e-02 7.8e-03 2.9e-04 5.3e-13 –

Table 2: Test 2, Case 1: Distances of the real eigenvalues of A from the closest eigenvalue of AN for different
values of N . A “–” denotes a value below 1.e-15.

Figure 8: Test 3. From the left: Geometry of the eigenvalues with a zoom of the cluster computed by Algorithm
F; relative errors for each eigenvalue computed by Algorithm V (blue circle) and by Algorithm F (red cross), where
eigenvalues are sorted by increasing modulus.

7 Conclusions and open problems

The problem of computing the eigenvalues of a QT matrix has been reformulated as a nonlinear
eigenvalue problem. Newton’s iteration has been analyzed for this task both in the Vandermonde
version and in the Frobenius version. As initial approximation for starting the iteration we use
the eigenvalues of the truncated matrix AN . Numerical experiments show the effectiveness of our
approach. The algorithm based on the Frobenius formulation turned out to be more accurate
even though slightly slower. Approximating all the eigenvalues to the machine precision directly
from the eigenvalues of the truncated matrix AN , without using Newton’s iteration, is shown to
be infeasible due to the huge values needed for N . A Matlab implementation of the algorithm has
been provided and the software has been included in the CQT-toolbox of [9].

In order to make the software more robust and effective we plan to provide an optimized imple-
mentation of polynomial spectral factorization relying on the algorithms of [14] and [15]. Another
important issue is to find theoretical estimates of the truncation parameter N that guarantees
the approximation to all the eigenvalues of A, starting from those of AN . Other approaches to
solving the nonlinear eigenvalue problem, say the ones based on rational approximation, could be
the subject of subsequent research.
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