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Effective generation of cat and kitten states
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Abstract. We present an effective method of coherent state superposition (cat state) generation
using single trapped ion in a Paul trap. The method is experimentally feasible for coherent states
with amplitude α ≤ 2 using available technology. It works both in and beyond the Lamb-Dicke
regime.

1. Introduction

One of the most inspiring aspects of quantum physics is the possibility of
generation a quantum superpositions of two more macroscopic, classically distin-
guishable, interfering states. This idea is closely related to the famous Schrödinger
cat paradox [1], where the cat is set to be alive and dead with equal probabilities
until the measurement is made. This state is entangled to the device that can kill
the cat. In recent literature just the superposition of two coherent states with a π

phase difference and a large amplitude inherited the name, and is referred as a cat
state. A superposition of more than two coherent states is called a kitten state.

The cat and kitten states have brought a lot of interest of physicists due to many
possible applications in quantum information processing [2, 3, 4, 5, 6], quantum
teleportation [2, 3], quantum nonlocality tests [7, 8], generation and purification
of entangled coherent states [3], and quantum computation and communication
[3, 4, 5, 9]. Those states are also very useful for investigation of the decoherence
process [10, 11].

So far, a superposition of two coherent states has been successfully generated
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for phonon modes of a single trapped ion [10] and superconducting cavity [12]. A
lot of effort has been made to investigate the possibility of photon coherent state
superposition generation using Kerr nonlinearity [13, 14]. However, the nonlinear-
ity is far too small to ensure the effective method of the state preparation.

The aim of this article is to focus on the possibilities of the coherent state super-
position generation, which are offered by the trapped ions in a Paul trap. The ion
traps have generated a lot of interest due to their possible applications in quantum
information theory [15] and quantum computation [16]. In different experiments,
Fock number states [17], coherent states [18], vacuum squeezed states [19], and
Schrödinger cat states [10] has been realized. According to our knowledge, neither
non-Gaussian states (other than cat state) nor a superposition of more than two
coherent states have been observed so far.

The presented method allows for the generation of two and more, eg. six,
coherent states superposition. It is closely related to the Kerr nonlinear interaction.
It is experimentally feasible for coherent states with the amplitude α ≤ 2.

2. Kerr state

Let us begin the discussion with a brief summary of a Kerr state and a Kerr
medium.

The one-mode Kerr state results from an interaction of a coherent state of light
|α〉 with a third-order χ(3) nonlinear medium, the Kerr medium [20]. The optical
fibers are the best known example of the Kerr medium.

The Hamiltonian describing the interaction in the ideal medium, without damp-
ing and thermal noise, is of the following form

H = h̄
κ

2
a†a†a a, (1)

where a and a† are annihilation and creation operators of the light mode. The
strength of the medium is given by the nonlinear constant κ = 8π2h̄ω2

ǫ0n
4
0(ω)V

χ(3), where

ω is the frequency of the injected light beam, n0(ω) is the linear refractive index
and V is the volume of quantization.

The one-mode Kerr state is an infinite superposition of different photon number
states (Fock states)

|ΨK(τ)〉 = e−
iHt
h̄ |α〉 = e−

|α|2

2

∞
∑

n=0

αn

√
n!

ei
τ
2
n(n−1)|n〉. (2)

Its properties are characterized by a dimensionless parameter τ = −κt, where t is
a time that the light has spent in the fiber.

Although the statistics of the Kerr state is Poissonian, g(2)(τ) = 1, this is a
squeezed state. This fact can be easily observed from the evolution of its electric
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field quadrature uncertainties

(∆X1)
2 = 1 + 2α2

(

1− e2α
2(cos τ−1) +Re{eiτ+α2(e2iτ−1) − e2α

2(eiτ−1)}
)

, (3)

(∆X2)
2 = 1 + 2α2

(

1− e2α
2(cos τ−1) − Re{eiτ+α2(e2iτ−1) − e2α

2(eiτ−1)}
)

, (4)

where X1 = a + a† and X2 = −i(a − a†) are amplitude and phase quadratures.
Depending on τ , the quadratures are squeezed alternately: the quantum fluctua-
tions in one quadrature are reduced below the vacuum level, 1, at the expense of
increased fluctuations in the other one, see Fig.1. If none of them is squeezed for
a given value of τ , the squeezing will not be seen in the principal axes directions
but for quadratures at a certain angle. This fact corresponds to the rotation of
the error contour in the phase space.

Fig. 1: (Color online) The evolution of the amplitude and the phase quadrature
uncertainties, (∆X1)

2 (dark blue) and (∆X2)
2 (light blue), for α = 1. The line is

a reference value of 1 obtained for a vacuum.

The Kerr state is a non-Gaussian quantum state. This information can be
obtained from its Wigner phase space function: it takes the negative values and it
is not rotational symmetric. The Wigner function can be computed and expressed
in two equivalent ways

W (τ, γ, γ∗) =
2

π
e−2|γ|2e−|α|2

∞
∑

q=0

(

2α∗γei
τ
2

)q

q!
e−i τ

2
q2

×
∞
∑

k=0

(

2αγ∗e−i τ
2

)k

k!
ei

τ
2
k2e−|α|2eiτ(k−q)

, (5)

W (τ, γ, γ∗) =
2

π
e2|γ|

2
e−|α|2

∞
∑

n,m=0

1

(−2)n+m

αn

n!

α∗m

m!

× ei
τ
2
[n(n−1)−m(m−1)] (∂γ)

n (∂γ∗)m e−4|γ|2 .
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(6)

Fig. 2: (Color online) The Wigner function evaluated for α = 5. For τ = 0.01 the
Wigner function is an ellipse and the state becomes squeezed - the left figure. The
Wigner function for τ = 0.08 - the right figure. The negativities appear and form
a tail of interference fringes.

The examples of the Wigner function evaluated for α = 5 and two values of
evolution parameter τ = 0.01 and τ = 0.08 are depicted on Fig. 2. The distribution
starting with a circular shape genuine to a coherent state turns into an ellipse and
the state becomes squeezed - the left figure. It also shows that the Kerr state
approximates a one-mode Gaussian squeezed state for τ ≃ 0 very well. Then, the
ellipse is stretched into a banana shape - the right figure. This plot reveals the
nonclassicality of the state: the negative values of the Wigner function form a tail
of interference fringes following the “main” part of the “banana” distribution.

3. Cat and kitten states

The evolution of a coherent state in a Kerr medium is periodic: the phase
factor in the Kerr state (2) is a periodic function of the parameter τ . Therefor,
we achieve the same state for τ and τ + 2π. Moreover, if τ is taken as a fraction
of the period of the evolution, τ = 2πR where R < 1 is a rational number, the
infinite sum of Fock states breaks into a finite sum of coherent states, all of the
same amplitude but different phases [21]. This effect is also known as a fractional
revival [22].

Below we present the cat and kitten states - the superpositions of 2-6 coherent
states - and their Wigner functions obtained from the Kerr state (2) for some
specific values of τ and α = 2, Fig. 3-5.
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Fig. 3: (Color online) The Wigner function evaluated for α = 2. The left figure:
τ = π

3 . The Kerr state becomes a superposition of six coherent states: |2eiπ6 〉,
|2eiπ2 〉, |2ei 5π6 〉, |2ei 7π6 〉, |2ei 3π2 〉, |2ei 11π6 〉. The right figure: τ = 2π

5 . The Kerr

state becomes a superposition of five coherent states: |2〉, |2ei 2π5 〉, |2ei 4π5 〉, |2ei 6π5 〉,
|2ei 8π5 〉.

Setting τ = π
3 the Kerr state becomes a superposition of six coherent states

|ΨK(τ =
π

3
)〉 = c1|2ei

π
6 〉+ c2|2ei

π
2 〉+ c3|2ei

5π
6 〉

+ c2|2ei
7π
6 〉+ c1|2ei

3π
2 〉+ c4|2ei

11π
6 〉, (7)

with the following coefficients: c1 =
1
6

(

2 + 2i+ e−iπ
6 + e−i 2π

3

)

, c2 =
1
6

(

2− 2i+ ei
5π
6 + e−i 2π

3

)

,

c3 =
1
6

(

1 + i+ 2e−i 5π
6 + 2ei

2π
3

)

, c4 =
1
6

(

1− i+ 2ei
π
6 + 2ei

2π
3

)

.

We have five coherent states for τ = 2π
5

|ΨK(τ =
2π

5
)〉 = c1|2〉+ c2|2ei

2π
5 〉+ c3|2ei

4π
5 〉+ c2|2ei

6π
5 〉+ c1|2ei

8π
5 〉, (8)

where c1 =
1
5

(

2 + 2ei
2π
5 + e−i 4π

5

)

, c2 =
1
5

(

2 + 2e−i 2π
5 + ei

4π
5

)

, c3 =
1
5

(

1 + 2ei
4π
5 + 2e−i 4π

5

)

.

For τ = π
2 we have superposition of four states

|ΨK(τ =
π

2
)〉 = c1|2ei

π
4 〉+ c2|2ei

3π
4 〉+ c1|2ei

5π
4 〉 − c2|2ei

7π
4 〉, (9)

with c1 =
1
4

(

2 + e−iπ
4 + ei

3π
4

)

, c2 =
1
2e

−i 3π
4 .
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Fig. 4: (Color online) The Wigner function evaluated for α = 2. The left figure:
τ = π

2 . The Kerr state becomes a superposition of four coherent states: |2eiπ4 〉,
|2ei 3π4 〉, |2ei 5π4 〉, |2ei 7π4 〉. The right figure: τ = 2π

3 . The Kerr state becomes a

superposition of three coherent states: |2〉, |2ei 2π3 〉, |2ei 4π3 〉.

Fig. 5: (Color online) The Wigner function evaluated for α = 2 and τ = π. The

Kerr state becomes a superposition of two coherent states: |2eiπ2 〉, |2ei 3π2 〉.

If τ = 2π
3 the Kerr state becomes superposition of three states

|ΨK(τ =
2π

3
)〉 = c1|2〉+ c2|2ei

2π
3 〉+ c1|2ei

4π
3 〉, (10)
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where c1 =
1
3

(

2 + ei
2π
3

)

, c2 =
1
3

(

1 + 2e−i 2π
3

)

.

We achieve the usual cat state, the superposition of two coherent states, for
τ = π

|ΨK(τ = π)〉 =
1

2
(1− i)|2eiπ2 〉+ 1

2
(1 + i)|2ei 3π2 〉. (11)

4. Approximated cat and kitten state generation using ion traps

All the presented kitten states (7) - (11) can be generated using current tech-
nology available for the ion traps and already existing theoretical schemes for an
ion arbitrary pure state preparation, if the amplitude of the coherent state is not
too large.

We show that the small kitten states can be very well approximated by a
superposition of only few Fock states with appropriate chosen coefficients. It
means that only a small number of Fock states in Eq. (2) is of real significance
and the sum can be cut off at some n = M . We analyze the dependence of this
number M on the initial coherent state amplitude α.

A method of preparing an ion in a Paul trap [23] in a finite superposition of
Fock states with arbitrary coefficients

|Ψ(M)〉ion =
M
∑

n=0

cn|n〉|g〉, (12)

has been proposed in [24, 25]. In the above formula |n〉 is an ion motional Fock
state, defined according to a harmonic oscillator potential in the trap, M < ∞.
The states |g〉 and |e〉 are the ion electronic ground and excited states. The method
is based on applying a series of laser pulses tuned to the carrier frequency and the
red sideband of the ion trap alternately. It works both in and beyond the Lamb-
Dicke regime.

Adjusting the time of laser pulses or their Rabi frequency we can obtain

cn =
1

√

∑M
k=0

|α|2k

k!

αn

√
n!

ei
τ
2
n(n−1). (13)

In that case we generate the approximated cat state applying 2M laser pulses

|Ψ(M)
K (τ)〉 = RMCM−1 · ... · C1R1C0|0, g〉. (14)

The choice of the value M of the cut off in the sum (2) is based on comparison
of the Wigner function computed for different values of M . On Fig. 6 we present
the Wigner function evaluated for M = 10 and M = 30 for α = 2 and τ = π

2 .
Please note, that there is no significant difference between the left and right figure.
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Fig. 6: (Color online) The Wigner function evaluated for α = 2 and τ = π
2 . The

left figure: M = 10. The right figure: M = 30.

Fig. 7: (Color online) The Wigner function evaluated for α = 2, τ = π
2 and M = 5.

We have also checked that M = 5 simplifies the Wigner function too much, Fig.

7. Therefor, we assume that |Ψ(10)
K (τ)〉 approximates the cat state for α = 2 good

enough, which means that 20 laser pulses are required for its preparation.
The appropriate value of M is approximately equal to the number of significant

number of coefficients in the sum (2). Below we present the plots of absolute values
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of cn, Eq. (13), as a function of n for α = 1, α = 2 and α = 5. The number of the
laser pulses required for the kitten state preparation increases with the magnitude
of the amplitude α fast.

2 4 6 8
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
cn

2 4 6 8 10 12 14
n

0.1

0.2

0.3

0.4

0.5

cn

10 20 30 40 50
n

0.1

0.2

0.3

0.4
cn

Fig. 8: The absolute values of cn, Eq. (13), as a function of n for α = 1 - the left
figure, α = 2 - the middle figure and α = 5 - the right figure.

The value of the amplitude eg. α = 5 requires about 100 pulses and the
decoherence effects would have to be compensated for during the preparation.
Such an amplitude also requires higher number states in Eq. (2) that have to be
taken into account, which means dealing with higher excitations of ion.

As an example, we list below the set of laser pulses parameters required for

approximated kitten state |Ψ(10)
K (τ = π

2 )〉ion for α = 2 generation.
Assuming the carrier resonance Rabi frequency (for all pulses Ci) equal to

ΩC = 1MHz and the red sideband Rabi frequency (for all pulses Ri) equal to
ΩR = 100kHz, the duration times and phases of pulses are as follows

R10 : φ = π, tR10 = 995µs; C9 : φ = 0, tC9 = 2.89µs,
R9 : φ = 0.47, tR9 = 387µs; C8 : φ = −0.83, tC8 = 1.16µs,
R8 : φ = 7.23, tR8 = 351µs; C7 : φ = 1.33, tC7 = 1.30µs,
R7 : φ = 4.26, tR7 = 435µs; C6 : φ = 2.41, tC6 = 2.21µs,
R6 : φ = 5.00, tR6 = 474µs; C5 : φ = −0.05, tC5 = 1.60µs,
R5 : φ = 1.82, tR5 = 546µs; C4 : φ = −0.86, tC4 = 2.44µs,
R4 : φ = 2.21, tR4 = 550µs; C3 : φ = −2.97, tC3 = 1.92µs,
R3 : φ = −1.30, tR3 = 745µs; C2 : φ = −3.93, tC2 = 2.84µs,
R2 : φ = −0.95, tR2 = 813µs; C1 : φ = −0.09, tC1 = 2.84µs,
R1 : φ = 3.23, tR1 = 1370µs; C0 : φ = −4.19, tC0 = 1.04µs.

We could also keep the duration time of pulses constant, tC = tR = 1µs, and
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change the Rabi frequencies from pulse to pulse

R10 : φ = π, ΩR
10 = 94.9MHz; C9 : φ = 0, ΩC

9 = 2.89MHz,
R9 : φ = 0.47, ΩR

9 = 36.7MHz; C8 : φ = −0.83, ΩC
8 = 1.16MHz,

R8 : φ = 7.23, ΩR
8 = 33.1MHz; C7 : φ = 1.33, ΩC

7 = 1.30MHz,
R7 : φ = 4.26, ΩR

7 = 40.7MHz; C6 : φ = 2.41, ΩC
6 = 2.21MHz,

R6 : φ = 5.00, ΩR
6 = 43.9MHz; C5 : φ = −0.05, ΩC

5 = 1.60MHz,
R5 : φ = 1.82, ΩR

5 = 49.9MHz; C4 : φ = −0.86, ΩC
4 = 2.44MHz,

R4 : φ = 2.21, ΩR
4 = 49.1MHz; C3 : φ = −2.97, ΩC

3 = 1.92MHz,
R3 : φ = −1.30, ΩR

3 = 64.5MHz; C2 : φ = −3.93, ΩC
2 = 2.84MHz,

R2 : φ = −0.95, ΩR
2 = 66.4MHz; C1 : φ = −0.09, ΩC

1 = 2.84MHz,
R1 : φ = 3.23, ΩR

1 = 96.9MHz; C0 : φ = −4.19, ΩC
0 = 1.04MHz.

The phases will not change. As an initial state we take |φin〉 = (−0.97+0.25i)|0, g〉
and the Lamb-Dicke parameter η = 0.02.

5. Conclusion

In this paper we have presented a method of an effective approximated coherent
superposition state generation for a single trapped ion in a Paul trap.

At first, the ion is prepared in its ground state, both in motional and electronic
state. Then, step by step, the state is built up applying a series of laser pulses
tuned to the carrier resonance and red sideband interaction alternately.

Fixing the amplitude of the coherent state, we can approximate the cat state
arbitrary well, increasing the number of applied pulses.

The cat and kitten states with their amplitude α ≤ 2 are very well approx-
imated by a state which is available applying 20 laser pulses. The judgment is
based on a Wigner function comparison.
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15. R. Blatt and A. Steane, Quantum Information Processing and Communication in Europe,
pp. 161-169, European Communities (2005).

16. A. Ekert and Josza, Rev. Mod. Phys. 68, 733 (1996).

17. Ch. Roos et al., Phys. Rev. Lett. 83, 4713 (1999).

18. D. M. Meekhof et al., Phys. Rev. Lett. 76, 1796 (1996).

19. D. J. Heinzen and D. J. Wineland, Phys. Rev. A 42, 2977 (1990).
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