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Abstract

We compare two physical systems: polarization degrees of freedom of a macroscopic light beam and the
Josephson junction (JJ) in the "charge qubit regime". The first system obviously cannot carry genuine quantum
information and we show that the maximal entanglement which could be encoded into polarization of two light
beams scales like 1/(photon number). Two theories of JJ, one leading to the picture of "JJ-qubit" and the other
based on the mean-field approach are discussed. The later, which seems to be more appropriate, implies that
the JJ system is, essentially, mathematically equivalent to the polarization of a light beam with the number
of photons replaced by the number of Cooper pairs. The existing experiments consistent with the "JJ-qubit"
picture and the theoretical arguments supporting, on the contrary, the classical model are briefly discussed. The
Franck-Hertz-type experiment is suggested as an ultimate test of the JJ nature.

In the year 1852 Stokes proposed to describe the state of light beam polarization by a set of four real parameters
I,M,C, S satisfying the condition I > M2 + C? + 52. One can associate with those parameters a 2 x 2 "density
matrix" normalized to the intensity of the beam I as follows

L1
Q=5 (I60 + M6, + Cé, + 552) . (1)

Then, within the validity of the linear optics, any action of the optical device can be described by a completely posi-
tive and generally trace decreasing map (see Mueller and Jones calculus [I]) which transforms the input polarization
state into the output one . .

Qout = A Qi) - (2)

The Stokes parameters can be measured by applying the procedure analogical to the "tomography of a qubit
state". The formal analogy with the description of states of the 2-level system suggests the following question: Can
polarization state of a light beam encode a qubit?

To answer this question we consider the quantum origin of the "density matrix" €. It is in fact a correlation matrix
which can be written in terms of the quantum average

Q= Tr(pala,) - (3)

Here p is a density matrix describing quantum electromagnetic field of the beam and d}:,d“ are creation and
anihilation operators for the mode p. In particular for a monochromatic beam with a fixed wave vector k the
indices p, v = 1,2 correspond to different polarization basis and such Qisa positively defined matrix normalized to
the averaged number of photons in the beam and equivalent to the Stokes matrix (I)). The correlation matrix (3)
allows to compute mean values of the additive observables described by the operators of the form K =" k,waldu.

If our beam consists always of a single photon, then it corresponds to a qubit and the entangled states of two
photons can be produced [2]. Obviously, this is the only case when polarization describes a true qubit. To see how
those quantum properties vanish with the increasing number of photons we consider two beams with the associated
creation and annihilation operators ELL, Ay, bL,, b, , respectively. The correlation matrix which could now correspond
to "2- qubit density matrix" is given by

Cppt o = Tr(ﬁ aiduél'i)u’) (4)

and is normalized to the averaged product of photon numbers 7,m;. Denoting the normalized versions of () by
I' we can compute the upper bound for the amount of entanglement expressed in terms of negativity [3] N(6) =
$(Tr(|6"|) — 1) where 67 is a partially transposed 2-qubit density matrix. We can write now

- 1

~ A o 1 o . A
Ffm/,w, = naanr(p ala#bl,byl) = naanr(p (al,bi,)T(a#bL,)) - naanr(p alapn) o (5)
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As the first matrix on the RHS of (B is again a correlation matrix and hence positively defined we have

dng,

Tr(IT7)) <1
(T7) < 14— (6)
what yields the upper bound on the value of negativity
~ 2Mq 2
N({T) < ~— 7
(f) <t~ = ™)

As the estimation is symmetric with respect to both beams the upper bound on negativity is inversely proportional
to the largest averaged photon number. One should remember that for our case of 2 x 2 density matrices the
condition N (&) > 0 is a necessary and sufficient one for the entanglement [4].

The results of the above analysis seem to be rather obvious, as nobody expects to realize a qubit using polarization
of a macroscopic light beam. The next example is not obvious at all. The implementation of quantum information
processing based on the so-called superconducting qubits is considered to be quite promissing [5],[6]. Nevertheless,
we shall argue that the encoding of quantum information in superconducting qubits based on Josephson junctions
meets the same fundamental restrictions as in the case of macroscopic light polarization.

We consider for simplicity the version of JJ called "charge qubit" but the general results remain true for other
cases also. A system of two superconducting electrodes "1" and "2" separated by a thin layer of an insulator allows
for tunneling of Cooper pairs which are treated as a bosonic gas under the Bose-Einstein condensation conditions.
The electrode "1" is assumed to be small enough to make Coulomb interaction between Cooper pairs important.
We describe the system by creation and annihilation operators ELL, ay, ;o = 1,2 corresponding to the ground states
of a Cooper pair in the corresponding electrodes. The condition of the Bose-Einstein condensation for Cooper pairs
is necessary to achieve macroscopic occupation of the lowest energy levels in both electrodes. This phase-transition
makes a system of massive particles similar to a system of photons which, as massles, can always macroscopically
occupy a single mode. The later property follows formally from the relation: BEC-temperature ~ 1/boson’s mass.
The Hamiltonian describing the dynamics of the condensate is the following

H = He + = (aah + alan) (8)

where He is responsible for the Coulomb interaction and the term proportional to A describes the tunneling of
Cooper pairs. In order to model the Coulomb interaction we "quantize" the classical expression for the energy of a
capacitor

Q2

9
5C (9)
where @ is an excess charge and C' is a capacity of the electrode "1". The first method is based on the formal
substitution Q — —26[@1&1 — 7i1] where 717 is an averaged background number of Cooper pairs at the electrode "1"
and leads to the Hamiltonian

Ecap =

He = Eclala, —na)? (10)

with Ec = 2¢?/C. Using the relation |n — 71| << n; << N, satisfied in the relevant "charge qubit regime", we can

approximate (I0) by the Bose-Hubbard Hamiltonian which leads directly to the popular model of a "macroscopic

quantum system" [7],[8]. Such a quantum device should exhibit phase fluctuations of the order O(1/v/An) and

charge fluctuations of the order O(v/An) where An is a typical value of the excess number of pairs (Q = —2eAn).
There is another choice - the mean-field (Hartree-type) nonlinear (state-dependent) Hamiltonian

He = Bcl(a}ar) —mfalar —na] (11)

where (-) denotes the quantum average with respect to the actual state. There exist a number of physical and
mathematical arguments supporting the mean-field form (IIJ). First of all the mean field Hamiltonian (1)) provides
a more realistic picture of a quasi-particle charge feeling the averaged potential produced by all other quasi-particle
charges occupying the electrode "1". As their number is large (7; ~ 10%), the structure of quasi-particle is
strongly delocalized and the Coulomb interaction is a long-range one, the mean-field approximation seems to be
more appropriate. It is also important that due to superconducting phase transition the Cooper pairs occupy a
single quantum state. It follows that the density of the condensate is essentially a classical variable with quantum
fluctuations of the order 1/4/f;. To deal with such situations all standard theories use various types of mean-
field methods. In the Bogoliubov approach to superconductivity or superfluidity [9] the interaction Hamiltonian



terms quatric in field operators (¥1)(¢T4) are replaced by bilinear expressions with state -dependent coefficients
(ypT4p)9pTep. Similar self-consistent approximations are fundamental for the derivations of the Landau-Ginzburg and
the Gross-Pitaevski equations [10], [I1].

The Hartree-type Hamiltonian (I preserves the product structure of the states of Cooper pairs distributed
coherently among two electrodes (we omit the irrelevant overall phase factor)

|n, @) = \/% [\/%ewd]; +1/ N]; nd;}Nhjac) (12)

where N is a total number of Cooper pairs, n is their average number at the electrode "1" and ¢ is the relative
phase. Using again the relation |n — 71| << 7.3 << N to simplify the formulas we obtain the following evolution
equations for ¢ (pendulum equation)[12]

¢ =—w?sing (13)

where E; = A\\/T1 (N — ny), w? = 2E¢E;/h? and the additional relation ¢ = (E¢/h)[n — 7] holds.

The product structure of the state (I2)) implies, for large N, normal fluctuations of the phase ¢ and the quasi-
particle number n of the order 1/4/n1 and /i1, respectively. This agrees with the standard picture of the phase
¢ being an order parameter associated with the superconductivity phase transition which becomes a classical
observable in the limit n — oco. Such an observable should display normal fluctuations except for the case of the
critical temperature. Quadratic in creation and annihilation operators structure of the mean-field Hamiltonian (T
implies also the existence of a closed but nonlinear evolution equation for the correlation matrix €2, = Tr(ﬁ dldu).
This simple, "single-particle" structure of the evolution is preserved even for the model of JJ device interacting with
an environment, if the main source of dissipation is escape and return of quasi-particles to the condensate phase.
Therefore a nonlinear version of the dynamical map (2) makes sense for JJ also. In fact the analogy to a light
beam is even closer. If we take into account photon-photon scattering predicted by the quantum electrodynamics
the map (@) must be also nonlinear. The fact that the measurable quantities of JJ are completely determined by
the correlation matrix €2, similarly to the polarization of a light beam, implies that the estimation of the amount
of entanglement which can be encoded into a pair of two light beams () can be applied for two JJ devices as well.

The arguments of above supporting the picture of JJ as an essentially classical system seem to contradict the
existing experiments [13]. In particular those experiments show coherent oscillations of a charge, spectral evidence of
the coupling between two JJ’s and, finally the "entanglement of the superconducting qubits via state tomography".
One should, however, notice that the experimental results are merely consistent with the mathematical model based
on the quantum picture of JJ. It does not mean that they cannot be also consistent with the classical JJ model
and, indeed, the numerical analysis of the classical microwave-driven JJ presented in [14] show that this is the case.
Unfortunately, it is not easy to design an experiment which could ultimately reject one of the models. The natural
candidate - model-independent test of Bell inequalities- is rather nonconclusive because of the strong presence of
the "locality loophole" in the case of coupled JJ devices [15]. Perhaps, the old idea of the Franck-Hertz experiment
could be implemented here. Assume, we can couple a single JJ device, working in the regime corresponding to
a "few-level quantum system", to another system with a continuous energy spectrum. If this energy would be
absorbed by the JJ device in quantized portions Aw then the classical model should be dismissed.
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