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Abstra
t

We 
ompare two physi
al systems: polarization degrees of freedom of a ma
ros
opi
 light beam and the

Josephson jun
tion (JJ) in the "
harge qubit regime". The �rst system obviously 
annot 
arry genuine quantum

information and we show that the maximal entanglement whi
h 
ould be en
oded into polarization of two light

beams s
ales like 1/(photon number). Two theories of JJ, one leading to the pi
ture of "JJ-qubit" and the other

based on the mean-�eld approa
h are dis
ussed. The later, whi
h seems to be more appropriate, implies that

the JJ system is, essentially, mathemati
ally equivalent to the polarization of a light beam with the number

of photons repla
ed by the number of Cooper pairs. The existing experiments 
onsistent with the "JJ-qubit"

pi
ture and the theoreti
al arguments supporting, on the 
ontrary, the 
lassi
al model are brie�y dis
ussed. The

Fran
k-Hertz-type experiment is suggested as an ultimate test of the JJ nature.

In the year 1852 Stokes proposed to des
ribe the state of light beam polarization by a set of four real parameters

I,M,C, S satisfying the 
ondition I ≥
√
M2 + C2 + S2

. One 
an asso
iate with those parameters a 2× 2 "density

matrix" normalized to the intensity of the beam I as follows

Ω̂ =
1

2
(Iσ̂0 +Mσ̂x + Cσ̂y + Sσ̂z) . (1)

Then, within the validity of the linear opti
s, any a
tion of the opti
al devi
e 
an be des
ribed by a 
ompletely posi-

tive and generally tra
e de
reasing map (see Mueller and Jones 
al
ulus [1℄) whi
h transforms the input polarization

state into the output one

Ω̂out = Λ(Ω̂in) . (2)

The Stokes parameters 
an be measured by applying the pro
edure analogi
al to the "tomography of a qubit

state". The formal analogy with the des
ription of states of the 2-level system suggests the following question: Can

polarization state of a light beam en
ode a qubit?

To answer this question we 
onsider the quantum origin of the "density matrix" Ω. It is in fa
t a 
orrelation matrix

whi
h 
an be written in terms of the quantum average

Ωµν = Tr
(

ρ̂ â†ν âµ
)

. (3)

Here ρ̂ is a density matrix des
ribing quantum ele
tromagneti
 �eld of the beam and â†µ, âµ are 
reation and

anihilation operators for the mode µ. In parti
ular for a mono
hromati
 beam with a �xed wave ve
tor k the

indi
es µ, ν = 1, 2 
orrespond to di�erent polarization basis and su
h Ω̂ is a positively de�ned matrix normalized to

the averaged number of photons in the beam and equivalent to the Stokes matrix (1). The 
orrelation matrix (3)

allows to 
ompute mean values of the additive observables des
ribed by the operators of the form K =
∑

kµνa
†
ν âµ.

If our beam 
onsists always of a single photon, then it 
orresponds to a qubit and the entangled states of two

photons 
an be produ
ed [2℄. Obviously, this is the only 
ase when polarization des
ribes a true qubit. To see how

those quantum properties vanish with the in
reasing number of photons we 
onsider two beams with the asso
iated


reation and annihilation operators â†µ, âµ, b̂
†
µ′ , b̂µ′

, respe
tively. The 
orrelation matrix whi
h 
ould now 
orrespond

to "2- qubit density matrix" is given by

Γµµ′,νν′ = Tr
(

ρ̂ â†ν âµb̂
†
ν′ b̂µ′

)

(4)

and is normalized to the averaged produ
t of photon numbers nanb. Denoting the normalized versions of (4) by

Γ̃ we 
an 
ompute the upper bound for the amount of entanglement expressed in terms of negativity [3℄ N(σ̂) =
1

2
(Tr(|σ̂Γ|)− 1) where σ̂Γ

is a partially transposed 2-qubit density matrix. We 
an write now

Γ̃Γ

µµ′,νν′ =
1

nanb

Tr
(

ρ̂ â†ν âµb̂
†
µ′ b̂ν′

)

=
1

nanb

Tr
(

ρ̂ (âν b̂
†
ν′)

†(âµb̂
†
µ′)

)

− 1

nanb

Tr
(

ρ̂ â†ν âµ
)

δµ′ν′ . (5)
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As the �rst matrix on the RHS of (5) is again a 
orrelation matrix and hen
e positively de�ned we have

Tr
(

|Γ̃Γ|
)

≤ 1 +
4n̄a

nanb

(6)

what yields the upper bound on the value of negativity

N(Γ̃) ≤ 2n̄a

nanb

≃ 2

n̄b

. (7)

As the estimation is symmetri
 with respe
t to both beams the upper bound on negativity is inversely proportional

to the largest averaged photon number. One should remember that for our 
ase of 2 × 2 density matri
es the


ondition N(σ̂) > 0 is a ne
essary and su�
ient one for the entanglement [4℄.

The results of the above analysis seem to be rather obvious, as nobody expe
ts to realize a qubit using polarization

of a ma
ros
opi
 light beam. The next example is not obvious at all. The implementation of quantum information

pro
essing based on the so-
alled super
ondu
ting qubits is 
onsidered to be quite promissing [5℄,[6℄. Nevertheless,

we shall argue that the en
oding of quantum information in super
ondu
ting qubits based on Josephson jun
tions

meets the same fundamental restri
tions as in the 
ase of ma
ros
opi
 light polarization.

We 
onsider for simpli
ity the version of JJ 
alled "
harge qubit" but the general results remain true for other


ases also. A system of two super
ondu
ting ele
trodes "1" and "2" separated by a thin layer of an insulator allows

for tunneling of Cooper pairs whi
h are treated as a bosoni
 gas under the Bose-Einstein 
ondensation 
onditions.

The ele
trode "1" is assumed to be small enough to make Coulomb intera
tion between Cooper pairs important.

We des
ribe the system by 
reation and annihilation operators â†µ, âµ, µ = 1, 2 
orresponding to the ground states

of a Cooper pair in the 
orresponding ele
trodes. The 
ondition of the Bose-Einstein 
ondensation for Cooper pairs

is ne
essary to a
hieve ma
ros
opi
 o

upation of the lowest energy levels in both ele
trodes. This phase-transition

makes a system of massive parti
les similar to a system of photons whi
h, as massles, 
an always ma
ros
opi
ally

o

upy a single mode. The later property follows formally from the relation: BEC-temperature ∼ 1/boson's mass.

The Hamiltonian des
ribing the dynami
s of the 
ondensate is the following

Ĥ = ĤC +
λ

2
(â1â

†
2
+ â†

1
â2) (8)

where ĤC is responsible for the Coulomb intera
tion and the term proportional to λ des
ribes the tunneling of

Cooper pairs. In order to model the Coulomb intera
tion we "quantize" the 
lassi
al expression for the energy of a


apa
itor

Ecap =
Q2

2C
(9)

where Q is an ex
ess 
harge and C is a 
apa
ity of the ele
trode "1". The �rst method is based on the formal

substitution Q 7→ −2e[â†
1
â1 − n̄1] where n̄1 is an averaged ba
kground number of Cooper pairs at the ele
trode "1"

and leads to the Hamiltonian

ĤC = EC [â
†
1
â1 − n̄1]

2
(10)

with EC = 2e2/C. Using the relation |n− n̄1| << n̄1 << N , satis�ed in the relevant "
harge qubit regime", we 
an

approximate (10) by the Bose-Hubbard Hamiltonian whi
h leads dire
tly to the popular model of a "ma
ros
opi


quantum system" [7℄,[8℄. Su
h a quantum devi
e should exhibit phase �u
tuations of the order O(1/
√
∆n) and


harge �u
tuations of the order O(
√
∆n) where ∆n is a typi
al value of the ex
ess number of pairs (Q = −2e∆n).

There is another 
hoi
e - the mean-�eld (Hartree-type) nonlinear (state-dependent) Hamiltonian

ĤC = EC [〈â†1â1〉 − n̄1][â
†
1
â1 − n̄1] (11)

where 〈·〉 denotes the quantum average with respe
t to the a
tual state. There exist a number of physi
al and

mathemati
al arguments supporting the mean-�eld form (11). First of all the mean �eld Hamiltonian (11) provides

a more realisti
 pi
ture of a quasi-parti
le 
harge feeling the averaged potential produ
ed by all other quasi-parti
le


harges o

upying the ele
trode "1". As their number is large (n̄1 ∼ 109), the stru
ture of quasi-parti
le is

strongly delo
alized and the Coulomb intera
tion is a long-range one, the mean-�eld approximation seems to be

more appropriate. It is also important that due to super
ondu
ting phase transition the Cooper pairs o

upy a

single quantum state. It follows that the density of the 
ondensate is essentially a 
lassi
al variable with quantum

�u
tuations of the order 1/
√
n̄1. To deal with su
h situations all standard theories use various types of mean-

�eld methods. In the Bogoliubov approa
h to super
ondu
tivity or super�uidity [9℄ the intera
tion Hamiltonian
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terms quatri
 in �eld operators (ψ†ψ)(ψ†ψ) are repla
ed by bilinear expressions with state -dependent 
oe�
ients

〈ψ†ψ〉ψ†ψ. Similar self-
onsistent approximations are fundamental for the derivations of the Landau-Ginzburg and

the Gross-Pitaevski equations [10℄, [11℄.

The Hartree-type Hamiltonian (11) preserves the produ
t stru
ture of the states of Cooper pairs distributed


oherently among two ele
trodes (we omit the irrelevant overall phase fa
tor)

|n, φ〉 = 1√
N !

[

√

n

N
eiφâ†

1
+

√

N − n

N
â†
2

]N

|vac〉 (12)

where N is a total number of Cooper pairs, n is their average number at the ele
trode "1" and φ is the relative

phase. Using again the relation |n − n̄1| << n̄1 << N to simplify the formulas we obtain the following evolution

equations for φ (pendulum equation)[12℄

φ̈ = −ω2 sinφ (13)

where EJ = λ
√

n̄1(N − n̄1), ω
2 = 2ECEJ/~

2
and the additional relation φ̇ = (EC/~)[n− n̄1] holds.

The produ
t stru
ture of the state (12) implies, for large N , normal �u
tuations of the phase φ and the quasi-

parti
le number n of the order 1/
√
n̄1 and

√
n̄1, respe
tively. This agrees with the standard pi
ture of the phase

φ being an order parameter asso
iated with the super
ondu
tivity phase transition whi
h be
omes a 
lassi
al

observable in the limit n → ∞. Su
h an observable should display normal �u
tuations ex
ept for the 
ase of the


riti
al temperature. Quadrati
 in 
reation and annihilation operators stru
ture of the mean-�eld Hamiltonian (11)

implies also the existen
e of a 
losed but nonlinear evolution equation for the 
orrelation matrix Ωµν = Tr
(

ρ̂ â†ν âµ
)

.

This simple, "single-parti
le" stru
ture of the evolution is preserved even for the model of JJ devi
e intera
ting with

an environment, if the main sour
e of dissipation is es
ape and return of quasi-parti
les to the 
ondensate phase.

Therefore a nonlinear version of the dynami
al map (2) makes sense for JJ also. In fa
t the analogy to a light

beam is even 
loser. If we take into a

ount photon-photon s
attering predi
ted by the quantum ele
trodynami
s

the map (2) must be also nonlinear. The fa
t that the measurable quantities of JJ are 
ompletely determined by

the 
orrelation matrix Ωµν , similarly to the polarization of a light beam, implies that the estimation of the amount

of entanglement whi
h 
an be en
oded into a pair of two light beams (7) 
an be applied for two JJ devi
es as well.

The arguments of above supporting the pi
ture of JJ as an essentially 
lassi
al system seem to 
ontradi
t the

existing experiments [13℄. In parti
ular those experiments show 
oherent os
illations of a 
harge, spe
tral eviden
e of

the 
oupling between two JJ's and, �nally the "entanglement of the super
ondu
ting qubits via state tomography".

One should, however, noti
e that the experimental results are merely 
onsistent with the mathemati
al model based

on the quantum pi
ture of JJ. It does not mean that they 
annot be also 
onsistent with the 
lassi
al JJ model

and, indeed, the numeri
al analysis of the 
lassi
al mi
rowave-driven JJ presented in [14℄ show that this is the 
ase.

Unfortunately, it is not easy to design an experiment whi
h 
ould ultimately reje
t one of the models. The natural


andidate - model-independent test of Bell inequalities- is rather non
on
lusive be
ause of the strong presen
e of

the "lo
ality loophole" in the 
ase of 
oupled JJ devi
es [15℄. Perhaps, the old idea of the Fran
k-Hertz experiment


ould be implemented here. Assume, we 
an 
ouple a single JJ devi
e, working in the regime 
orresponding to

a "few-level quantum system", to another system with a 
ontinuous energy spe
trum. If this energy would be

absorbed by the JJ devi
e in quantized portions ~ω then the 
lassi
al model should be dismissed.
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