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Abstrat

We ompare two physial systems: polarization degrees of freedom of a marosopi light beam and the

Josephson juntion (JJ) in the "harge qubit regime". The �rst system obviously annot arry genuine quantum

information and we show that the maximal entanglement whih ould be enoded into polarization of two light

beams sales like 1/(photon number). Two theories of JJ, one leading to the piture of "JJ-qubit" and the other

based on the mean-�eld approah are disussed. The later, whih seems to be more appropriate, implies that

the JJ system is, essentially, mathematially equivalent to the polarization of a light beam with the number

of photons replaed by the number of Cooper pairs. The existing experiments onsistent with the "JJ-qubit"

piture and the theoretial arguments supporting, on the ontrary, the lassial model are brie�y disussed. The

Frank-Hertz-type experiment is suggested as an ultimate test of the JJ nature.

In the year 1852 Stokes proposed to desribe the state of light beam polarization by a set of four real parameters

I,M,C, S satisfying the ondition I ≥
√
M2 + C2 + S2

. One an assoiate with those parameters a 2× 2 "density

matrix" normalized to the intensity of the beam I as follows

Ω̂ =
1

2
(Iσ̂0 +Mσ̂x + Cσ̂y + Sσ̂z) . (1)

Then, within the validity of the linear optis, any ation of the optial devie an be desribed by a ompletely posi-

tive and generally trae dereasing map (see Mueller and Jones alulus [1℄) whih transforms the input polarization

state into the output one

Ω̂out = Λ(Ω̂in) . (2)

The Stokes parameters an be measured by applying the proedure analogial to the "tomography of a qubit

state". The formal analogy with the desription of states of the 2-level system suggests the following question: Can

polarization state of a light beam enode a qubit?

To answer this question we onsider the quantum origin of the "density matrix" Ω. It is in fat a orrelation matrix

whih an be written in terms of the quantum average

Ωµν = Tr
(

ρ̂ â†ν âµ
)

. (3)

Here ρ̂ is a density matrix desribing quantum eletromagneti �eld of the beam and â†µ, âµ are reation and

anihilation operators for the mode µ. In partiular for a monohromati beam with a �xed wave vetor k the

indies µ, ν = 1, 2 orrespond to di�erent polarization basis and suh Ω̂ is a positively de�ned matrix normalized to

the averaged number of photons in the beam and equivalent to the Stokes matrix (1). The orrelation matrix (3)

allows to ompute mean values of the additive observables desribed by the operators of the form K =
∑

kµνa
†
ν âµ.

If our beam onsists always of a single photon, then it orresponds to a qubit and the entangled states of two

photons an be produed [2℄. Obviously, this is the only ase when polarization desribes a true qubit. To see how

those quantum properties vanish with the inreasing number of photons we onsider two beams with the assoiated

reation and annihilation operators â†µ, âµ, b̂
†
µ′ , b̂µ′

, respetively. The orrelation matrix whih ould now orrespond

to "2- qubit density matrix" is given by

Γµµ′,νν′ = Tr
(

ρ̂ â†ν âµb̂
†
ν′ b̂µ′

)

(4)

and is normalized to the averaged produt of photon numbers nanb. Denoting the normalized versions of (4) by

Γ̃ we an ompute the upper bound for the amount of entanglement expressed in terms of negativity [3℄ N(σ̂) =
1

2
(Tr(|σ̂Γ|)− 1) where σ̂Γ

is a partially transposed 2-qubit density matrix. We an write now

Γ̃Γ

µµ′,νν′ =
1

nanb

Tr
(

ρ̂ â†ν âµb̂
†
µ′ b̂ν′

)

=
1

nanb

Tr
(

ρ̂ (âν b̂
†
ν′)

†(âµb̂
†
µ′)

)

− 1

nanb

Tr
(

ρ̂ â†ν âµ
)

δµ′ν′ . (5)
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As the �rst matrix on the RHS of (5) is again a orrelation matrix and hene positively de�ned we have

Tr
(

|Γ̃Γ|
)

≤ 1 +
4n̄a

nanb

(6)

what yields the upper bound on the value of negativity

N(Γ̃) ≤ 2n̄a

nanb

≃ 2

n̄b

. (7)

As the estimation is symmetri with respet to both beams the upper bound on negativity is inversely proportional

to the largest averaged photon number. One should remember that for our ase of 2 × 2 density matries the

ondition N(σ̂) > 0 is a neessary and su�ient one for the entanglement [4℄.

The results of the above analysis seem to be rather obvious, as nobody expets to realize a qubit using polarization

of a marosopi light beam. The next example is not obvious at all. The implementation of quantum information

proessing based on the so-alled superonduting qubits is onsidered to be quite promissing [5℄,[6℄. Nevertheless,

we shall argue that the enoding of quantum information in superonduting qubits based on Josephson juntions

meets the same fundamental restritions as in the ase of marosopi light polarization.

We onsider for simpliity the version of JJ alled "harge qubit" but the general results remain true for other

ases also. A system of two superonduting eletrodes "1" and "2" separated by a thin layer of an insulator allows

for tunneling of Cooper pairs whih are treated as a bosoni gas under the Bose-Einstein ondensation onditions.

The eletrode "1" is assumed to be small enough to make Coulomb interation between Cooper pairs important.

We desribe the system by reation and annihilation operators â†µ, âµ, µ = 1, 2 orresponding to the ground states

of a Cooper pair in the orresponding eletrodes. The ondition of the Bose-Einstein ondensation for Cooper pairs

is neessary to ahieve marosopi oupation of the lowest energy levels in both eletrodes. This phase-transition

makes a system of massive partiles similar to a system of photons whih, as massles, an always marosopially

oupy a single mode. The later property follows formally from the relation: BEC-temperature ∼ 1/boson's mass.

The Hamiltonian desribing the dynamis of the ondensate is the following

Ĥ = ĤC +
λ

2
(â1â

†
2
+ â†

1
â2) (8)

where ĤC is responsible for the Coulomb interation and the term proportional to λ desribes the tunneling of

Cooper pairs. In order to model the Coulomb interation we "quantize" the lassial expression for the energy of a

apaitor

Ecap =
Q2

2C
(9)

where Q is an exess harge and C is a apaity of the eletrode "1". The �rst method is based on the formal

substitution Q 7→ −2e[â†
1
â1 − n̄1] where n̄1 is an averaged bakground number of Cooper pairs at the eletrode "1"

and leads to the Hamiltonian

ĤC = EC [â
†
1
â1 − n̄1]

2
(10)

with EC = 2e2/C. Using the relation |n− n̄1| << n̄1 << N , satis�ed in the relevant "harge qubit regime", we an

approximate (10) by the Bose-Hubbard Hamiltonian whih leads diretly to the popular model of a "marosopi

quantum system" [7℄,[8℄. Suh a quantum devie should exhibit phase �utuations of the order O(1/
√
∆n) and

harge �utuations of the order O(
√
∆n) where ∆n is a typial value of the exess number of pairs (Q = −2e∆n).

There is another hoie - the mean-�eld (Hartree-type) nonlinear (state-dependent) Hamiltonian

ĤC = EC [〈â†1â1〉 − n̄1][â
†
1
â1 − n̄1] (11)

where 〈·〉 denotes the quantum average with respet to the atual state. There exist a number of physial and

mathematial arguments supporting the mean-�eld form (11). First of all the mean �eld Hamiltonian (11) provides

a more realisti piture of a quasi-partile harge feeling the averaged potential produed by all other quasi-partile

harges oupying the eletrode "1". As their number is large (n̄1 ∼ 109), the struture of quasi-partile is

strongly deloalized and the Coulomb interation is a long-range one, the mean-�eld approximation seems to be

more appropriate. It is also important that due to superonduting phase transition the Cooper pairs oupy a

single quantum state. It follows that the density of the ondensate is essentially a lassial variable with quantum

�utuations of the order 1/
√
n̄1. To deal with suh situations all standard theories use various types of mean-

�eld methods. In the Bogoliubov approah to superondutivity or super�uidity [9℄ the interation Hamiltonian
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terms quatri in �eld operators (ψ†ψ)(ψ†ψ) are replaed by bilinear expressions with state -dependent oe�ients

〈ψ†ψ〉ψ†ψ. Similar self-onsistent approximations are fundamental for the derivations of the Landau-Ginzburg and

the Gross-Pitaevski equations [10℄, [11℄.

The Hartree-type Hamiltonian (11) preserves the produt struture of the states of Cooper pairs distributed

oherently among two eletrodes (we omit the irrelevant overall phase fator)

|n, φ〉 = 1√
N !

[

√

n

N
eiφâ†

1
+

√

N − n

N
â†
2

]N

|vac〉 (12)

where N is a total number of Cooper pairs, n is their average number at the eletrode "1" and φ is the relative

phase. Using again the relation |n − n̄1| << n̄1 << N to simplify the formulas we obtain the following evolution

equations for φ (pendulum equation)[12℄

φ̈ = −ω2 sinφ (13)

where EJ = λ
√

n̄1(N − n̄1), ω
2 = 2ECEJ/~

2
and the additional relation φ̇ = (EC/~)[n− n̄1] holds.

The produt struture of the state (12) implies, for large N , normal �utuations of the phase φ and the quasi-

partile number n of the order 1/
√
n̄1 and

√
n̄1, respetively. This agrees with the standard piture of the phase

φ being an order parameter assoiated with the superondutivity phase transition whih beomes a lassial

observable in the limit n → ∞. Suh an observable should display normal �utuations exept for the ase of the

ritial temperature. Quadrati in reation and annihilation operators struture of the mean-�eld Hamiltonian (11)

implies also the existene of a losed but nonlinear evolution equation for the orrelation matrix Ωµν = Tr
(

ρ̂ â†ν âµ
)

.

This simple, "single-partile" struture of the evolution is preserved even for the model of JJ devie interating with

an environment, if the main soure of dissipation is esape and return of quasi-partiles to the ondensate phase.

Therefore a nonlinear version of the dynamial map (2) makes sense for JJ also. In fat the analogy to a light

beam is even loser. If we take into aount photon-photon sattering predited by the quantum eletrodynamis

the map (2) must be also nonlinear. The fat that the measurable quantities of JJ are ompletely determined by

the orrelation matrix Ωµν , similarly to the polarization of a light beam, implies that the estimation of the amount

of entanglement whih an be enoded into a pair of two light beams (7) an be applied for two JJ devies as well.

The arguments of above supporting the piture of JJ as an essentially lassial system seem to ontradit the

existing experiments [13℄. In partiular those experiments show oherent osillations of a harge, spetral evidene of

the oupling between two JJ's and, �nally the "entanglement of the superonduting qubits via state tomography".

One should, however, notie that the experimental results are merely onsistent with the mathematial model based

on the quantum piture of JJ. It does not mean that they annot be also onsistent with the lassial JJ model

and, indeed, the numerial analysis of the lassial mirowave-driven JJ presented in [14℄ show that this is the ase.

Unfortunately, it is not easy to design an experiment whih ould ultimately rejet one of the models. The natural

andidate - model-independent test of Bell inequalities- is rather nononlusive beause of the strong presene of

the "loality loophole" in the ase of oupled JJ devies [15℄. Perhaps, the old idea of the Frank-Hertz experiment

ould be implemented here. Assume, we an ouple a single JJ devie, working in the regime orresponding to

a "few-level quantum system", to another system with a ontinuous energy spetrum. If this energy would be

absorbed by the JJ devie in quantized portions ~ω then the lassial model should be dismissed.
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