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The role of Surface Plasmon modes in the Casimir Effect
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Abstract. In this paper we study the role of surface plasmon modes in the Casimir effect. First
we write the Casimir energy as a sum over the modes of a real cavity. We may identify two
sorts of modes, two evanescent surface plasmon modes and propagative modes. As one of the
surface plasmon modes becomes propagative for some choice of parameters we adopt an adiabatic
mode definition where we follow this mode into the propagative sector and count it together with
the surface plasmon contribution, calling this contribution ”plasmonic”. The remaining modes
are propagative cavity modes, which we call ”photonic”. The Casimir energy contains two main
contributions, one coming from the plasmonic, the other from the photonic modes. Surprisingly
we find that the plasmonic contribution to the Casimir energy becomes repulsive for intermediate
and large mirror separations. Alternatively, we discuss the common surface plasmon defintion,
which includes only evanescent waves, where this effect is not found. We show that, in contrast
to an intuitive expectation, for both definitions the Casimir energy is the sum of two very large
contributions which nearly cancel each other. The contribution of surface plasmons to the Casimir
energy plays a fundamental role not only at short but also at large distances.

1. Introduction

An important prediction of quantum theory is the existence of irreducible fluc-
tuations of electromagnetic fields even in vacuum, that is in the thermodynamical
equilibrium state with a zero temperature. These fluctuations have a number of
observable consequences in microscopic physics for example in atomic physics the
Van der Waals force between atoms in vacuum.

Vacuum fluctuations also have observable mechanical effects in macroscopic
physics and the archetype of these effects is the Casimir force between two mir-
rors at rest in vacuum. This force was predicted by H. Casimir in 1948 [1] who
considered two plane parallel perfect reflectors as shwon in Figure 1 and found an
interaction energy ECas depending only on geometrical parameters, the mirrors
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Figure 1: The configuration

studied by H. Casimir

distance L and surface A ≫ L2, and two fundamental constants, the speed of light
c and Planck constant ~

ECas = −~cπ2A

720L3
. (1)

The signs have been chosen to fit the thermodynamical convention with the minus
sign of the energy ECas corresponding to a binding energy. The Casimir energy for
perfect mirrors is usually obtained by summing the zero-point energies ~ω

2 of the
cavity eigenmodes, substracting the result for finite and infinite separation, and
extracting the regular expression (1) by inserting a formal high-energy cutoff and
using the Euler-McLaurin formula [2].

The Casimir force was soon observed in different experiments which confirmed
its existence [3, 4, 5]. Recent experiments have reached a good precision, in the %
range, which makes possible an accurate comparison between theoretical predic-
tions and experimental observations [6, 7].

Casimir considered an ideal configuration with two perfectly reflecting mirrors
in vacuum. But the experiments are performed with real reflectors, for example
metallic mirrors which have a perfect reflection only at frequencies below a plasma
frequency ωP or alternatively for mirror separations much larger than the plasma
wavelength λP characetristic for the metal. Accounting for this imperfect reflection
and its frequency dependence is thus essential for obtaining a reliable theoretical
expectation of the Casimir force in a real situation.

The consideration of real mirrors is important not only for the analysis of
experiments but also from a conceptual point of view. Real mirrors are certainly
transparent at the limit of high frequencies and this allows one to dispose of the
divergences associated with the infiniteness of vacuum energy. This point was
already alluded to in Casimir’s papers and an important step in this direction
was the Lifshitz theory of the Casimir force between two dielectric bulks [8, 9].
However this idea was fully implemented in theoretical derivations after a quite
long period.
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In the limit of small separations L ≪ λP, the Casimir effect has another inter-
pretation establishing a bridge between quantum field theory of vacuum fluctua-
tions and condensed matter theory of forces between two metallic bulks. It can
indeed be understood as resulting from the Coulomb interaction between surface
plasmons, that is the collective electron excitations propagating on the interface
between each bulk and the intracavity vacuum [10, 11]. The corresponding field
modes are evanescent waves and have an imaginary longitudinal wavevector. At
short distances, surface plasmon modes are known to dominate the interaction and
the Casimir energy reduces to [12, 13]

E ≈ Epl =
3

2
α
L

λP
with α = 1.193... (2)

Surface plasmons play an important role in many fields of physics. Let us
only mention as recent examples the surface plasmon assisted enhancement of the
transmission of light through metallic structures [14, 15, 16] or in the context of
biomolecular physics, the importance of plasmon fluctuations of a 2-dimensional
Wigner-like crystal where they can generate an attractive component to the dis-
persion forces between parallel surfaces [17].

Here, we derive and expand in more detail the results previously given in Ref.
[18], investigating more closely the influence of surface plasmons on the Casimir
energy, not only at short but at arbitrary distances.

2. Casimir energy for real mirrors

We restrict our attention to the situation of two infinitely large plane mirrors
at zero temperature so that the only modification of the Casimir formula (1) is
due to the metals finite conductivity. This modification is calculated by evaluating
the radiation pressure of vacuum fields upon the two mirrors [19]

E = −
∑

ǫ

∑

k

∑

ω

i~

2
ln(1− rp

k
[ω]2e2ikzL) + c.c. (3)

∑

k

≡ A

∫
d2k

4π2
,
∑

ω

≡
∫ ∞

0

dω

2π

The energy E is obtained by summing over polarization p=(TE,TM), transverse
wavevector k ≡ (kx, ky) (with z the longitudinal axis of the cavity) and frequency
ω; kz is the longitudinal wavevector associated with the mode. rp

k
are the reflection

amplitudes here supposed to be the same for the two mirrors.
Imperfectly reflecting mirrors will be described by scattering amplitudes which

depend on the frequency, wavevector and polarization while obeying general prop-
erties of stability, high-frequency transparency and causality. The two mirrors
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form a Fabry-Perot cavity with the consequences well-known in classical or quan-
tum optics : the energy density of the intracavity field is increased for the res-
onant frequency components whereas it is decreased for the non resonant ones.
The Casimir force is but the result of the balance between the radiation pressure
of the resonant and non resonant modes which push the mirrors respectively to-
wards the outer and inner sides of the cavity [20]. This balance includes not only
the contributions of ordinary waves propagating freely outside the cavity but also
that of evanescent waves. These two sectors of ordinary and evanescent waves are
directly connected by analyticity properties of the scattering amplitudes.

Expression (3) holds for dissipative mirrors as well as for non dissipative ones
[19]. It tends towards the ideal Casimir formula (1) as soon as the mirrors are
nearly perfect for the modes contributing to the integral.

The reduction of the Casimir energy (3) with respect to the ideal formula (1)
due to the imperfect reflection of mirrors is described by a factor

ηE =
E

ECas
(4)

This factor plays an important role in the discussion of the most precise recent
experiments.

3. Mode decomposition of the Casimir energy

We now recalculate the Casimir energy as a sum over the cavity modes using
the plasma model for the mirrors dielectric function.

ε(ω) = 1− ω2
P

ω2
, λP =

2πc

ωP
(5)

with ωP the plasma frequency and λP the plasma wavelength.
In this case the zeros of the argument of the integrand in (3) lie on the real

axis. In fact, they have to be pushed slightly below this axis by introducing a
vanishing dissipation parameter in order to avoid any ambiguity in expression (3)
[19]. We may then rewrite (3) as a sum over the solutions

[
ωp
k

]

m
of the equation

labeled by an integer index m

rp
k
[ω]2e2ikzL = 1. (6)

Simple algebraic manipulations exploiting residues theorem and complex integra-
tion techniques [11] then lead to the Casimir energy expressed as sums over these
modes

E =
∑

p,k

[ ′∑

m

~
[
ωp
k

]

m

2

]L

L→∞

. (7)
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The prime in the sum over m signifies as usually that the term m = 0 has to be
multiplied by 1/2. The sum over the modes is to be understood as a regularized
quantity as it involves infinite quantities. The upper expression contains as limiting
cases at large distances the Casimir expression with perfect mirrors and at short
distances the expression in terms of surface plasmon resonances (2).

The ensemble of modes appearing in Eqn. (7) can be separated into two
different ensembles. The TM polarization admits propagating cavity modes as
well as evanescent modes, while the TE polarization allows only propagating cavity
modes. The first ensemble contains two modes ω+ and ω− which tend to the usual
surface plasmon modes at short distances. ω− is always in the evanescent sector,
while ω+ lies either in the evanescent or in the propagating sector depending
on its parameters as shown in Fig. 2. The second ensemble are propagating
cavity modes which may have TE or TM polarization. In view of the particular
behavior of the ω+ mode, we adopt an adiabatic mode definition, where we follow
it continuously from the evanescent into the propagative sector and attribute the
whole mode to the surface plasmon modes, which we call ”plasmonic modes”
[18]. This denomination is chosen in order to avoid confusion with the (common)
definition of surface plasmon modes which defines them as evanescent modes only
and cuts the ω+ mode into two pieces. Plasmonic modes are thus the cavity modes
living in the evanescent sector at least for some particular value of their parameters.
In the same line of reasoning we call all propagative modes minus the propagative
part of the ω+ mode ”photonic” modes. Photonic modes are the cavity modes
propagating for all cavity length. In the limit L → ∞, all propagative modes
tend asymptotically to the eigenmodes of the perfect cavity. The frequencies of
the plasmonic modes ω+ and ω− degenerate in the limit L → ∞ to the surface
plasmon frequency ω0 for a single interface [21]

ω±
L→∞−−−−→ ω0[k] =

√
√
√
√ω2

P + 2 |k|2 −
√

ω4
P + 4 |k|4

2
(8)

The Casimir energy can now be rewritten as

E =
∑

p,k

[
∑

n

~ωp
n

2

]L

L→∞

=
∑

k

[
~ω+

2
+

~ω−
2

]L

L→∞
︸ ︷︷ ︸

plasmonic Contribution (Epl)

+
∑

p,k

[
∑

n

~ωp
n

2

]L

L→∞
︸ ︷︷ ︸

photonic Contribution (Eph)

(9)

Note that both contributions have no physical meaning on their own, i.e. one
cannot measure them separately. The only observable is the total Casimir energy
which is the sum of both contributions. We may rewrite the plasmonic contribution
to the Casimir energy in a more explicit way as follows

Epl = cA

∫
d2k

(2π)2
~

2
(ω+[k, L] + ω−[k, L]− 2ω0[k]) (10)
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Figure 2: A representa-

tion of the dispersion rela-

tion for the TM-modes with

the plasma model for L/λP =
1.5. The dashed curves repre-

sent the perfect cavity modes.

The solid grey curves rep-

resent the plasmonic modes

and the black curves the

photonic modes. The ω+-

mode changes its nature when

crossing the light-dispersion

curve.

The basic idea of the explicit calculation of the plasmonic contribution to the
Casimir energy resides in the fact that the frequencies functions ωi, i = 0, ±
are solutions of simple equations. We rewrite Eq.(10) in terms of dimensionless
variables

Epl = ηplECas, ηpl = −180

π3

∫ ∞

0

∑

i

cik Ωi[k]dk (11)

Ω = ωL, ΩP = ωPL, |k|L = k, z = k2 − Ω2 (12)

with c+ = c− = 1, c0 = −2. Ω0 is the dimensionless surface plasmon frequency for
a single mirror and we have introduced the corrective factor ηpl for the plasmonic
contribution to the Casimir energy. Note that

ηi = −180

π3

∫ ∞

0
k Ωi[k]dk, i = ±, 0 (13)

is divergent despite the convergence of the whole expression given in Eq. (10).
Without giving any details let us just mention that in order to perform the explicit
calculation we need to introduce a regularizing factor. Such a modification is
mathematically mathematical convenient and does not affect the final result.

It can be shown that the dimensionless frequencies Ωi[k] can be formally ob-
tained as

k2 = fi(z) ⇒ Ωi[k] =
√

k2 − f−1
i [k2], i = 0,± (14)
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where

f+(z) = z +
Ω2
p

√
z

√
z +

√

z +Ω2
P tanh[

√
z

2 ]
= z + g2+[z] (15a)

f−(z) = z +
Ω2
p

√
z

√
z +

√

z +Ω2
P coth[

√
z

2 ]
= z + g2−[z] (15b)

f0(z) = z +
Ω2
p

√
z

√
z +

√

z +Ω2
P

= z + g20 [z] (15c)

Let us also define
y2i = z0i = −f−1

i [0] = Ω2
i [0] (16)

With the change of variable k2 = z + g2i (z) and after some rearrangements Eqn.
(11) can be rewritten as

ηpl = −180

2π3

[
∫ ∞

0

∑

i

cigi(z)dz +

∫ 0

−z0+

g+(z)dz −
2

3
y3+

]

(17)

where we have exploited the fact that

z0+ 6= z0− = z00 = 0, f−1
i [∞] = ∞

fi(−z0i ) = 0 ⇒ gi(−z0i ) =
√

z0i and gi(∞) =
ΩP√
2

The corrective factor ηpl has a well defined structure: it is indeed decomposed
into an integral over the positive real z-axis plus an integral over an interval of
the negative z-axis plus a constant depending only on ΩP. Moreover only g+,
is involved in the last integral and in the constant. This particular structure
can be traced back to the properties of the plasmonic modes. The positive z-
value domain coincides with the evanescent sector while the negative one describes
the propagative sector. While the plasmonic mode ω− and the surface plasmon
frequency for a single mirror ω0 are totally contained in the evanescent sector,
the plasmonic mode ω+ lives in both sectors. Therefore g0 and g− describing the
properties of ω− and ω0 are contained only in the first integral while g+ has to be
evaluated in a wider range of z-values which includes an interval in the propagative
sector. The second integral in Eq. (17) is thus basically the propagative part
contribution of the plasmonic mode ω+.

Fig. 3 shows the numerical evaluation of Eqn. (17) for ηpl as function of L/λP

for two different distance intervals. The left graphic illustrates the short distance
behavior In the limit ΩP ≪ 1 the corrective factor ηpl can be approximated by the
first integral of Eq. (17). leading to



[Author and title] 8

Figure 3: The normalized plasmonic mode contribution to the Casimir force as function

of L/λP for two different distance intervals.

ηpl ≈ −180

2π3

ΩP√
2

∫ ∞

0

(√

1 + e−
√
z +

√

1− e−
√
z − 2

)

dz =
3

2
α
L

λP
(18)

We recover here the result of Eqn. (2). The right graphic in Fig. 3 shows the
plasmonic mode contribution ηpl at large distances. Surprisingly, it changes its sign
for L

λP
∼ 0.08 and its slope and diverges for L ≫ λP [18]. In the large distance

limit ΩP ≫ 1 we find the following asymptotic behavior

ηpl ≈ −Γ
√

ΩP, Γ = 29.752 (19)

The contribution of the plasmonic modes to the Casimir energy becomes thus
repulsive for intermediate and large distances. This result is based on an adiabatic
definition of the surface plasmon modes, where we follow the ω+ mode even when
it crosses the barrier ω = ck and becomes propagative.

Let us now compare this result to the common definition of surface plasmon
modes which includes only evanescent waves and cuts the ω+ mode at ω = ck as
for example done by Bordag recently [22]. This leads to

ηev = −180

π3

∫ ∞

kP

k (Ω+[k]− Ω0[k]) dk − 180

π3

∫ ∞

0
k (Ω−[k]− Ω0[k]) dk (20)

where
kP = g+(0) = ΩP/

√

1 + ΩP/2 (21)

is associated with the value of |k| for which this modes crosses the light cone. ηev
can be evaluated numerically [22], or using the same method developed here

ηev = −180

2π3

(
∫ ∞

0

∑

i

cigi(z)dz −
∫ 0

−zP0

g0(z)dz −
2

3

(
k3P − Ω3

0[kP]
)

)

(22)

where we have exploited the following relations

− zP0 = f−1
0 [kP] = k2P − Ω2

0[kP] ⇒ g0(−zP0 ) = Ω0[kP] (23)
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Eq. (22) shows the short distance asymptotic behavior of the total Casimir energy
given in (2) as it was reported in [12, 13]. It does not change its sign and, in
agreement with [22], at long distances goes as

ηev = βev
√

ΩP with βev = 1.62399... (24)

With this definition we therefore naturally find the result that the contribution of
the evanescent modes to the Casimir energy is always attractive and reproduces
well the short distance behavior of the Casimir energy.

4. Conclusion

As a concluding remark we would like to stress that, no matter how we attribute
the propagative part of the ω+ mode, whether to the surface plasmon modes in an
adiabatic definition (plasmonic modes) or to the propagating modes, the influence
of surface plasmons is very important at all distances. The Casimir energy is
the detailed balance of two very large contributions of opposite sign which nearly
cancel each other, but not quite, the difference being a small Casimir energy, much
smaller than each of both contributions.

It might be interesting to investigate if a change in the photon-plasmon cou-
pling could somehow influence this detailed balance and therefore the value or even
the sign of the Casimir force. A different coupling could be obtained by using for
example nanostructured surfaces. For such an analysis the adiabatic mode defini-
tion should be well suited, because for a different coupling the mode will change as
a whole and in following continuously the mode one could trace back the changes
introduced through the structured surface.

Bibliography

1. H.B.G. Casimir, Proc. Kon. Akad. Wet. 51 793 (1948).

2. C. Itzykson and J.B. Zuber, Quantum field theory (McGraw-Hill, 1985).

3. M.J. Sparnaay, in Physics in the Making eds Sarlemijn A. and Sparnaay M.J. (North-Holland,
1989) 235 and references therein.

4. P.W. Milonni, The quantum vacuum (Academic, 1994).

5. S.K. Lamoreaux, Resource Letter in Am. J. Phys. 67 (1999) 850.

6. M. Bordag, U. Mohideen and V.M. Mostepanenko, Phys. Reports 353 (2001) 1.

7. A. Lambrecht and S. Reynaud, Vacuum Energy and Renomalization eds. B. Duplantier and
V. Rivasseau (Birkhäuser, 2002), 107.
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