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Abstract

We give an interpretation of order
invariant functions as scale indepen-
dent functions for the aggregation on
finite ordinal scales. More precisely,
we show how order invariant func-
tions can act, through discrete rep-
resentatives, on ordinal scales rep-
resented by finite chains. In par-
ticular, this interpretation allows us
to justify the continuity property for
certain order invariant functions in a
natural way.
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1 Introduction

A finite ordinal scale can be defined in two
equivalent ways; one is symbolical and the
other is numerical. Symbolically, a finite or-
dinal scale is a finite chain (S, <), that is a
totally ordered finite set, whose elements are
ranked according to some criterion. For exam-
ple [6, 7], a scale of evaluation of a commodity
by a consumer such as

S={B<RB<A<MLG <G}

is a finite ordinal scale, whose elements B,
RB, A, MLG, G might refer to the follow-
ing linguistic terms: bad, rather bad, accept-
able, more or less good, good. Numerically, a
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finite ordinal scale is a finite and strictly in-
creasing sequence of real numbers defined up
to order and representing the possible rating
benchmarks defined along some criterion; see
e.g. [18]. For example, the sequences

(1,2,3,4,5) and (—6.5, —1.2, 8.7, 205.6, 750)

represent two equivalent versions of the scale
defined above.

The equivalence between these two definitions
follows immediately from the fact that the or-
der defined on any finite chain (S, <) can al-
ways be numerically represented in a real in-
terval £ C R by means of an order-preserving
utility function f : S — FE, which is defined
up to an increasing bijection ¢ : F — FE; see
e.g. [9].

Now, suppose that we have n evaluations ex-
pressed in the same ordinal scale (5,<) of
cardinality & = |S| and suppose we want
to aggregate these evaluations and obtain a
representative overall evaluation in the same
scale. Of course, we can use a discrete ag-
gregation function G : S™ — S, that is, a
ranking function sorting k™ m-tuples into k
classes. Alternatively, we can use a univer-
sal n-place aggregation function independent
of the ordinal scale used. In this latter case,
since no scale can be specified, the aggrega-
tion function must be a numerical function
M : E" — E. For instance, the classical me-
dian function, which gives the middle value
of an odd-length sequence of ordered values,
is a scale independent function able to aggre-
gate numerical values expressed on any ordi-
nal scale.



In this paper we investigate two types of scale
independent functions for the aggregation on
finite ordinal scales. First, we consider the
functions mapping n copies of the same ordi-
nal scale into itself (see Definition 4.1). Then,
we consider the functions mapping n copies of
the same ordinal scale into an ordinal scale
(see Definition 4.3). It appears that these
functions, known in the literature as order in-
variant functions, have already been investi-
gated and described in a pure numerical set-
ting [12] (see also [10, 14]). Our contribution
here is to interpret them as scale independent
functions, that is, numerical functions that
always have symbolical representatives when
acting upon specified ordinal scales.

We also show that, even though at first glance
it seems unappropriate to ask any order in-
variant function to be continuous, the conti-
nuity property can be interpreted in a very
natural way for those order invariant func-
tions of the first type.

The organization of the paper is as follows. In
§2 we introduce the notation and the assump-
tions that we adopt in this work. In §3 we
recall the concept of invariant subsets, which
is necessary to describe the scale independent
functions. In §4, we present separately the
two types of scale independent functions men-
tioned above. Finally, in §5 we investigate the
continuity property for those functions.

2 Preliminaries and notation

Let E be any real interval, bounded or not,
and let ey := inf E, e; := sup F, and E° :=
E \ {eg,e1}. We denote by B(E) the set of
included boundaries of F, that is

B(E) :={ep,e1} N E.

The automorphism group of F, that is the
group of all increasing bijections ¢ of F onto
itself, is denoted by A(E). For the sake of sim-
plicity, we also denote the index set {1,...,n}
by [n] and the minimum and maximum oper-
ations by A and V, respectively.

For any k > 2, a k-point ordinal scale (5, <)

will be denoted by
52{81482<"'<Sk}

where s; = s, (resp. s = s¥) is the bottom
element (resp. top element) of the scale and
< represents the asymmetric part of <.

Since the binary relation < is a total order
on a finite set S, it can always be numeri-
cally represented by a strictly increasing util-
ity function f :S — F such that

up

see [9, Chapter 1]. Such a utility function is
defined up to an automorphism ¢ € A(E);
that is, with f all functions f’ = ¢ o f (and
only these) represent the same order on S.
Thus, A(E) represents the set of all admissible
scale transformations, i.e., transformations of
E that lead from one numerical scale to an
equivalent one; see e.g. [18].

& ) { S} s,

Throughout, we will assume that f is
endpoint-preserving, that is, if ey € E (resp.
e1 € E) then f(s.) = e (resp. f(s*) = e;) for
all ordinal scale (5,<). This amounts to as-
suming that the ordinal scales all have a com-
mon bottom element s, (resp. a common top
element s*) whose numerical representation
is eg (resp. e1). This assumption is why we
consider numerical representations in a subset
FE of R, possibly non-open, rather than R it-
self. For example, if E = [0, 1], all the ordinal
scales we can consider have fixed endpoints.

To avoid a heavy notation, we will write ¢(x)
and f(a) instead of

(@(x1), ..., ¢(xn)) and (f(a1),.. ., f(an)),

respectively.

Finally, the range of any function f will be
denoted by ran(f).

3 Background on invariant subsets

In this section we recall the concept of invari-
ant subset, which will be useful throughout
this paper. For theoretical developments, see
e.g. [1, 12, 14].



Definition 3.1. A nonempty subset I C E”
is said to be invariant if

zel = ¢x)el (¢ € A(E)).
An invariant set I is said to be minimal if it
has no proper invariant subset.

The family Z(E™) of all minimal invariant
subsets of E™ provides a partition of E"
into equivalence classes, where x,y € E™ are
equivalent if there exists ¢ € A(FE) such that
y = ¢(x). A complete description of elements
of Z(E™) is given in the following proposition
[14]:

Proposition 3.1. We have I € Z(E™) if and
only if there exists a permutation ™ on [n] and
a sequence {<;}1_, of symbols <; € {<,=},
not all equality if e € E and e1 € E, such
that

I:{x S En|€0 <L Tr1) <1 <p—1Tr(n) In 61},

where g is < ifeg ¢ E and <, is < ife; ¢ E.

Example 3.1. The unit square [0, 1]? con-
tains exactly eleven minimal invariant sub-
sets, namely the open triangles {(z1,z2) | 0 <
x1 < xg < 1} and {(z1,22) |0 < 22 < 21 <
1}, the open diagonal {(z1,22) | 0 < 21 =
x9 < 1}, the four square vertices, and the
four open line segments joining neighboring
vertices.

4 Scale independent functions

In the present section we investigate the two
kinds of scale independent functions we have
mentioned in the introduction. Actually, we
will see that these functions are nothing else
than the so-called order invariant functions,
namely: invariant functions and comparison
meaningful functions.

4.1 Uniscale independent functions

The first scale independent functions we in-
vestigate are n-place numerical aggregation
functions whose input and output values are
expressed in the same ordinal scale. We call
them uniscale independent functions.

Definition 4.1. A function M : E" — FE
is said to be uniscale independent if, for any
finite ordinal scale (5, <), there exists an ag-
gregation function G : S™ — S such that, for
any endpoint-preserving numerical represen-
tation f: S — E of %, we have

M[f(a)] = flG(a)] ~ (a€S™). (1)
We then say that G represents M in (5, ).

As any admissible scale transformation of the
input values must lead to the same transfor-
mation of the output values, it seems that the
uniscale independent functions are invariant
functions in the following sense:

Definition 4.2. M : E™ — FE is said to be
an invariant function if

M[¢(x)] = o[M (x)]
for all x € E™ and all ¢ € A(E).

The invariant functions have been investi-
gated extensively by several authors; see e.g.
[10, 13, 14, 17]. Moreover, the full description
of those functions has been given very recently
as follows [12, 14]:

Theorem 4.1. M : E™ — E is an invariant
function if and only if, for any I € Z(E™) ei-
ther M|y = c € B(E) (if this constant exists)
or there exists i € [n] such that M|r = Pj|1 is
the ith coordinate projection.

Thus, an invariant function M : E™ — FE re-
duces to a constant or a coordinate projection
on every minimal invariant subset of E™. In
particular, we have

M(z) € {z1,...,2,} UB(E)  (x € E).

We now have the following result:

Proposition 4.1. The function M : E" —
FE is uniscale independent if and only if it is
mvariant.

According to Proposition 4.1, an invariant
function M : E™ — FE can always be rep-
resented by a discrete aggregation function
G : S™ — S on any ordinal scale (5, <), re-
gardless of the cardinality of this scale. More-
over, it is clear from Eq. (1) that G is uniquely
determined and isomorphic to the “restric-
tion” of M to S™.



Example 4.1. Let n = 2 and let M(z) =
x1 Axa. Then, the unique representative G of
M is defined by G(a) = a1 Aas for all a € S%.

In fact, for a given ordinal scale (S, <), the set
of functions G : S™ — S representing invari-
ant functions in (5, x) is described exactly as
the discrete version of Theorem 4.1, where E
is replaced with S and the family of “discrete”
minimal invariant subsets of S™ is simply de-
fined either as

{f71) | T e Z(E™)},

for any fixed f, or independently of any f, by
means of Proposition 3.1. Clearly, to have a
one-to-one correspondence between M and G
we need that f~1(I) # @ for all [ € Z(E"), a
condition that holds if and only if

S| = n + |B(E)|.

In this case, given I € Z(E™) and i € [n], we
have M|; = P;|; (resp. M| = ey, M|; = e1)
if and only if G(a) = a; (resp. G(a) = s,
G(a) = s*) for all a € f~1(I), f being fixed.
On the other hand, if |S| < n + |B(FE)|, sev-
eral M’s may lead to the same G. For ex-
ample, if n = 2, |S| = 3, E = [0,1], and
I € 7([0,1]?) is either of the two open trian-
gles, then f~1(I) = @ and, for a given G, the
invariant function M can take on any value in

1.

4.2 Input-uniscale independent
functions

We now investigate scale independent func-
tions whose input values are expressed in the
same ordinal scale and the output values in an
ordinal scale. We call these functions input-
uniscale independent functions.

Definition 4.3. A function M : E™ — R is
said to be input-uniscale independent if, for
any finite ordinal scale (5, <g), there exists
a finite ordinal scale (T, <7) and a surjective
aggregation function G : S™ — T such that,
for any endpoint-preserving numerical repre-
sentation f : S — FE of <g, there is a numer-
ical representation gy : T' — R of <7 such
that

(@€ S™). (2)

We then say that G represents M in (S5, <g).

As we have seen that the uniscale independent
functions are exactly the invariant functions,
we will see in this subsection that the input-
uniscale independent functions are exactly the
comparison meaningful functions.

Definition 4.4. M : E" — R is said to be
a comparison meaningful function (from an
ordinal scale) if

M(z) { =} M)
= Mlg()] {

<

=} M)

for any z,2’ € E™ and any ¢ € A(FE).

The comparison meaningful functions have
been studied by various authors; see e.g.
[10, 12, 15, 16, 19]. Moreover, the full descrip-
tion of those functions has been given very
recently as follows [12]:

Theorem 4.2. M : E™ — R is a comparison
meaningful function if and only if, for any I €
Z(E™), there exists an index i € [n] and a
constant or strictly monotonic function gr :
P;,(I) = R such that

M|r=groPylr,

where, for any I,J € I(E™), either g =
gy, or ran(gr) = ran(gy) is a singleton, or
ran(gr) < ran(gy), or ran(gy) > ran(gy).

Thus, a comparison meaningful function M :
E™ — R reduces to a constant or a trans-
formed coordinate projection on every mini-
mal invariant subset of E".

The following result clearly shows that com-
parison meaningfulness generalizes invariant-
ness:

Proposition 4.2. M : E™ — R is a compar-
ison meaningful function if and only if, for
any ¢ € A(E), there is a strictly increasing
mapping Vg : R — R such that

M[p(x)] = oM (z)]  (z€E"). (3)

Note that it is clear from Eq. (3) that the
restriction of 14 to the range of M is uniquely
determined.

We now have the following result:



Proposition 4.3. The function M : E™ — R
1s input-uniscale independent if and only if it
is comparison meaningful.

According to Proposition 4.3 a comparison
meaningful function M : E™ — R can al-
ways be represented by a discrete aggregation
function G : S™ — T on any ordinal scale
(S,<s), regardless of the cardinality of this
scale. Moreover, the necessary steps to de-
termine the output scale T' and the functions
G:5"—Tandgy:T — R are:

Step 1. Fix a particular endpoint-
preserving numerical representation f* :
S — F of Xg.

Step 2. We have T' = {t; < ---
where R := {M[f*(a)] | a € S™}.

Step 3. We have G(a) = o~ 1(M[f*(a)]),
where 0 : T — R is defined as o(t;) = 7;
for all 1 <@ < |R|.

= t|R|}7

Step 4. Determine the unique function v :
ran(M) — ran(M) of Proposition 4.2.

Step 5. We have g5 = ¢yop+-100.

We clearly observe that, given M : E™ — R
and (5,<g), the scale T" and the functions
G:S5" — T and gy : T — R are uniquely de-
termined and do not depend upon the choice
of f*.

Example 4.2. Let M : [0,1]?> — R be defined
by

M(z) = x1 A x2 + 2sign(ze — x1).

Then, given a 3-point ordinal scale (S, <g)
and an endpoint-preserving numerical repre-
sentation f*:S — FE, we have

R={-2<2-2<0<2<1<2<2z+2},

where z = f*(s2). Then we have |T'| = 7 and
the function G : S™ — T is given by
G(a) = o Yf*(a1 A ag) + 2sign(as — a1)],
or equivalently by the following table
az\ai ‘ 51 82 83
S1 t3 tl tl

89 tg t4 1o
83 te t7 s

Finally, we have

o(x), if x € [0, 1],
VYy(x) = { o(x—2)+2, ifzel2,3),
dlr+2)—2, ifwe[-2,-1).
and
if i =345,

(f o FV)o(t)],
gf(ti):{ (fof* Dot —2/+2, if i =6,7,

(fof* Yot +2] -2, ifi=1,2.
Notice that the relationship between M and
G is not as clear as in the case of uniscale inde-
pendent functions. Particularly, reconstruct-
ing M from G (or characterizing G arising
from the M’s) seems a difficult task. We then
propose the following interesting problem:

Open Problem 1. Describe all the comparison
meaningful functions having the same discrete
representative.

Notice also that, from Eq. (2), we immedi-
ately have the following result, which will be
useful in the next section:

Proposition 4.4. Let M : E™ — R be an
input-uniscale independent function, with dis-
crete representative G : S™ — T. Then, for
any strictly increasing (resp. strictly decreas-
ing) function g : ran(M) — R, the discrete
representation of go M is no G : S" —
T', where T' is order isomorphic to T and
n: T — T is defined by n(t;) = t, (resp.
n(t;) = tTT\—Hl) foralli=1,...,|T|.

5 Continuous order invariant
functions

In this final section we examine the case of
continuous order invariant functions, namely:
continuous invariant functions and continuous
comparison meaningful functions.

Until recently, it was thought that coupling
continuity with any order invariance prop-
erty was somewhat awkward since the clas-
sical definition of continuity uses distance be-
tween numerical values and hence makes use
of the cardinal properties of these values while
any order invariance implies that the cardinal
properties of the numerical values should not
be used.



In fact, as we will now see, continuity makes
sense for invariant functions and can even
be interpreted in a very natural way. More
precisely, we yield an interpretation of con-
tinuity for invariant functions by imposing a
smoothness property on their discrete repre-
sentatives.

We shall also see that such an interpretation
fails to hold for comparison meaningful func-
tions and that continuity is a rather restrictive
condition for these functions.

First, let us describe the continuous order in-
variant functions. A typical example of whose
is given by a lattice polynomial [2]:
Definition 5.1. An n-place lattice polyno-
mial is any expression involving n variables
Z1,...,%y linked by the lattice operations A =
min and V = max in an arbitrary combination
of parentheses.

It can be shown (see e.g. [2, Chapter 2, §5])
that any n-place lattice polynomial in R"™ can
be put in the following disjunctive normal
form:

Ly(x) = \/ /\ Zi (z € R"),
AC[n] i€A
v(A)=1
where v : 2" — {0,1} is a nonconstant non-

decreasing set function. We will denote by I,
the family of those set functions.

The complete description of continuous order
invariant functions are given in the following
two theorems [10, 12]:

Theorem 5.1. M : E" — E is a continuous
invariant function if and only if M = ¢ €
B(E) (if this constant exists) or there exists
v €1y such that M = L.

Theorem 5.2. M : E™ — R is a continuous
comparison meaningful function if and only if
there exists v € 'y, and a continuous strictly
monotonic or constant function g : E — R
such that M = go L.,.

We will now give an interpretation of the
continuity property for invariant functions
through their discrete representatives. For
this purpose we use the concept of smooth-
ness [5] for discrete functions.

Let (S,x) = {s1 < -+ < s} be a k-point
ordinal scale and let @ € S. In order to locate
a in S we define an index mapping ind : S —

{1,...,k} as

ind(a) =r & a=s, (1<r<k).

Definition 5.2. A discrete function G
X S® — T is said to be smooth if, for

A

any a,be X,_; S i), we have

> |ind(a;) — ind(b;)| < 1
i=1
= |ind[G(a)] — ind[G(b)]] < 1.

The smoothness property, which was initially
introduced only for nondecreasing discrete
functions (see [5]), clearly represents the dis-
crete counterpart of continuity. Moreover,
it can be proved (see [4, Theorem 2] for a
proof in a particular case) that this property
is equivalent to the discrete counterpart of the
intermediate value theorem. The result is the
following:

Proposition 5.1. The smoothness property
for G+ X1, SO — T is equivalent to the
following condition: For any j € [n] and
any a,b € X, SO differing only on coor-
dinate j, the element t € T lies between G(a)
and G(b) inclusive if and only if there exists
ceE X?zl SO differing from a and b only on
coordinate j, such that c; is an element be-
tween a; and b; inclusive and t = G(c).

We will now see that any invariant function
is continuous if and only if it is represented
only by smooth discrete aggregation func-
tions. This makes continuity sensible and
even appealing for invariant functions. We
will also see that this result does not hold for
comparison meaningful functions. More pre-
cisely, we will see that continuity is only a suf-
ficient condition for those functions to be rep-
resented only by smooth discrete functions.

Proposition 5.2. An invariant function M :
E" — E is continuous if and only if it is rep-
resented only by smooth discrete aggregation
functions.

Let us now examine the case of continuous
comparison meaningful functions. By Propo-



sition 4.4, we observe that any continuous in-
variant function of the form L. and any non-
constant and continuous comparison mean-
ingful function of the form g o L., where g is
strictly increasing (resp. strictly decreasing),
both lead to the representatives L, : S" — §
and no L, : 8™ — T, respectively, where T is
order isomorphic to S, and i : S — T is the
index-preserving (resp. index-reversing) map-
ping.

Proposition 5.3. A continuous comparison
meaningful function M : E™ — R is rep-
resented only by smooth discrete aggregation
functions.

Back to Example 4.2, we can immediately see
from the table describing the function G that
this function is not smooth. This is in accor-
dance with the noncontinuity of M.

Notice that, contrary to the case of invariant
functions, the converse of Proposition 5.3 is
not true. There are noncontinuous compari-
son meaningful functions having smooth rep-
resentatives. Indeed, starting from a strictly
monotonic (but not necessarily continuous)
g : R — R, we can always transform a con-
tinuous invariant function M : E™ — R into
the (not necessarily continuous) comparison
meaningful function g o M, which has a simi-
lar smooth representative as M (cf. Proposi-
tion 4.4). More precisely, for any strictly in-
creasing (resp. strictly decreasing, constant)
function g : R — R, the unique representative
in (S,<g) of M = go L, is the smooth func-
tion G = no Ly, where n: S — T =ran(G) is
index-preserving (resp. index-reversing, con-
stant) and |T'| = |S| (vesp. |T| = |S|, |T| = 1).

The following interesting problem naturally
arises from this analysis:

Open Problem 2. Describe (or characterize)
all the comparison meaningful functions that
are represented only by smooth discrete ag-
gregation functions.

6 Concluding remarks

We have shed light on the meaning of invari-
ant functions by interpreting them as scale
independent functions, that is, functions that

have discrete representatives on any finite or-
dinal scale.

In particular, this interpretation shows that
considering a discrete function G : S™ — S,
where (S5, =) is a given ordinal scale, is not
equivalent to considering an invariant func-
tion M : E™ — FE. Indeed, the latter form is
much more restrictive since M is independent
of any scale. For instance, if n = 2 and F is
open, we see by Theorem 4.1 that there are
only 4 invariant functions (since E2 has only
three minimal invariant subsets and there is
only one possibility on the diagonal) while the
number of discrete functions G : S? — S is
clearly |S|I57.

We have also interpreted the comparison
meaningful functions in a similar way. In this
case, describing all the order invariant func-
tions leading to the same discrete representa-
tive remains an interesting open problem.

Finally, we have observed that these inter-
pretations make the continuity property very
sensible for invariant functions and, however,
rather restrictive for comparison meaningful
functions.
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