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DESCENDING CHAINS AND ANTICHAINS OF THE UNARY,

LINEAR, AND MONOTONE SUBFUNCTION RELATIONS

ERKKO LEHTONEN

Abstract. The C-subfunction relations on the set of operations on a finite

base set A defined by function classes C are examined. For certain clones C
on A, it is determined whether the partial orders induced by the respective

C-subfunction relations have infinite descending chains or infinite antichains.

More specifically, we investigate the subfunction relations defined by the clone
of all functions on A, the clones of essentially at most unary operations, the

clones of linear functions on a finite field, and the clones of monotone functions

with respect to the various partial orders on A.

1. Introduction

We introduced in [10] the notion of C-subfunction: for an arbitrary class C of
functions on a fixed nonempty base set A, a function f is called a C-subfunction
of a function g, if f = g(h1, . . . , hn) for some h1, . . . , hn ∈ C. This generalizes in a
natural way the various notions of minors and subfunctions presented by Pippenger
[12], Wang [20], Zverovich [21], and others, which actually correspond to the C-
subfunctions defined by some of the smallest clones on A, containing only projection
maps, constant functions, or other essentially unary functions. These first examples
of C-subfunction relations satisfy the descending chain condition, as can easily be
seen by a simple argument on essential arity. Such an argument is not applicable
when the defining class C contains functions of higher essential arity, but we would
like to know whether the descending chain condition is still satisfied.

We investigated the C-subfunction relations between Boolean functions in [10].
In particular, we determined for every clone C of Boolean functions, whether the
induced partial order has infinite descending chains or infinite antichains.

We now develop the concept in the more general setting of functions on an
arbitrary nonempty finite base set A. In lack of a handy tool such as the Post
lattice [13], there is little hope of obtaining such a complete and definitive answer
in the general case as we have in the Boolean case. We must focus our analysis on
some clones of interest.

This paper is organized as follows. We first introduce our basic definitions and
notation in Section 2. In subsequent sections, we then analyze certain C-subfunction
relations: the relations defined by the clone of all functions on A in Section 3, clones
of essentially at most unary functions in Section 4, clones of linear functions on a
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finite field in Section 5, and clones of monotone functions with respect to a partial
order in Section 6. Concluding remarks are made in Section 7.

2. Definitions and notation

2.1. Partially ordered sets. We recall standard terminology and notation that
may be found in any textbook on orders and lattices (see, e.g., [1, 3]). A partially
ordered set, or a poset, is a pair (P,≤), where ≤ is a partial order relation (i.e.,
a reflexive, transitive, and antisymmetric relation) on a nonempty set P . When
Q is a nonempty subset of P , the restriction of ≤ to Q is a partial order relation
on Q, and we call (Q,≤|Q) a subposet of (P,≤). We try to avoid the cumbersome
notation for restrictions of relations and will denote ≤|Q simply by ≤. We also refer
to a poset (P,≤) simply as P .

A chain, or a totally ordered set, is a poset where all elements are pairwise
comparable. An antichain is a poset where all elements are pairwise incomparable.
We denote a chain of 2 elements by 2.

The direct product of posets P and Q, denoted P ×Q, is the poset (P ×Q,≤),
where (p, q) ≤ (p′, q′) in P ×Q if and only if both p ≤ p′ in P and q ≤ q′ in Q. We
also denote

Pn = P × · · · × P︸ ︷︷ ︸
n

.

A poset is bounded if it has both a least element and a greatest element. A lattice
is a poset L in which any two elements a and b have a least upper bound a∨ b and
a greatest lower bound a∧b. A complete lattice is a poset in which every nonempty
subset has a supremum and an infimum. A complete lattice is a lattice.

2.2. Functions and clones. Let A be a nonempty set. A function (or an opera-
tion) on A is a mapping f : An → A for some positive integer n, called the arity
of f . We denote by OA the set of all functions on A. The range, or image, of f
is the set Im f = {f(a) : a ∈ An}. The kernel of f is the equivalence relation
ker f = {(a,b) ∈ An ×An : f(a) = f(b)} on the domain An of f .

For a fixed arity n, and for 1 ≤ i ≤ n, the ith projection, denoted xni , is the
function (a1, . . . , an) 7→ ai. The n-ary constant function having value a ∈ A every-
where is denoted by ân. Whenever the arity is clear from the context, we omit the
superscripts indicating arity.

For 1 ≤ i ≤ n, we say that the ith variable is essential in f , if there are points
a = (a1, . . . , an), a′ = (a′1, . . . , a

′
n) such that ai 6= a′i and aj = a′j for all j 6= i and

f(a) 6= f(a′). If a variable is not essential in f , then it is inessential in f . The
essential arity of f , denoted Ess f , is the number of essential variables in f .

If f is an n-ary function (the outer function) and g1, . . . , gn are all m-ary func-
tions (the inner functions), then the composition (or superposition) of f with
g1, . . . , gn, denoted f(g1, . . . , gn), is an m-ary function, and its value on a ∈ Am is
f(g1(a), . . . , gn(a)). This is equivalent to the composition f ◦g, where the mapping
g : Am → An is defined as g(a) = (g1(a), . . . , gn(a)), which we simply denote by
g = (g1, . . . , gn).

A class is a subset C ⊆ OA. The n-ary part of a class C, denoted by C(n), is
the set of n-ary functions in C. A clone on A is a class C ⊆ OA that contains
all projections and is closed under functional composition (i.e., if f, g1, . . . , gn ∈ C,
then f(g1, . . . , gn) ∈ C whenever the composition is defined). We denote by 〈C〉
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the clone generated by C. The clones on A constitute an inclusion-ordered lattice,
denoted LA, where the lattice operations are the following: meet is the intersection,
join is the smallest clone containing the union. See [19] for discussion on clones.

2.3. C-subfunctions. We consider functions on a fixed nonempty set A. Let C
be a class of functions. We say that a function f is a C-subfunction of a function
g, denoted f �C g, if f = g(h1, . . . , hm) for some h1, . . . , hm ∈ C. If f and g are
C-subfunctions of each other, we say they are C-equivalent and denote f ≡C g.
If f �C g but g 6�C f , we say that f is a proper C-subfunction of g and denote
f ≺C g. If both f 6�C g and g 6�C f , we say that f and g are C-incomparable and
denote f ‖C g. If the class C is clear from the context, we may omit the subscripts
indicating the class. We have now defined families of binary relations �C and ≡C
on OA, indexed by the class C. Most of the basic results that were proved in [10]
for a two-element base set are straightforwardly generalized for arbitrary base sets;
we just state these facts and do not repeat the detailed proofs here.

For any class C, the set of all C-subfunctions of x1 equals C, and therefore the
relations �C and �K are always distinct for C 6= K. Also, for any classes C and K,
�C is a subrelation of �K if and only if C ⊆ K.

The C-subfunction relation �C is reflexive if and only if the class C contains
all projections; and �C is transitive if and only if C is closed under functional
composition. Hence, �C is a preorder on OA if and only if C is a clone. If C is a
clone, then ≡C is an equivalence relation, and the C-equivalence class of f is denoted
by [f ]C . As for preorders, �C induces a partial order ≤C on OA/≡C .

It is clear that Im f ⊆ Im g for any f �C g and any C. Therefore, any C-
equivalent functions have the same range. This implies in particular that for any
element a ∈ A, the constant functions â of all arities form a C-equivalence class
for any clone C, and these classes are minimal elements in the partial order ≤C on
OA/≡C . For any clones C and K, ≡C is a subrelation of ≡K whenever C ⊆ K.

We still point out that whenever there is an infinite antichain of C-incomparable
functions, we also have an infinite antichain of K-incomparable functions for every
subclone K of C.

2.4. The current problem. Given a clone C on A, we are interested in the order-
theoretical properties of the preorder �C on OA and the induced partial order ≤C on
OA/≡C . Two questions in particular arise immediately: Are there infinite descend-
ing chains of C-subfunctions? How large antichains of C-incomparable functions are
there?

The case of a singleton base set A is trivial, because we only have one clone,
namely the clone OA of all functions, and all functions are OA-equivalent. These
questions were resolved for all clones on the two-element base set A = {0, 1} in
[10]. There is little hope of giving such a complete and definite answer in the more
general case, because there are uncountably many clones on A to begin with, and
the structure of the lattice LA of clones on A is only partially known when |A| ≥ 3.
In the more general case, there is no handy tool such as the Post lattice [13] at
one’s disposal, and one must confine the analysis to certain interesting clones.

In what follows, we assume that the base set A is finite and |A| = k ≥ 3. Because
it is unimportant what the elements of the base set are, we assume, without loss of
generality, that A = {0, 1, . . . , k − 1} = k.
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In the following sections, we will analyze the C-subfunction relations in the cases
when the defining class C is the clone of all functions on A, a clone containing only
essentially at most unary functions, a clone of linear functions on a finite field, or
a clone of monotone functions with respect to a partial order on A.

3. The clone of all functions

3.1. Green’s relations on Menger systems. Suppose that I is a nonempty set
of positive integers, (Mn)n∈I is a family of nonempty pairwise disjoint sets, and
(on)n∈I is a family of partial (n+1)-ary operations on M =

⋃
n∈IMn which satisfy

the following conditions
(1) if x ∈Mn, y1, . . . , yn ∈Mm, then on(x, y1, . . . , yn) is defined and on(x, y1, . . . , yn) ∈

Mm;
(2) for all l,m, n ∈ I, x ∈ Ml, y1, . . . , yl ∈ Mn, z1, . . . , zn ∈ Mm, the following

superassociativity property holds:

on(ol(x, y1, . . . , yl), z1, . . . , zn)

= ol(x, on(y1, z1, . . . , zn), . . . , on(yl, z1, . . . , zn)).

Then the system M = ((Mn)n∈I ; (on)n∈I) is called a Menger system.
A Menger system is called unitary, if for every n ∈ I there exist elements

en1 , . . . , e
n
n ∈Mn (called selectors) which satisfy the identities

on(x, en1 , . . . , e
n
n) = x,

on(eni , y1, . . . , yn) = yi,

for all x ∈Mn, y1, . . . , yn ∈Mm.

For a family (O(n)
A )n∈I of sets of all n-ary functions on A, superposition can be

expressed by a family (on)n∈I of partial (n + 1)-ary operations, and it is easy to

see that the system ((O(n)
A )n∈I ; (on)n∈I) is a unitary Menger system; its selectors

are the various projection maps xni for 1 ≤ i ≤ n. Such a system is called a full
function system.

Menger systems are a generalization of Menger algebras [11]. For further infor-
mation on Menger systems and other algebras of multiplace functions, we refer the
reader to the survey article by Schein and Trohimenko [16].

Green [4] introduced certain equivalence relations on a semigroup that have
played fundamental role in semigroup theory; see, e.g., [7]. Analogs of Green’s
equivalences L, R, D, and H for Menger systems were defined by J. Henno [5] (see
also [6]) in the following way:
• aLb (a ∈Mn, b ∈Mm, n,m ∈ I) if and only if a = b or there exist s1, . . . , sn ∈

Mm, t1, . . . , tm ∈Mn such that a = om(b, t1, . . . , tm), b = on(a, s1, . . . , sn);
• aRb if and only if a, b ∈Mn for some n ∈ I and a = b or there exist s ∈Mm,

t ∈Mk, m, k ∈ I such that a = ok(t, b, . . . , b), b = om(s, a, . . . , a);
• D = L ∪R; H = L ∩R.
Define for a ∈Mn, b ∈Mm, n,m ∈ I the binary relations ≤L, ≤R, ≤H by
• a ≤L b if and only if a = b or a = om(b, t1, . . . , tm) for some t1, . . . , tm ∈Mn;
• a ≤R b if and only if a = b or a = ok(t, b, . . . , b) for some t ∈Mk, k ∈ I;
• a ≤H b if and only if a ≤L b and a ≤R b.

All these relations are preorders, and by definition, aLb if and only if a ≤L b and
b ≤L a (and similarly for R and H).

Henno [5] proved the following for Green’s relations on full function systems.
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Theorem 3.1. For arbitrary f ∈ O(n)
A , g ∈ O(m)

A :
(i) fLg if and only if Im f = Im g;

(ii) fRg if and only if n = m and ker f = ker g;
(iii) fDg if and only if |Im f | = |Im g|;
(iv) fHg if and only if n = m, ker f = ker g, and Im f = Im g.

3.2. OA-subfunctions. The OA-subfunction relation �OA
on OA is in fact the

same as Green’s preorder ≤L on the full function system ((O(n)
A )n∈N ; (on)n∈N ),

where N denotes the set of positive integers. Henno [5, Lemma 10] showed that
f ≤L g if and only if Im f ⊆ Im g, and Theorem 3.1 characterizes the OA-
equivalence classes completely: f ≡OA

g if and only if Im f = Im g.

Theorem 3.2. The poset (OA/≡OA
,≤OA

) is isomorphic to the poset (P(A) \
{∅},⊆) of nonempty subsets of A, ordered by inclusion. The largest chain of this

poset has k elements, and the largest antichain has
(

k
bk/2c

)
elements.

Proof. The isomorphicity of the posets follows from the above observations, and
the size of the largest chain is obvious. The largest antichain has

(
k
bk/2c

)
elements

by Sperner’s theorem [18]. �

4. The clones of essentially at most unary functions

Is this section, we assume that C = 〈M〉 for some transformation monoid M on
A, i.e., C contains only essentially at most unary functions.

We denote by J the clone of all projections. Following the guidelines of [10],
we observe that the J -subfuctions of f are exactly those functions that can be
obtained from f by repeated permutation and identification of variables, cylindrifi-
cation, and deletion of inessential variables; and any J -equivalent functions can be
obtained from each other by permutation of variables, cylindrification, and deletion
of inessential variables. It is clear that every nonconstant function f is J -equivalent
(and hence C-equivalent for every clone C) to the function f ess of arity Ess f , ob-
tained by deleting all inessential variables from f . We also agree that for every
a ∈ A, n ≥ 1, (ân)ess = â1.

Lemma 4.1. Let M be a transformation monoid on A. If f �〈M〉 g, then Ess f ≤
Ess g.

Proof. Let f = g(h1, . . . , hm) for some h1, . . . , hm ∈ 〈M〉. Each essential variable
of f has to be essential in at least one of the inner functions hi substituted for an
essential variable of g. Since the hi’s are essentially at most unary, it is clear that
Ess f ≤ Ess g. �

Theorem 4.2. For any transformation monoid M , there is no infinite descending
chain of 〈M〉-subfunctions.

Proof. Suppose, on the contrary, that there is an infinite descending chain

f1 �〈M〉 f2 �〈M〉 f3 �〈M〉 · · · .

Since each fi is J -equivalent to f essi , we can assume that all variables are essential
in each fi. Lemma 4.1 implies that there is a j such that all functions fi with i ≥ j
have the same arity. We have reached a contradiction, because there are only a
finite number of functions of any fixed arity. �
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Denote by U = 〈O(1)
A 〉 the clone of all essentially at most unary functions on A.

In order to show that there is an infinite antichain of U-incomparable functions, we
generalize the construction presented by Pippenger [12, Proposition 3.4], and we
rephrase his proof in the language of subfunctions and functional composition. For
n ≥ 4, define the n-ary function αn as

αn(a) =

{
1, if |{i : ai = 1}| ∈ {1, n− 1},
0, otherwise.

Proposition 4.3. αm ‖U αn for n 6= m.

Proof. We call a function f poor, if f = 1̂ or f does not take on value 1. A
function is rich, if it is not poor. We make a few observations on the composition
αn(γ1, . . . , γn), where γi ∈ U . First, if at least two of the inner functions are 1̂ and

at least two of them do not take on value 1, then αn(γ1, . . . , γn) = 0̂. Second, if at
most three of the inner functions are poor, then αn(γ1, . . . , γn) is not a constant
function, taking on both values 0 and 1. Third, if a variable is essential only in
poor inner functions, then it is inessential in the composition αn(γ1, . . . , γn).

Assume that n < m. Since for any i, all i variables are essential in αi, we clearly
have that αm 6�U αn by Lemma 4.1.

Suppose, on the contrary, that αn �U αm. Then αn = αm(γ1, . . . , γm) for some
γi ∈ U . Since all n variables are essential in αn, we must have that for i = 1, . . . , n,
there is a rich inner function with the ith variable essential.

Suppose first that for each i, the ith variable is essential in exactly one of the
inner functions. Since n < m, at least one of the inner functions is poor, say
γp. Let γq, γr, γs be distinct rich inner functions with their q′-th, r′-th, s′-th
variables essential, respectively. For 1 ≤ i ≤ n, i /∈ {q′, r′, s′}, let hi = xi and let
hq′ = ĉ1, hr′ = ĉ2, hs′ = ĉ3 for some appropriately chosen constant functions such
that, denoting γ′i = γi(h1, . . . , hn), exactly two of γ′p, γ

′
q, γ

′
r, γ

′
s equal the constant

function 1̂ and the other two do not take on value 1. By our initial observations,
we have that αm(γ′1, . . . , γ

′
m) = 0̂ and, on the other hand,

αm(γ′1, . . . , γ
′
m) = αm(γ1(h1, . . . , hm), . . . , γm(h1, . . . , hm))

= (αm(γ1, . . . , γm))(h1, . . . , hn) = αn(h1, . . . , hn),

which is not a constant function, a contradiction.
Suppose then that for some j, the jth variable is essential in at least two rich

inner functions. Let 1 ≤ j1 < j2 ≤ n such that j /∈ {j1, j2}. For i /∈ {j, j1, j2},
let hi = xi and let hj , hj1 , hj2 be suitably chosen constant functions such that,

denoting γ′i = γi(h1, . . . , hn), among γ′1, . . . , γ
′
m, there are at least two 0̂’s and at

least two functions not taking on value 1. By our observations, we have again
that αm(γ′1, . . . , γ

′
m) = 0̂ and, on the other hand, αm(γ′1, . . . , γ

′
m) = αn(h1, . . . , hn),

which is not a constant function, a contradiction. �

Of course, U-incomparable functions are C-incomparable for every subclone C of
U . We have established the following.

Theorem 4.4. For every transformation monoid M on A, there is an infinite
antichain of 〈M〉-incomparable functions.
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5. The clones of linear functions on finite fields

5.1. Functional independence. For a class C of functions, we say that m-ary
functions g1, . . . , gn are C-dependent, if there is an i and an (n − 1)-ary function
h ∈ C such that gi = h(g1, . . . , gi−1, gi+1, . . . , gn). If the functions g1, . . . , gn are
not C-dependent, they are C-independent. We say that functions are functionally
dependent, if they are OA-dependent; and we say that functions are functionally
independent, if they are OA-independent. It is clear that C-independence implies
K-independence for every K ⊆ C.

Let C be a clone and let f be any function. Consider representations of f
as a composition f = φ(g1, . . . , gl), where g1, . . . , gl ∈ C and φ ∈ OA. Such a
representation is called a C-decomposition of f . There always exists C-decomposi-
tions for any function f , because f = f(x1, . . . , xn) and projections are members of
all clones. For a nonconstant function f , a C-decomposition of f with the smallest
possible number l of inner functions (or the smallest possible arity of the outer
function) is called minimal, and this smallest number is called the C-degree of f ,
denoted degC f . We clearly have that degC f ≤ Ess f . For constant functions f , we
agree that degC f = 0.

Lemma 5.1. If C ⊆ K, then degK f ≤ degC f .

Proof. Every C-decomposition of f is also a K-decomposition, not necessarily min-
imal. �

Lemma 5.2. If f �C g, then degC f ≤ degC g.

Proof. Let f = g(h1, . . . , hm) for some h1, . . . , hm ∈ C, and let g = γ(k1, . . . , kl)
be a minimal C-decomposition. Then f = γ(k1, . . . , kl)(h1, . . . , hn) = γ(k′1, . . . , k

′
l),

where k′i = ki(h1, . . . , hn). This is a C-decomposition of f , but not necessarily a
minimal one, so degC f ≤ l = degC g. �

Corollary 5.3. If f ≡C g, then degC f = degC g.

Lemma 5.4. In a minimal C-decomposition, the inner functions are functionally
independent.

Proof. Let f = φ(g1, . . . , gl) be a minimal C-decomposition. Suppose, on the con-
trary, that the inner functions are functionally dependent, i.e., there is an i such
that gi = γ(g1, . . . , gi−1, gi+1, . . . , gl). But then

f = φ(g1, . . . , gi−1, γ(g1, . . . , gi−1, gi+1, . . . , gl), gi+1, . . . , gl)

= φ(x1, . . . , xi−1, γ, xi, . . . , xl−1)(g1, . . . , gi−1, gi+1, . . . , gl),

contradicting the minimality of the given C-decomposition. �

5.2. Descending chains. Assume that the base setA has a field structure (A,+, ·),
and assume, without loss of generality, that 0 and 1 are the respective zero and
identity elements. We recall that both An and AA

n

are vector spaces over the field
(A,+, ·). A function f ∈ AAn

is linear (or affine, if one prefers), if it is of the form
f = a1x1 + · · · + anxn + ĉ for some a1, . . . , an, c ∈ A. In such a representation,
we call

∑n
i=1 aixi the linear part and ĉ the constant part of f . We denote by L

the class of all linear functions, which is a maximal clone according to Rosenberg’s
renowned classification [15].
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Proposition 5.5. Assume that f = g(φ1, . . . , φd) is a minimal L-decomposition.
Then f ≡L g.

Proof. Assume that f is n-ary. It is clear that f �L g. We show that g �L f . By
Lemma 5.4, the inner functions φ1, . . . φd are functionally independent, and they
have the form φi =

∑n
j=1 bijxj + ĉi = λi + ĉi. The linear parts λ1, . . . , λd are

linearly independent (with the common meaning of the term). For, suppose, on
the contrary, that the linear parts λ1, . . . , λd are linearly dependent. Then there

exist coefficients a1, . . . , ad, not all zero, such that
∑d
i=1 aiλi = 0̂. If aj 6= 0, then

ajλj = −
∑
i6=j aiλi, and so φj = λj+ ĉj = ĉj−a−1j

∑
i6=j ai(φi− ĉi), a contradiction

to the functional independence of φ1, . . . , φd.
Define the d × n matrix B = (bij) and the d-vector c = (c1, . . . , cd)

T. From
elementary linear algebra we know that B has a right inverse E and the matrix
equation By = −c has a solution y = (y1, . . . , yn)T if and only if B has full rank
d. (The right inverse of B is an n × d matrix E such that BE = I, where I is
the d × d identity matrix.) Since the linear parts are linearly independent, this
condition is satisfied. We regard the elements of E and y as the coefficients of the
linear functions ψ1, . . . , ψn, defined as

ψi = ei1x1 + · · ·+ eidxd + ŷi.

We have that for j = 1, . . . , d,

φj(ψ1, . . . , ψn) = ĉj +

n∑
i=1

bji(ei1x1 + · · ·+ einxd + ŷi)

= ĉj +

d∑
i=1

n∑
k=1

bjkekixi +

n∑
k=1

b̂jkyk

= xj + ĉj − cj = xj .

Thus,

f(ψ1, . . . , ψn) = g(φ1, . . . , φd)(ψ1, . . . , ψn)

= g(φ1(ψ1, . . . , ψn), . . . , φd(ψ1, . . . , ψn))

= g(x1, . . . , xd) = g,

i.e., g �L f . �

Proposition 5.6. Assume that f �L g. Then f ≡L g if and only if degL f =
degL g.

Proof. By Corollary 5.3, L-equivalence implies equality of L-degrees.
Let degL g = d, and let g = φ(γ1, . . . , γd) be a minimal L-decomposition. We

have that f = g(h1, . . . , hn) for some h1, . . . , hn ∈ L and so f = φ(γ′1, . . . , γ
′
d),

where γ′i = γi(h1, . . . , hn) ∈ L. Assuming that degL f = degL g = d, this is a
minimal L-decomposition, and therefore γ′1, . . . , γ

′
d are functionally independent.

By Proposition 5.5, both f and g are L-equivalent to φ and hence L-equivalent to
each other. �

We have now established the following.

Theorem 5.7. There is no infinite descending chain of L-subfunctions.
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Denote by L0 the clone of linear functions with constant part 0̂. We note that the
proof of Proposition 5.5 is easily modified for the L0-subfunctions: 0 is a solution
of the equation By = 0, so the functions φi will be members of L0.

Theorem 5.8. There is no infinite descending chain of L0-subfunctions.

5.3. Antichains. In order to construct an infinite antichain of L-incomparable
functions, we impose the total order 0 ≤ 1 ≤ · · · ≤ k − 1 on A. For n ≥ 4, define
the n-ary function αn as

αn(a) =



1, if a ∈ {0, 1}n and

|{i : ai = 1}| ∈ {1, n− 1},
0, if a ∈ {0, 1}n and

|{i : ai = 1}| /∈ {1, n− 1},
max{a1, . . . , an}, if a /∈ {0, 1}n.

A unit vector is a vector in which exactly one component has value 1 and all
other components have value 0. Denote by ei the unit vector whose ith component
has value 1. For a vector v ∈ {0, 1}n, denote by v the complement of v, defined
as v = (1 − v1, . . . , 1 − vn). The number of nonzero elements in a vector v is
called the Hamming weight of v and denoted by w(v). We denote 0 = (0, . . . , 0),
1 = (1, . . . , 1).

Proposition 5.9. Let (A,+, ·) be a field of characteristic p. The functions αip+2

(i ≥ 2) are pairwise L-incomparable.

Proof. Suppose that n 6= m and αn �L αm. There exist n-ary functions h1, . . . , hn ∈
L such that αn = αm(h1, . . . , hm). Let hi = c1ix1 + · · · + cnixn + d̂i, and con-
sider the n ×m matrix C = (cij) and the m-vector d = (d1, . . . , dm). The map-
ping h = (h1, . . . , hm) can be described in terms of matrices over the field A as
h(a) = aC + d.

Since αn(0) = 0, we have that h(0) = d ∈ {0, 1}m and w(v) /∈ {1,m − 1}.
We also observe that h maps the elements of {0, 1}n to elements of {0, 1}m and,
in particular, unit vectors and the complements of unit vectors to unit vectors
and complements of unit vectors. Thus, there exists a mapping σ : {1, . . . , n} →
{1, . . . ,m} such that h(ei) = eσ(i) or h(ei) = eσ(i).

We want to show that the mapping σ is injective. Suppose, on the contrary,
that σ(i) = σ(j) = s for some i 6= j. We first consider the case that A is a field of
characteristic p > 2.

If h(ei) = h(ej) = es, then ci + d = cj + d = es and so ci = cj = es − d. Then

h(ei + ej) = ci + cj + d = es − d + es − d + d

= es + es − d ∈ {0, 1}m.

But this implies that d = es and so w(d) = 1, a contradiction.
If h(ei) = h(ej) = es, we deduce as above that h(ei+ej) = es+es−d ∈ {0, 1}m,

which implies d = es and so w(d) = m− 1, a contradiction.
If h(ei) = es and h(ej) = es, then ci = es−d and cj = es−d. Let t be distinct

from both i and j, and assume that h(et) = eσ(t); then ct = eσ(t) − d. Then

h(ei + ej + et) = es − d + es − d + eσ(t) − d + d

= 1 + eσ(t) − (1 + 1)d ∈ {0, 1}m.
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This implies that d = eσ(t) and so w(d) = 1, a contradiction. Similarly, if h(t) =
eσ(t), then h(ei + ej + el) = 1 + eσ(t) − (1 + 1)d ∈ {0, 1}m, which implies that
d = eσ(t), a contradiction.

Consider then the case that A has characterictic p = 2. Let t be distinct from
both i and j, and assume that h(ei) = h(ej) = es, h(t) = eσ(t). Then

h(ei + ej + et) = es − d + es − d + eσ(t) − d + d = eσ(t),

which is a contradiction. Assume then that h(ei) = es, h(ej) = es, h(t) = eσ(t).
Then

h(ei + ej + et) = es − d + es − d + eσ(t) − d + d = 1 + eσ(t) = eσ(t),

again a contradiction. The other cases where ei, ej , et are mapped to the various
unit vectors and complements of unit vectors lead similarly to a contradiction.

We conclude that the mapping σ is injective. Thus, if m < n, there is no such
mapping and therefore αn 6�L αm. We now assume that n < m and n and m are
congruent to 2 modulo p.

Let S1 = {i ∈ {2, . . . , n} : h(ei) = eσ(i)} and S2 = {i ∈ {2, . . . , n} : h(ei) =
eσ(i)}. Define the m-vector v = (v1, . . . , vm) = h(e1). Taking into account that
d ∈ {0, 1}m and that the characteristic p of A divides n− 2, we have that

h(e1) = d +

n∑
i=2

ci = d +
∑
i∈S1

(eσ(i) − d) +
∑
i∈S2

(eσ(i) − d)

=
∑
i∈S1

eσ(i) +
∑
i∈S2

eσ(i).

If both S1 and S2 are nonempty, let r ∈ S1, s ∈ S2 and t /∈ Imσ. Then vσ(r),
vσ(s) and vt are distinct elements of A, and so v /∈ {0, 1}m. If either S1 or S2 is
empty, then v ∈ {a, b}m for some a, b ∈ A, but w(v) /∈ {1,m−1}. We have reached
a contradiction, because v should be a unit vector or the complement of a unit
vector. We conclude that αm ‖L αn. �

Theorem 5.10. There is an infinite antichain of L-incomparable functions.

6. The clones of monotone functions

6.1. Order-preserving maps between posets. Let (P,≤), (Q,≤) be posets.
A mapping f : P → Q is order-preserving (or monotone) if a ≤ b in P implies
f(a) ≤ f(b) in Q. A mapping f is order-reflecting, if f(a) ≤ f(b) in Q implies
a ≤ b in P . An order-embedding is a map that is both order-preserving and order-
reflecting. Posets P and Q are order-equivalent, if there are order-preserving maps
f : P → Q and g : Q → P . An order-isomorphism is an order-preserving bi-
jection whose inverse is also order-preserving; or, equivalently, a surjective order-
embedding. Posets P and Q are isomorphic, denoted P ∼= Q, if there is an order-
isomorphism of P to Q. Isomorphic posets are order-equivalent by definition. The
composition of order-preserving maps is order-preserving.

A subposet Q of a poset P is a retract of P (P retracts to Q) if there is an
order-preserving map g : P → Q whose restriction to Q equals the identity map on
Q. We also say that a poset Q is a retract of a poset P if there are order-preserving
maps f : Q→ P and g : P → Q such that g ◦ f is the identity map on Q. In either
case g is called a retraction map; in the latter case f is called a coretraction map.
One can regard the former definition as a special case of the latter: the inclusion
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map Q → P can be chosen as the coretraction. A retract Q of P is proper if it is
not isomorphic to P . The composition of retractions is again a retraction.

A family (Pi : i ∈ I) of posets is a representation of a poset P if each Pi is a
retract of P and P itself is a retract of the direct product

∏
i∈I Pi. It is known (see

[2, 14]) that every complete lattice L with at least two elements has a representation
(Px : x ∈ L), where each Px ∼= 2. It is also well-known that for every poset P that
is not an antichain, Pn retracts to 2n. Thus, for any finite lattice L and any poset
P that is not an antichain, there exists an integer n such that L is a retract of Pn.

6.2. Coloured posets. An S-coloured poset, or an S-poset, is an object ((P,≤), f),
where (P,≤) is a partially ordered set (the underlying poset) and f : P → S
is a colouring function. If (Q,≤) is a subposet of (P,≤), then ((Q,≤), f |Q) is
an S-coloured poset, and it is called an S-coloured subposet, or an S-subposet, of
((P,≤), f). An S-coloured poset whose underlying poset is a lattice is called an
S-coloured lattice or an S-lattice. The set of all S-coloured posets is denoted by PS .
We usually deal with colouring functions with codomain S = {0, 1, . . . , k − 1} = k,
and we call a k-coloured poset (lattice) a k-poset (k-lattice).

Let ((P,≤), f) and ((Q,≤), g) be S-posets. A mapping h : P → Q is colour-
preserving, if f = g◦h. A homomorphism of P to Q is a map h : P → Q that is both
order-preserving and colour-preserving. We define a preorder ≤ on the set PS of
all S-coloured posets as follows: P ≤ Q if and only if there exists a homomorphism
of P to Q. The induced equivalence relation on PS is denoted by ≡. Information
on k-posets and their homomorphicity order may be found in the works by Kosub
[8], Kosub and Wagner [9], and Selivanov [17].

A bijective homomorphism is called an isomorphism. Coloured posets P and Q
are isomorphic, denoted P ∼= Q, if there exists an isomorphism between P and Q.

A coloured subposet Q of a coloured poset P is a retract of P , denoted Q C
P , if there is a retraction map h : P → Q between the underlying posets that
is also colour-preserving. We also say that a coloured poset Q is a retract of a
coloured poset P , also denoted QCP , if there are colour-preserving retraction and
coretraction maps h : P → Q and k : Q→ P . If QC P , then P ≡ Q by definition.

If h is a retraction map from a poset P to a poset Q and g is a colouring function
of Q, then g◦h is a colouring function of P and the coloured poset (P, g◦h) retracts
to (Q, g).

For n,m ∈ N, denote by L(m,n) the 3-lattice depicted in Figure 1. Kosub and
Wagner [9] pointed out that for any m,n ∈ N, L(m + 1, n) < L(m,n), and for
m 6= n, L(m,m) ‖ L(n, n). Thus, there are both an infinite descending chain and
an infinite antichain of 3-lattices.

6.3. Monotone subfunctions. Assume that the base set A is equipped with a
partial order ≤. A function f : An → A is monotone with respect to ≤, if f(x) ≤
f(y) whenever x ≤ y. The class M≤ of monotone functions with respect to ≤ is
a clone on A. Furthermore, if (A,≤) is bounded, then M≤ is a maximal clone by
Rosenberg’s classification [15].

We associate with any n-ary function f on A the A-coloured poset P (f,≤) =
((A,≤)n, f) = ((An,≤′), f), with the component-wise order ≤′.

Proposition 6.1. f �M≤ g if and only if P (f,≤) ≤ P (g,≤).
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Figure 1. The 3-lattice L(m,n).

Proof. If f = g(h1, . . . , hm), where h1, . . . , hm ∈ M≤, then h = (h1, . . . , hm) is a
homomorphism of P (f,≤) to P (g,≤). Conversely, the components of any homo-
morphism h : P (f,≤)→ P (g,≤) are functions in M≤ and f = g ◦ h. �

Theorem 6.2. Assume that |A| ≥ 3 and the poset (A,≤) is not an antichain. Then
there is an infinite descending chain of M≤-subfunctions and an infinite antichain
of M≤-incomparable functions.

Proof. By the previous observations, for every A-coloured lattice L, there exists
an integer n and a function f : An → A such that L C P (f,≤). There exists an
infinite descending chain and an infinite antichain of 3-lattices. Since a coloured
poset is homomorphically equivalent to all its retracts, we deduce that there exists
an infinite descending chain of M≤-subfunctions and an infinite antichain of M≤-
incomparable functions, provided that |A| ≥ 3. �

Note that if (A,≤) is an antichain, then M≤ = OA, because monotonicity with
respect to an antichain imposes no restrictions whatsoever on functions. OA-sub-
functions are examined in Section 3.

7. Conclusions

We have analyzed the C-subfunction relations defined by certain clones on a finite
set A with |A| = k ≥ 3, namely by the clone OA of all functions on A; by the clones
〈M〉 generated by transformation monoids M on A; by the clones L (and L0) of

linear functions (with constant term 0̂) on a finite field; and by the clones M≤ of
monotone functions with respect to a partial order ≤ on A.

The poset (OA/≡OA
,≤OA

) is isomorphic to (P(A) \ {∅},⊆). The largest chain

of this poset has k elements, and the largest antichain has
(

k
bk/2c

)
elements. The

〈M〉-, L-, and L0-subfunction relations do not have infinite descending chains but
they do have infinite antichains. These observations conform with the results we
obtained for the corresponding Boolean subfunctions in [10].

The M≤-subfunction relation has both infinite descending chains and infinite
antichains. This is in sharp contrast with the case where |A| = 2. Namely, we have
established in [10] that the subfunction relation defined by the clone of monotone
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Boolean functions has no infinite descending chains and the largest antichain has
only two elements.
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[20] Wang, C.: Boolean minors, Discrete Math. 141 (1991), 237–258.

[21] Zverovich, I. E.: Characterizations of closed classes of Boolean functions in terms of forbidden

subfunctions and Post classes, Discrete Appl. Math. 149 (2005), 200–218.

Institute of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101
Tampere, Finland

E-mail address: erkko.lehtonen@tut.fi


