Skip to main content
Log in

A Bipartite Analogue of Dilworth’s Theorem

  • Published:
Order Aims and scope Submit manuscript

Abstract

Let m(n) be the maximum integer such that every partially ordered set P with n elements contains two disjoint subsets A and B, each with cardinality m(n), such that either every element of A is greater than every element of B or every element of A is incomparable with every element of B. We prove that \(m(n)=\Theta\left(\frac{n}{\log n}\right)\). Moreover, for fixed ε ∈ (0,1) and n sufficiently large, we construct a partially ordered set P with n elements such that no element of P is comparable with \(n^{\varepsilon } \) other elements of P and for every two disjoint subsets A and B of P each with cardinality at least \(\frac{14n}{\epsilon\log_2 n}\), there is an element of A that is comparable with an element of B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N.: Eigenvalues and expanders. Theory of computing (Singer Island, Fla., 1984). Combinatorica 6(2), 83–96 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Alon, N.: Ramsey graphs cannot be defined by real polynomials. J. Graph Theory 14(6), 651–661 (1990)

    MATH  MathSciNet  Google Scholar 

  3. Alon, N., Milman, V.D.: \(\lambda\sb 1,\) isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory Ser. B 38(1), 73–88 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alon, N., Pach, J., Pinchasi, R., Radoičić, R., Sharir, M.: Crossing patterns of semi-algebraic sets. J. Comb. Theory Ser A 111, 310-326 (2005)

    Article  MATH  Google Scholar 

  5. Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating independence: new constructions of condensers, Ramsey graphs, dispersers and extractors. In: Proc. of the 37th ACM STOC, pp. 1–10 (2005)

  6. Benczúr, A., András, A., Förster, J., Király, Z.: Dilworth’s theorem and its application for path systems of a cycle — implementation and analysis. Algorithms – ESA ’99 (Prague). Lecture Notes Computer Science, vol. 1643, pp. 498–509. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  7. Berge, C.: Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris 9, 123–160 (1960)

    MATH  MathSciNet  Google Scholar 

  8. Chiu, P.: Cubic Ramanujan graphs. Combinatorica 12(3), 275–285 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229.

  10. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(2), 161–166 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erdős, P., Hajnal, A., Pach, J.: Ramsey-type theorem for bipartite graphs. Geombinatorics 10, 64–68 (2000)

    MathSciNet  Google Scholar 

  12. Erdős, P., Komlós, J.: On a problem of Moser. Combinatorial theory and its applications, I. (Proc. Colloq., Balatonfüred, 1969), pp. 365–367. North-Holland, Amsterdam (1970)

    Google Scholar 

  13. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    Google Scholar 

  14. Fox, J., Pach, J.: A bipartite analogue of Dilworth’s theorem for multiple partial orders, preprint.

  15. Gessel, I., Rota, G-C (ed.): Classic Papers in Combinatorics. Birkhauser Boston, MA (1987)

    MATH  Google Scholar 

  16. Graham, R.L., Rothschild, B.L., Spencer, J.: Ramsey Theory, 2nd edn. John Wiley, New York (1990)

    MATH  Google Scholar 

  17. Greene, C., Kleitman, D.J.: The structure of Sperner k-families. J. Comb. Theory Ser. A. 20(1), 41–68 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Larman, D., Matoušek, J., Pach, J., Töröcsik, J.: A Ramsey-type result for convex sets. Bull. Lond. Math. Soc. 26(2), 132–136 (1994)

    MATH  Google Scholar 

  19. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Matoušek, J., Welzl, E.: Good splitters for counting points in triangles. J. Algorithms 13(2), 307–319 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morgenstern, M.: Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q. J. Comb. Theory Ser. B. 62(1), 44–62 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Murty, M.R.: Ramanujan graphs. J. Ramanujan Math. Soc. 18(1), 1–20 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Pach, J., Solymosi, J.: Crossing patterns of segments. J. Comb. Theory Ser. A. 96, 316–325 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pach, J., Törőcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete Comput. Geom. 12(1), 1–7 (1994)

    MATH  MathSciNet  Google Scholar 

  25. Pach, J., Tóth, G.: Comments on Fox News. Geombinatorics 15, 150–154 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Pudlák, P., Rödl, V.: Pseudorandom sets and explicit constructions of Ramsey graphs. Complexity of computations and proofs. Quad. Mat. 13, 327–346, Dept. Math., Seconda Univ. Napoli, Caserta, Italy (2004)

    MATH  Google Scholar 

  27. Seinsche, D.: On a property of the class of n-colorable graphs. J. Comb. Theory Ser. B. 16, 191–193 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tietze, H.: Über das Problem der Nachbargeibiete im Raum. Monatshefte Math. 16, 211–216 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tóth, G., Valtr, P.: Geometric graphs with few disjoint edges. 14th Annual ACM Symposium on Computational Geometry, Minneapolis, MN, 1998. Discrete Comput. Geom. 22(4), 633–642 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Trotter, W.T.: Combinatorics and Partially Ordered Sets. Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J. A Bipartite Analogue of Dilworth’s Theorem. Order 23, 197–209 (2006). https://doi.org/10.1007/s11083-006-9043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-006-9043-z

Key words

Navigation