Skip to main content
Log in

Height of a Superposition

  • Published:
Order Aims and scope Submit manuscript

Abstract

We observe that, given a poset \({\left( {E,{\user1{\mathcal{R}}}} \right)}\) and a finite covering \({\user1{\mathcal{R}}} = {\user1{\mathcal{R}}}_{1} \cup \cdots \cup {\user1{\mathcal{R}}}_{n} \) of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations:

$$\mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}} \right)} \leqslant \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{1} } \right)} \otimes \cdots \otimes \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{n} } \right)}.$$

Conversely for every finite sequence \((\xi_1,\cdots,\xi_n)\) of ordinals, every poset \({\left( {E,{\user1{\mathcal{R}}}} \right)}\) of height at most \(\xi_1\otimes\cdots\otimes\xi_n\) admits a partition \({\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}\) of its ordering \({\user1{\mathcal{R}}}\) such that each \({\left( {E,{\user1{\mathcal{R}}}_{k} } \right)}\) has height at most \(\xi_k\). In particular for every finite sequence \((\xi_1,\cdots,\xi_n)\) of ordinals, the ordinal

$$\xi _{1} \underline{ \otimes } \cdots \underline{ \otimes } \xi _{n} : = \sup {\left\{ {{\left( {\xi ^{\prime }_{1} \otimes \cdots \otimes \xi ^{\prime }_{n} } \right)} + 1:\xi ^{\prime }_{1} < \xi _{1} , \cdots ,\xi ^{\prime }_{n} < \xi _{n} } \right\}}$$

is the least \(\xi\) for which the following partition relation holds

$$\mathfrak{H}_{\xi } \to {\left( {\mathfrak{H}_{{\xi _{1} }} , \cdots ,\mathfrak{H}_{{\xi _{n} }} } \right)}^{2} $$

meaning: for every poset \({\left( {A,{\user1{\mathcal{R}}}} \right)}\) of height at least \(\xi\) and every finite covering \({\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}\) of its ordering \({\user1{\mathcal{R}}}\), there is a \(k\) for which the relation \({\left( {A,{\user1{\mathcal{R}}}_{k} } \right)}\) has height at least \(\xi_k\). The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, U.: A note on Dilworth’s theorem in the infinite case. Order 4, 117–125 (1987)

    Article  MathSciNet  Google Scholar 

  2. Abraham, U., Bonnet, R.: Hausdorff’s theorem for posets that satisfy the finite anti-chain property. Fundam. Math. 159(1), 51–69 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Carruth, P.W.: Arithmetic of ordinals with applications to the theory of ordered Abelian groups. Bull. Am. Math. Soc. 48, 262–271 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  4. Delhommé, C.: Automaticity of ordinals and of homogeneous graphs (Automaticité des ordinaux et des graphes homogènes). C. R. Math. Acad. Sci. Paris 339(1), 5–10 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Delhommé, C.: Decomposition of tree-automatic structures. (2003) (Manuscript)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Delhommé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delhommé, C. Height of a Superposition. Order 23, 221–233 (2006). https://doi.org/10.1007/s11083-006-9044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-006-9044-y

Key words

Navigation