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Abstract Using duality theory, we give necessary and sufficient conditions for the
MacNeille, canonical, and profinite completions of distributive lattices, Heyting
algebras, and Boolean algebras to be isomorphic.
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1 Introduction

In the theory of lattice completions and in applications of lattice theory to logic,
the MacNeille and canonical completions play a fundamental role. The MacNeille
completions provide completeness of various predicate logics with respect to their
algebraic semantics, as was shown in [16, 17, 19]. On the other hand, the Jónsson–
Tarski representation theorem for Boolean algebras with operators [14] is the
key for many completeness results in non-classical propositional logics (such as
modal and superintuitionistic logics). A connection between the MacNeille and
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canonical completions was discussed in [9]. Yet another completion—the profinite
completion—has its origins in Galois theory. It has recently been shown that there is
a close connection between the canonical and profinite completions [3, 12]. The aim
of this paper is to compare these three completions for distributive lattices, Heyting
algebras, and Boolean algebras. Our main tool is duality theory.

We give a necessary and sufficient condition for the MacNeille completion L of
a bounded distributive lattice L to be isomorphic to its canonical completion Lσ .
Since Lσ is isomorphic to the profinite completion ̂L of L [3, Theorem 2.11], we
obtain a criterion for the three completions to be isomorphic. The isomorphisms,
however, may not commute with the embeddings η : L ↪→ L, ζ : L ↪→ Lσ , and
ι : L ↪→ ̂L. We give necessary and sufficient conditions for the isomorphisms to
commute with η, ζ , and ι. When L happens to be a Heyting algebra, our results about
the isomorphism between L and Lσ apply unchanged. But now, unlike the case of
bounded distributive lattices, Lσ is not necessarily isomorphic to ̂L. Therefore, we
add necessary and sufficient conditions for the existence of an isomorphism between
Lσ and ̂L, and between L and ̂L. Consequently, we obtain necessary and sufficient
conditions for the three completions of a Heyting algebra to be isomorphic. We
also give necessary and sufficient conditions for these isomorphisms to commute
with η, ζ , and ι.

The paper is organized as follows. In Section 2 we recall the definitions and basic
facts about the MacNeille, canonical, and profinite completions. In Section 3 we
recall the Priestley duality for bounded distributive lattices, and then establish our
first main results about the isomorphism of the MacNeille, canonical, and profinite
completions of bounded distributive lattices. In Section 4 we briefly recall the Esakia
duality for Heyting algebras, and then prove our main results about the isomorphism
of the three completions for Heyting algebras. We also discuss consequences of
our results for the case of Boolean algebras. Finally, in Section 5 we briefly discuss
extensions of our results to more general settings.

2 Preliminaries

In this paper we are interested in the conditions under which different completions
of distributive lattices and related algebras are isomorphic. We are mostly concerned
with the following three completions: the MacNeille completion, the canonical
completion, and the profinite completion. In this preliminary section we introduce
the main definitions from the theory of completions of lattices to make the paper
self-contained.

Let P be a poset. For a ∈ P let ↑a = {x ∈ P | a ≤ x} and ↓a = {x ∈ P | x ≤ a}. We
recall that S ⊆ P is join-dense in P if for all a ∈ P we have

∨

(↓a ∩ S) exists and
a = ∨

(↓a ∩ S). The notion of a meet-dense subset of P is dual. The next lemma is
well-known (see, e.g., [6, p. 160]).

Lemma 2.1 Let L be a lattice and let S ⊆ L.

(1) S is join-dense in L iff for each a, b ∈ L with a � b, there exists s ∈ S such that
s ≤ a and s � b.

(2) S is meet-dense in L iff for each a, b ∈ L with a � b, there exists s ∈ S such that
a � s and b ≤ s.
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Throughout we assume that all lattices are bounded. If not, then we can always add
a new top and bottom to them. The next definition is well-known; see, e.g., [15, 21].
Note that we do not assume that L is a complete lattice.

Definition 2.2 Let L be a lattice.

(1) For p, q ∈ L we say that a pair (p, q) splits L if ↑p ∩ ↓q = ∅ and ↑p ∪ ↓q = L.
When (p, q) splits L, then we call (p, q) a splitting pair, p a splitting element,
and q a co-splitting element. Let S(L) denote the set of splitting elements of L
and CS(L) denote the set of co-splitting elements of L.

(2) We say that 0 �= p ∈ L is join-prime if from p ≤ a ∨ b it follows that p ≤ a or
p ≤ b . The notion of a meet-prime element is dual. Let J(L) and M(L) denote
the sets of join-prime and meet-prime elements of L, respectively.

(3) We say that 0 �= p ∈ L is completely join-prime if for each S ⊆ L such that
∨

S
exists and p ≤ ∨

S, there exists s ∈ S with p ≤ s. The notion of a completely
meet-prime element is dual. Let J∞(L) and M∞(L) denote the sets of com-
pletely join-prime and completely meet-prime elements of L, respectively.

It is easy to see that S(L) ⊆ J∞(L) ⊆ J(L) and that CS(L) ⊆ M∞(L) ⊆ M(L).
Moreover, if L is complete, then S(L) = J∞(L) and CS(L) = M∞(L). To see this,
observe that from p∈ J∞(L) (resp. q ∈ M∞(L)) it follows that (p,

∨{x ∈ L | p �≤ x})
(resp. (

∧{x ∈ L | x �≤ q}, q)) is a splitting pair, and so p ∈ S(L) (resp. q ∈ CS(L)).
Furthermore, if L is finite, then it is obvious that in addition we have J∞(L) = J(L)

and M∞(L) = M(L). An example of a complete lattice in which J∞(L) ⊂ J(L)

(resp. M∞(L) ⊂ M(L)) is the lattice of closed (resp. open) subsets of the real
line. Indeed, singletons (resp. complements of singletons) are join-prime (resp.
meet-prime), but are not completely join-prime (resp. completely meet-prime). An
example of an incomplete lattice in which S(L) ⊂ J∞(L) (resp. CS(L) ⊂ M∞(L)) is
given below.

Example 2.3 Let ω be the first infinite ordinal with its usual order, and consider the
(distributive) lattice L = (ω × ω) ⊕ ωop, where ⊕ is the operation of sum and ωop is
the opposite of ω (see Fig. 1). Clearly L is not complete. Moreover, each p = (0, n)

or (n, 0) is in J∞(L), but does not belong to S(L). By taking the opposite of L we
obtain a lattice in which not every completely meet-prime element is co-splitting.

Definition 2.4 Let L be a lattice.

(1) [5, p. 211] We call L principally separated if for each a, b ∈ L with a �≤ b , there
is a splitting pair (p, q) such that p ≤ a and b ≤ q.

(2) We call L completely join-prime generated if J∞(L) is join-dense in L.

Remark 2.5 Using Lemma 2.1, it is easy to see that if L is principally separated,
then S(L) is join-dense in L. Since S(L) ⊆ J∞(L), it follows that each principally
separated lattice is completely join-prime generated. On the other hand, the lattice
given in Example 2.3 is an example of a completely join-prime generated lattice,
which is not principally separated. Nevertheless, the observations in the paragraph
following Definition 2.2 imply that the two notions are equivalent in the setting of
complete lattices.
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Fig. 1 Example 2.3

Definition 2.6 Let L be a lattice. A completion of L is a pair (C, ξ) where C is a
complete lattice and ξ : L → C is a lattice embedding. Given two completions of
L, (C, ξ) and (D, μ), and a lattice isomorphism f : C → D, we call f : (C, ξ) →
(D, μ) an isomorphism of completions if f ◦ ξ = μ. We say (C, ξ) and (D, μ) are
isomorphic as completions of L if there exists an isomorphism of completions
f : (C, ξ) → (D, μ).

Now we recall the definitions of the MacNeille and canonical completions of
lattices.

Definition 2.7 Let L be a lattice.

(1) [1] The MacNeille completion of L is a pair (L, η), where L is a complete lattice
and η : L → L is a lattice embedding such that η[L] is both join-dense and
meet-dense in L.

(2) [8] The canonical completion of L is a pair (Lσ , ζ ), where Lσ is a complete
lattice and ζ : L → Lσ is a lattice embedding such that:

(i) For each filter F and ideal I of L, from F ∩ I = ∅ it follows that
∧

ζ [F] �
∨

ζ [I].
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(ii) The set KL = {∧ ζ [S] | S ⊆ L} of closed elements is join-dense in Lσ .
(iii) The set OL = {∨ ζ [S] | S ⊆ L} of open elements is meet-dense in Lσ .

The third completion we will be dealing with in this paper is the profinite comple-
tion. Let L be a lattice and let 	L = {θ ∈ Con L | L/θ is finite} be the congruences
of L of finite index. For θ, ψ ∈ 	L with θ ⊆ ψ , let hθψ : L/θ � L/ψ be given
by hθψ (a/θ) = a/ψ . Then (	L, ⊇) is a directed poset, and so 〈{L/θ}, hθψ 〉 is an
inverse system of finite homomorphic images of L. We denote the inverse limit of
〈{L/θ}, hθψ 〉 by ̂L. It is well-known that

̂L =
{

α ∈ ∏

	L
L/θ | ∀θ, ψ ∈ 	L with θ ⊆ ψ, if α(θ) = a/θ then α(ψ) = a/ψ

}

.

We define ι : L → ̂L by ι(a) = αa, where αa(θ) = a/θ for θ ∈ 	L. We note that
ι : L → ̂L may not be 1-1 in general, but ι is 1-1 if L is distributive (see, e.g., [3,
pp. 145–146]).

Definition 2.8 [3] Let L be a distributive lattice. The profinite completion of L is
the pair (̂L, ι).

In this paper we are primarily concerned with two questions. Firstly, we want to
find necessary and sufficient conditions for the lattices L, Lσ , and ̂L to be isomorphic.
Secondly, we seek necessary and sufficient conditions for the completions (L, η),
(Lσ , ζ ), and (̂L, ι) to be isomorphic as completions of L.

3 Distributive Lattices

We briefly recall the basics of Priestley duality [18] for distributive lattices. For a
topological space X, let I and C denote the interior and closure operators of X,
respectively. We recall that a subset U of X is clopen if U is both closed and open, and
that X is zero-dimensional if clopen subsets of X form a basis for the topology. We
also recall that X is a Stone space if X is compact, Hausdorff, and zero-dimensional.

Let 〈X, ≤〉 be a partially ordered set. We call A ⊆ X an upset of X if x ∈ A and
x ≤ y imply y ∈ A. Let Up(X) denote the set of upsets of X.

Definition 3.1 A Priestley space is a triple 〈X, τ,≤〉, where 〈X, τ 〉 is a compact space,
〈X, ≤〉 is a partially ordered set, and 〈X, τ,≤〉 satisfies the Priestley separation axiom:
For x, y ∈ X with x � y, there exists a clopen upset U of X such that x ∈ U and
y /∈ U . (Note that the above conditions imply that 〈X, τ 〉 is a Stone space.)

By Priestley duality, the dual of a distributive lattice L is the Priestley space
〈Pr(L), τL, ⊆〉, where Pr(L) is the set of prime filters of L and τL is the topology
generated by {ϕ(a) − ϕ(b) | a, b ∈ L}; here ϕ(a) = {∇ ∈ Pr(L) | a ∈ ∇}. Conversely,
the dual of a Priestley space 〈X, τ,≤〉 is the distributive lattice 〈Upτ (X),∩, ∪,∅, X〉,
where Upτ (X) is the set of clopen upsets of X. Moreover, the function ϕ : L →
UpτL

(Pr(L)) is a lattice isomorphism. Thus, each distributive lattice L is represented
as the lattice Upτ (X) of clopen upsets of some Priestley space X.
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Let 〈X, τ,≤〉 be a Priestley space. If S ⊆ X, we write ↓S = {x ∈ X | ∃s ∈ S : x ≤ s}
(↑S is defined dually). Following [13, Section 3], we define the operators J and D on
the powerset of X as follows:

JS = −↓− IS, (1)

DS = ↑CS. (2)

Then for each S ⊆ X we have JS is the largest open upset contained in S and DS is
the smallest closed upset containing S. Now define

RO(X) = {S ⊆ X | JDS = S}.
Because J and D form a Galois connection between the complete lattices of open
upsets and closed upsets of X, we have that RO(X) is a complete lattice under set-
theoretic inclusion [13, Lemma 3.4].

Lemma 3.2 Let L be a distributive lattice and let 〈X, τ,≤〉 be its Priestley space. Then:

(1) There is an isomorphism f : L → RO(X) such that f ◦ η = ϕ. Therefore,
(L, η) � (

RO(X), ϕ
)

.
(2) There is an isomorphism g : Lσ → Up(X) such that g ◦ ζ = ϕ. Therefore,

(Lσ , ζ ) � (

Up(X), ϕ
)

.
(3) There is an isomorphism h : ̂L → Up(X) such that h ◦ ι = ϕ. Therefore, (̂L, ι) �

(

Up(X), ϕ
)

.

Proof

(1) As in [13], we view L, up to isomorphism, as the lattice of normal ideals of L.
Then η : L → L is given by η(a) = ↓a. It was shown in [13, Theorem 3.5] that
f : L → RO(X), given by f (I) = ⋃{ϕ(a) | a ∈ I}, is a lattice isomorphism. We
show that f ◦ η = ϕ. For a ∈ L we have f (η(a)) = f (↓a) = ⋃{ϕ(b) | b ≤ a} =
ϕ(a).

(2) is well-known; see, e.g., [10, Section 2].
(3) It was shown in [3, Theorem 2.11] that Lσ is isomorphic to ̂L. Consequently,

̂L is isomorphic to Up(X). The isomorphism h : ̂L → Up(X) can be defined
explicitly as follows. Let θ ∈ 	L. It is well-known that the 1-1 correspondence
between congruences of L and closed subsets of X restricts to the 1-1 cor-
respondence between elements of 	L and finite subsets of X. Let Xθ be the
finite subset of X corresponding to θ . For α ∈ ̂L we have α(θ) = a/θ for some
a ∈ L. Then ϕ(a) ∩ Xθ is an upset of Xθ . If there is another b ∈ L such that
α(θ) = b/θ , then ϕ(a) ∩ Xθ = ϕ(b) ∩ Xθ . Thus, ϕ(a) ∩ Xθ is independent of
a ∈ L, and we denote it by ϕ(α(θ)). Let Uα = ⋃{ϕ(α(θ)) | θ ∈ 	L}. We show
that Uα is an upset of X. If x ∈ Uα and x ≤ y, then there is θ ∈ 	L such
that x ∈ ϕ(α(θ)). Since {x, y} is a finite subset of X, there is κ ∈ 	L such that
Xκ = {x, y}. Let ρ = θ ∩ κ . Then Xρ = Xθ ∪ Xκ . Therefore, y ∈ Xρ ⊆ Uα , and
so Uα ∈ Up(X). Define h : ̂L → Up(X) by h(α) = Uα . Then h is the desired
isomorphism. We show that h ◦ ι = ϕ. For a ∈ L we have h(ι(a)) = h(αa) = Uαa .
Since Uαa = ⋃{ϕ(a) ∩ Xθ | θ ∈ 	L}, then Uαa is the union of finite subsets of
ϕ(a). But so is ϕ(a). Thus, Uαa = ϕ(a), and so h(ι(a)) = ϕ(a). ��
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We recall that a point x of a topological space X is isolated if {x} is an open sub-
set of X.

Definition 3.3 Let 〈X, τ,≤〉 be a Priestley space. We call x ∈ X an order-isolated
point if both ↑x and ↓x are clopen. Let X0 denote the set of order-isolated
points of X.

Since in a Priestley space 〈X, τ,≤〉 both ↑x and ↓x are always closed for each
x ∈ X, we can equivalently define x to be order-isolated if both ↑x and ↓x are open.
Clearly every order-isolated point is isolated, but the converse is not true as follows
from [2, Example 2.8].

Theorem 3.4 Let L be a distributive lattice and let X be its Priestley space.

(1) (p, q) splits L iff there is x ∈ X0 such that ϕ(p) = ↑x and ϕ(q) = −↓x.
(2) p ∈ S(L) iff there is x ∈ X0 such that ϕ(p) = ↑x.
(3) q ∈ CS(L) iff there is x ∈ X0 such that ϕ(q) = −↓x.
(4) The posets 〈S(L),≥〉, 〈CS(L),≥〉, and 〈X0,≤〉 are order-isomorphic.

Proof (1) First suppose that there is x ∈ X0 such that ϕ(p) = ↑x and ϕ(q) = −↓x.
Then ϕ(p) �⊆ ϕ(q), and so p �≤ q. Therefore, ↑p ∩ ↓q = ∅. Moreover, for a ∈ L we
have that either x ∈ ϕ(a) or x /∈ ϕ(a). If x ∈ ϕ(a), then ↑x ⊆ ϕ(a), as ϕ(a) is an upset
of X. Therefore, ϕ(p) ⊆ ϕ(a), and so a ∈ ↑p. And if x /∈ ϕ(a), then ↓x ∩ ϕ(a) = ∅.
Thus, ϕ(a) ⊆ −↓x, so ϕ(a) ⊆ ϕ(q), and so a ∈ ↓q. Consequently, ↑p ∪ ↓q = L, and
so (p, q) splits L.

Conversely, suppose that (p, q) splits L. Then p ∈ S(L) and q ∈ CS(L). There-
fore, p is join-prime and q is meet-prime. By [2, Theorem 2.7.1], there is x ∈ X
such that ϕ(p) = ↑x. A similar argument also gives us that there is y ∈ X such that
ϕ(q) = −↓y. We show that x = y. Since p �≤ q, we have ϕ(p) �⊆ ϕ(q). Therefore,
↑x �⊆ −↓y, so ↑x ∩ ↓y �= ∅, and so x ≤ y. If y �≤ x, then there is a ∈ L such that
y ∈ ϕ(a) and x /∈ ϕ(a). It follows that ↑x �⊆ ϕ(a), so ϕ(p) �⊆ ϕ(a), and so a /∈ ↑p. Since
(p, q) splits L, we have a ∈ ↓q. Therefore, ϕ(a) ⊆ ϕ(q) = −↓y. Thus, ϕ(a) ∩ ↓y = ∅,
and so y /∈ ϕ(a). The obtained contradiction proves that y ≤ x, and so x = y. This
implies that both ↑x = ϕ(p) and ↓x = −ϕ(q) are clopen, which means that x ∈ X0.
Consequently, there is x ∈ X0 such that ϕ(p) = ↑x and ϕ(q) = −↓x.

(2) and (3) are immediate consequences of (1).
(4) It is obvious that 〈S(L),≥〉 is isomorphic to 〈CS(L), ≥〉 (for p ∈ S(L), there is a

unique q ∈ CS(L) such that (p, q) is a splitting pair, and sending p to q is the desired
isomorphism). We show that 〈CS(L),≥〉 is isomorphic to 〈X0,≤〉. Let q ∈ CS(L).
By (3), there is xq ∈ X0 such that ϕ(q) = −↓xq. We define f : 〈CS(L),≥〉 → 〈X0, ≤〉
by f (q) = xq, and show that f is an order-isomorphism. That f is onto follows from
(3). For q, r ∈ CS(L), we have q ≥ r iff ϕ(q) ⊇ ϕ(r) iff −↓xq ⊇ −↓xr iff ↓xq ⊆ ↓xr iff
xq ≤ xr iff f (q) ≤ f (r), whence f is an order-isomorphism. ��

Theorem 3.5 Let L be a distributive lattice and let X be its Priestley space. Then L is
principally separated iff X0 is dense in X.

Proof Suppose that L is principally separated and let ϕ(a) − ϕ(b) �= ∅ be a basic
open subset of X. From ϕ(a) − ϕ(b) �= ∅ it follows that a � b . Therefore, there is a
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splitting pair (p, q) such that p ≤ a and b ≤ q. By Theorem 3.4.1, there is x ∈ X0

such that ϕ(p) = ↑x and ϕ(q) = −↓x. Thus, x ∈ ϕ(a) − ϕ(b), whence X0 is dense
in X. Conversely, suppose that X0 is dense in X. Let a, b ∈ L with a �≤ b . Then
ϕ(a) �⊆ ϕ(b), and so ϕ(a) − ϕ(b) is a nonempty open subset of X. By density of X0,
there is x ∈ X0 ∩ (ϕ(a) − ϕ(b)). Therefore, there are p, q ∈ L such that ϕ(p) = ↑x
and ϕ(q) = −↓x. By Theorem 3.4.1, (p, q) is a splitting pair. Moreover, ϕ(p) ⊆ ϕ(a)

and ϕ(b) ⊆ ϕ(q). Therefore, p ≤ a and b ≤ q, and so L is principally separated. ��

For a Priestley space 〈X, τ,≤〉, let Xiso denote the set of isolated points of X.

Lemma 3.6 If X0 is dense in X, then X0 = Xiso.

Proof We already pointed out that X0 is always a subset of Xiso. Suppose X0 is dense
in X and x ∈ Xiso. Then {x} ∩ X0 �= ∅, implying that x ∈ X0. Thus, Xiso ⊆ X0. ��

Now we give necessary and sufficient conditions for the MacNeille completion
of a distributive lattice to be isomorphic to the lattice of upsets of a poset. The
equivalences (2) ⇔ (3) ⇔ (7) can be found in [5, Sec. 4] (see also [6, Sec. 4]).
Our contribution is the dual characterization of such distributive lattices. Let L
be a distributive lattice and let X be its Priestley space. For a ∈ L we let ϕ0(a) =
ϕ(a) ∩ X0.

Theorem 3.7 For a distributive lattice L and its Priestley space X, the following
conditions are equivalent:

(1) L is completely join-prime generated.
(2) L is principally separated.
(3) L is principally separated.
(4) X0 is dense in X.
(5) There exists an isomorphism of completions ξ : (L, η) → (

Up(X0), ϕ0
)

.
(6) L � Up(X0).
(7) L � Up(Y) for some poset Y.

Proof The equivalence (1) ⇔ (2) is obvious since L is complete; for (2) ⇔ (3) ⇔ (7)
see [5, Sec. 4]; for (3) ⇔ (4) see Theorem 3.5; and (5) ⇒ (6) ⇒ (7) are immediate.
Thus, to complete the proof, we need to show that (4) ⇒ (5).

(4) ⇒ (5): We define ε : RO(X) → Up(X0) by ε(U) = U ∩ X0. This function is
well-defined because every U ∈ RO(X) is an upset. We show that ε is an order-
isomorphism. For U, V ∈ RO(X) with U ⊆ V we have ε(U) = U ∩ X0 ⊆ V ∩ X0 =
ε(V). Suppose that U � V. We show that U � DV. If U ⊆ DV, then U ∩ −DV = ∅.
Since U is an upset, this implies U ∩ ↓ − DV = ∅. Therefore, as JDV = V, we obtain
U ⊆ −↓ − DV = JDV = V, a contradiction. Thus, U � DV, and so U − DV is a
nonempty open subset of X. Because X0 is dense in X, there exists x ∈ X0 ∩ (U −
DV). This implies that x ∈ U ∩ X0 and x /∈ V ∩ X0, and so ε(U) � ε(V). Conse-
quently, U ⊆ V iff ε(U) ⊆ ε(V). To see that ε is onto, let U ∈ Up(X0). We show
that ε(JDU) = U . Clearly U ⊆ JDU ∩ X0 = ε(JDU). For the converse inclusion,
suppose that x ∈ ε(JDU) = JDU ∩ X0. Then x ∈ −↓ − IDU , whence x /∈ ↓ − IDU .
It follows that ↑x ∩ −IDU = ∅. So ↑x ⊆ IDU ⊆ DU = ↑CU . Therefore, x ∈ ↑CU ,
and so ↓x ∩ CU �= ∅. Since x ∈ X0, then ↓x is open. Thus, ↓x ∩ U �= ∅, and as U
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is an upset of X0, it follows that x ∈ U . This proves that JDU ∩ X0 ⊆ U , whence
ε(JDU) = U . Consequently, ε is an isomorphism from RO(X) onto Up(X0). By
Lemma 3.2.1, there is an isomorphism f : L → RO(X) such that f ◦ η = ϕ. We
set ξ = ε ◦ f . Then ξ ◦ η = ε ◦ f ◦ η = ε ◦ ϕ = ϕ0. Thus, there is an isomorphism
ξ : L → Up(X0) such that ξ ◦ η = ϕ0. ��

Remark 3.8 It follows that if a distributive lattice is principally separated, then
its MacNeille completion is distributive (even completely distributive) [5, Sec. 4],
thus providing a sufficient condition for the MacNeille completion of a distributive
lattice to be distributive. (In fact, each principally separated lattice is distributive.
Therefore, that L is completely distributive already follows from L being principally
separated.)

Let L be a distributive lattice. If L is principally separated, then we saw that L is
isomorphic to Up(Y) for some poset Y. But this does not mean that L is isomorphic
to the lattice of upsets of the Priestley space of L, as the following example shows.

Example 3.9 Let L be the negative integers with bottom, and let X be its Priestley
space. Then 〈X, ≤〉 is isomorphic to the positive integers with top, L is complete
and principally separated, so L � L, but L �� Up(X) (see Fig. 2). Since Up(X) is
isomorphic to Lσ , it follows that Lσ �� L.

Theorem 3.10 Let L be a distributive lattice and let X be its Priestley space. Then L is
isomorphic to Lσ iff X0 is dense in X and 〈X, ≤〉 is order-isomorphic to 〈X0,≤〉.

Proof First suppose that X0 is dense in X and 〈X, ≤〉 is order-isomorphic to 〈X0,≤〉.
Then Up(X0) � Up(X). By Theorem 3.7 and Lemma 3.2, L � Up(X0) and Lσ �
Up(X). Thus, L � Lσ . Now suppose that L � Lσ . Then L is completely join-prime
generated, and by Theorem 3.7, X0 is dense in X. Moreover, since L � Up(X0) and
Lσ � Up(X), from L � Lσ it follows that Up(X0) � Up(X). This by the well-known
duality between complete and completely join-prime generated distributive lattices
and partially ordered sets implies that 〈X0, ≤〉 is order-isomorphic to 〈X, ≤〉. ��

Fig. 2 Example 3.9
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Fig. 3 Example 3.12(1)

Corollary 3.11 Let L be a distributive lattice and let X be its Priestley space. Then the
following conditions are equivalent:

(1) The three completions L, Lσ , and ̂L of L are isomorphic.
(2) X0 is dense in X and 〈X, ≤〉 is order-isomorphic to 〈X0, ≤〉.
(3) L is principally separated and the poset 〈S(L),≥〉 is order-isomorphic to the

poset of prime filters of L.

Proof By Lemma 3.2, Lσ � ̂L. Therefore, the equivalence of (1) and (2) follows
from Theorem 3.10. That (2) is equivalent to (3) is a consequence of Theorems 3.5
and 3.4. ��

Example 3.12 To show the utility of Corollary 3.11, we give several concrete
examples.

(1) Let B denote the Boolean lattice of finite and cofinite subsets of ω. It is well-
known that the dual space X of B is the one-point compactification of ω,
which is homeomorphic to ω + 1 in its interval topology (see Fig. 3). Therefore,
X0 = Xiso = ω, and so X0 is dense in X. Moreover, because both ω and X
are countable, and ≤ is simply the equality relation, we obtain that 〈X, ≤〉 is
order-isomorphic to 〈X0,≤〉. Consequently, by Corollary 3.11, B, Bσ , and ̂B
are isomorphic. Note that (B, η), (Bσ , ζ ), and (̂B, ι) cannot be isomorphic as
completions because B is an infinite Boolean algebra (see Theorem 4.8).

(2) Next, consider the Priestley space 〈X, τ,≤〉 shown in Fig. 4, where each (i, j) is
isolated and each (ω, j) is a limit point of X (i ∈ ω and 0 ≤ j ≤ n). Clearly X0 =
{(i, j) | i ∈ ω and 0 ≤ j ≤ n} and X is the n-point compactification of the discrete
space X0. Of course, X is a finite disjoint union of the spaces Xi = {(n, i) |

Fig. 4 Example 3.12(2)
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n ∈ ω} ∪ {(ω, i)}, 0 ≤ i ≤ n, where each Xi is the one-point compactification of
the discrete space {(n, i) | n ∈ ω}. We can view this as a generalization of the
previous example: we simply replace each point of the previous example by an
(n + 1)-point chain. It follows from the definition that X0 is dense in X, and
it is easy to see that 〈X, ≤〉 is order-isomorphic to 〈X0,≤〉. Let L denote the
lattice of clopen upsets of X. Then, by Corollary 3.11, L, Lσ , and ̂L are iso-
morphic. By Theorem 3.14, (L, η), (Lσ , ζ ), and (̂L, ι) cannot be isomorphic as
completions of L.

(3) Finally, consider the Priestley space 〈X, τ,≤〉 shown in Fig. 5, where each of
(i, j) is isolated, and each of (ω, j), (i, ω), and (ω, ω) is a limit point of X
(i, j ∈ ω). Clearly X0 = {(i, j) | i, j ∈ ω} and X is a countable compactification
of the discrete space X0. We can think of each Xi = {(0, i), (1, i), . . . , (ω, i)} ∪
{(i, 0), (i, 1) . . . , (i, ω)} as the two-point compactification of the discrete space
{(0, i), (1, i), . . . } ∪ {(i, 0), (i, 1), . . . }, and of X as the one-point compactification
of X − {(ω, ω)} (which is not a discrete space). Therefore, we can view this as
a generalization of the previous example: we replace each (n + 1)-point chain
by an (ω + 1)-point chain. It is obvious that X0 is dense in X. However, 〈X, ≤〉
is not order-isomorphic to 〈X0,≤〉. Let L denote the lattice of clopen upsets
of X. Then it follows from Corollary 3.11 that L is not isomorphic to neither
Lσ nor ̂L.

Based on Example 3.12, it is tempting to conjecture that the MacNeille completion
L of a distributive lattice L is isomorphic to Lσ and ̂L only if the Priestley space of
L does not have any infinite chains. This, however, is not the case as we show in the
next example.

Example 3.13 Consider the Priestley space 〈X, τ,≤〉 shown in Fig. 6, where {(ω, n) |
n ∈ ω} ∪ {(n, ω) | n ∈ ω} ∪ {(ω, ω)} are the limit points of X, and the rest are
isolated in X. Clearly X0 = X − ({(ω, n) | n ∈ ω} ∪ {(n, ω) | n ∈ ω} ∪ {(ω, ω)}) and
X is a countable compactification of the discrete space X0. We can think of

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

 , 20, 2 1, 2 2, 2

 0, 1,  2,  ω ω ω ω ω

ω

 , 1ω

 , 0ω

,

Fig. 5 Example 3.12(3)
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Fig. 6 Example 3.13

each Xi = {(0, i), (1, i), . . . , (ω, i)} ∪ {(i, 0), (i, 1) . . . , (i,ω), (i, ω + 1, . . . , (i, ω + i + 1))}
as the two-point compactification of the discrete space Xi − {(ω, i), (i, ω)}, and of X
as the one point compactification of X − {(ω, ω)} (which is not a discrete space).
Therefore, we can view this as a further generalization of the spaces in Example 3.12.
Clearly X has (infinitely many) infinite chains. It is also obvious that X0 is dense in X.
We show that there is an order-isomorphism from X0 onto X. Define f : X0 → X as
follows:

f : (α, β) �→

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(ω, β) if α = 0, β < ω,

(ω, ω) if α = 0, β = ω + 1,

(α − 1, β) if α > 0, β < ω,

(α − 1, β − 1) if α > 0, β > ω.

The map f is shown in Fig. 7, from which it is easy to see that f is an order-
isomorphism. Let L be the lattice of clopen upsets of X. Then, by Corollary 3.11,
L � Lσ , in spite of the fact that X has infinite ascending chains. By taking the
opposite of X, we obtain an example of a Priestley space X with infinitely descending
chains such that X0 is order-isomorphic to X. Thus, there exist distributive lattices L
whose Priestley spaces have both infinitely ascending and descending chains, but still
L is isomorphic to Lσ (and hence to ̂L).

The final goal of this section is to investigate when (L, η), (Lσ , ζ ), and (̂L, ι) are
isomorphic as completions of L.
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Fig. 7 The map f : X0 → X

Theorem 3.14 Let L be a distributive lattice. The three completions (L, η), (Lσ , ζ ),
and (̂L, ι) are isomorphic as completions of L iff L is finite.

Proof By Lemma 3.2, it is sufficient to show that there is an isomorphism α : L → Lσ

such that α ◦ η = ζ iff L is finite. Clearly if L is finite, then η and ζ are identities.
Therefore, if we let α be the identity, then α ◦ η = ζ . Conversely, suppose that there
exists α : L → Lσ such that α ◦ η = ζ . Since L � Lσ , then L is completely join-
prime generated, and by Theorem 3.7, X0 is dense in X. We show that X0 = X. By
Lemma 3.2, (L, η) � (

Up(X0), ϕ0
)

and (Lσ , ζ ) � (

Up(X), ϕ
)

. Therefore, α ◦ η = ζ

implies there is a lattice isomorphism λ : Up(X0) → Up(X) such that λ ◦ ϕ0 = ϕ. Let
x ∈ X. Then ↑x ∈ Up(X). Since λ is onto, there is U ∈ Up(X0) such that λ(U) = ↑x.
We have U = ⋃{↑y ∩ X0 | y ∈ U}. From y ∈ X0 it follows that ↑y is a clopen upset
of X. Therefore, there is ay ∈ L such that ↑y = ϕ(ay). Thus,

U =
⋃

{↑y ∩ X0 | y ∈ U}

=
⋃

{

ϕ(ay) ∩ X0 | y ∈ U
}

=
⋃

{

ϕ0(ay) | y ∈ U
}

,
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and so

↑x = λ(U)

= λ
(
⋃

{

ϕ0(ay) | y ∈ U
}

)

=
⋃

{

λϕ0(ay) | y ∈ U
}

)

=
⋃

{

ϕ(ay) | y ∈ U
}

)

.

Consequently, there is y ∈ X0 such that ↑x = ϕ(ay) = ↑y. It follows that x = y, and
so x ∈ X0. This implies that X = X0, which together with Lemma 3.6 give us Xiso =
X. Therefore, X is discrete, hence finite by compactness. Thus, L is finite. ��

We summarize matters below.

Corollary 3.15 For a distributive lattice L, the three lattices L, Lσ , and ̂L are isomor-
phic iff L is principally separated and the poset 〈S(L),≥〉 is order-isomorphic to the
poset of prime filters of L. Moreover, the completions (L, η), (Lσ , ζ ), and (̂L, ι) are
isomorphic as completions of L iff L is finite.

4 Heyting Algebras

Recall that a distributive lattice L is a Heyting algebra if there exists a binary
operation →: L2 → L such that for all a, b , c ∈ L we have:

a ∧ c ≤ b iff c ≤ a → b .

The duality theory for Heyting algebras was developed by Esakia [7]. As we will
see shortly, the MacNeille and canonical completions of a Heyting algebra have
the same dual characterization as for distributive lattices. Therefore, our results
about the isomorphism of L and Lσ apply unchanged for Heyting algebras. Some
simplifications are possible though, because for a Heyting algebra A we have S(A) =
J∞(A). On the other hand, the dual characterization of the profinite completion
of a Heyting algebra is different from that of a distributive lattice. In this section
we will adjust the results of the previous section appropriately to obtain necessary
and sufficient conditions for the MacNeille, canonical, and profinite completions of
a Heyting algebra to be isomorphic. As a corollary, we also obtain necessary and
sufficient conditions for the three completions of a Boolean algebra to be isomorphic.

Definition 4.1 [7] A triple 〈X, τ,≤〉 is an Esakia space if 〈X, τ,≤〉 is a Priestley space
and ↓U is open for each open subset U of X.

The same way distributive lattices are represented as clopen upsets of Priestley
spaces, Heyting algebras are represented as clopen upsets of Esakia spaces.
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We recall that there is a 1-1 correspondence between congruences and filters of a
Heyting algebra A (see, e.g., [19, Section I.13]), and that it is obtained by associating
with each congruence θ of A, the filter Fθ = 1/θ = {a ∈ A | aθ1}, and with each filter
F of A, the congruence θF = {(a, b) ∈ A2 | (a → b) ∧ (b → a) ∈ F}. We say that a
filter F of A is of finite index if the quotient algebra A/θF is finite.

Let A be a Heyting algebra and let X be its Esakia space. We recall that filters of
A correspond to closed upsets of X (see, e.g., [7]), and that this correspondence is
obtained by associating with each filter F of A, the closed upset CF = ⋂{ϕ(a) | a ∈
F} of X, and with each closed upset C of X, the filter FC = {a ∈ A | C ⊆ ϕ(a)} of A.
Now, if F is a principal filter ↑a of A, then CF = ϕ(a) is a clopen upset of X, and if C
is a clopen upset of X, then C = ϕ(a) for some a ∈ A, and so FC is the principal filter
↑a of A. Thus, principal filters of A correspond to clopen upsets of X. Also, if F is
of finite index, then CF is a finite upset of X, and if C is a finite upset of X, then FC

is of finite index. Thus, filters of A of finite index correspond to finite upsets of X.
As we pointed out above, in a Heyting algebra A we have S(A) = J∞(A), and

so for Heyting algebras principally separated simply means completely join-prime
generated. This follows from [2, Theorem 2.7] and the dual characterization of
splitting pairs of a distributive lattice given in Theorem 3.4. We also give a simple
algebraic proof. Let a ∈ J∞(A). If ↓a − {a} does not have a greatest element, then
a = ∨

(↓a − {a}), which contradicts to a ∈ J∞(A). Let b be the greatest element of
↓a − {a}. Then (a, a → b) splits A. Indeed, for c ∈ A, if a �≤ c, then a ∧ c ≤ b , so
c ≤ a → b , and so a ∈ S(A).

Let X be an Esakia space. Since for x ∈ X we have x ∈ Xiso implies ↓x is clopen,
we obtain that order-isolated points of X are exactly those isolated points x of X for
which ↑x is (cl)open. We define

Xfin = {

x ∈ X | ↑x is finite
}

.

In other words, Xfin is the union of all finite upsets of X. Let ϕfin : A → Up(Xfin)

be given by ϕfin(a) = ϕ(a) ∩ Xfin. Then ϕfin is a lattice homomorphism, and ϕfin is an
embedding iff Xfin is dense in X [2, Theorem 3.1 and Proposition 3.2].

Lemma 4.2 Let A be a Heyting algebra and let X be its Esakia space. Then:

(1) There is an isomorphism f : A → RO(X) such that f ◦ η = ϕ. Therefore,
(A, η) � (

RO(X), ϕ
)

. Moreover, (A, η) � (

Up(X0), ϕ0
)

iff A is completely
join-prime generated.

(2) There is an isomorphism g : Aσ → Up(X) such that g ◦ ζ = ϕ. Therefore,
(Aσ , ζ ) � (

Up(X), ϕ
)

.
(3) There is an isomorphism h : ̂A → Up(Xfin) such that h ◦ ι = ϕfin. Therefore, if

ι : A → ̂A is an embedding, then ( ̂A, ι) � (

Up(Xfin), ϕfin
)

.

Proof Since A is principally separated iff A is completely join-prime generated,
(1) follows from Lemma 3.2.1 and Theorem 3.7. Obviously (2) is a consequence of
Lemma 3.2.2. To see (3), it was shown in [3, Theorem 4.7] that ̂A � Up(Xfin). We
recall that the isomorphism h : ̂A → Up(Xfin) is explicitly defined as follows. Let �A
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denote the set of filters of A of finite index. For F ∈ �A, let CF be the finite upset of
X corresponding to F. For α ∈ ̂A and F ∈ �A, we have α(F) = a/θF for some a ∈ A.
Then ϕ(a) ∩ CF is an upset of CF . If there is another b ∈ L such that α(F) = b/θF ,
then ϕ(a) ∩ CF = ϕ(b) ∩ CF . Thus, ϕ(a) ∩ CF is independent of a ∈ L, and we denote
it by ϕ(α(F)). Let Uα = ⋃{ϕ(α(F)) | F ∈ �A}. Since each CF is a finite upset of X
and ϕ(α(F)) is an upset of CF , it follows that Uα is an upset of Xfin. We define h : ̂A →
Up(Xfin) by h(α) = Uα . Then h is the desired isomorphism. We show that h ◦ ι = ϕfin.
For a ∈ A we have h(ι(a)) = h(αa) = ⋃{ϕ(a) ∩ CF | F ∈ �A} = ϕ(a) ∩ ⋃{CF | F ∈
�A} = ϕ(a) ∩ Xfin = ϕfin(a). Here we use that Xfin = ⋃{CF | F ∈ �A}, which is true
because Xfin is the union of all finite upsets of X and each finite upset of X has the
form CF for some F ∈ �A. ��

From Theorem 3.10 and Lemma 4.2 we immediately obtain:

Theorem 4.3 Let A be a Heyting algebra and let X be its Esakia space. Then the
following conditions are equivalent:

(1) A � Aσ .
(2) X0 is dense in X and 〈X0,≤〉 is order-isomorphic to 〈X, ≤〉.
(3) A is completely join-prime generated and 〈J∞(A),≥〉 is order-isomorphic to the

poset of prime filters of A.

Since the profinite completion of a Heyting algebra behaves differently from the
profinite completion of a distributive lattice, the comparison of the MacNeille and
canonical completions of a Heyting algebra to its profinite completion is slightly
different.

Theorem 4.4 Let A be a Heyting algebra and let X be its Esakia space. Then:

(1) The following conditions are equivalent:

(a) A � ̂A.
(b) X0 is dense in X and 〈X0,≤〉 is order-isomorphic to 〈Xfin,≤〉.
(c) A is completely join-prime generated and 〈J∞(A),≥〉 is order-isomorphic

to the poset of prime filters of A of finite index.

(2) The following conditions are equivalent:

(a) Aσ � ̂A.
(b) (Aσ , ζ ) � ( ̂A, ι).
(c) 〈Xfin, ≤〉 is order-isomorphic to 〈X, ≤〉.
(d) Xfin = X.

Proof The proof of (1) is analogous to that of Theorem 3.10. For (2), note that
the equivalences (a) ⇔ (c) ⇔ (d) follow from [3, Theorem 4.10]. Furthermore,
it is clear that (b) implies (a). Finally, (d) implies (b) because from Xfin = X it
follows that Up(Xfin) = Up(X) and the identity idUp(X) : Up(X) → Up(X) is always
an isomorphism of completions. ��
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Putting Theorems 4.3 and 4.4 together, we obtain:

Corollary 4.5 Let A be a Heyting algebra and let X be its Esakia space. Then the
following conditions are equivalent:

(1) A � Aσ � ̂A.
(2) X0 is dense in X and 〈X0,≤〉 is order-isomorphic to 〈Xfin,≤〉 = 〈X, ≤〉.
(3) A is completely join-prime generated, 〈J∞(A),≥〉 is isomorphic to the poset of

prime filters of A, and every prime filter of A is of finite index.

We mention some of the consequences of these results below. We say that a
Heyting algebra A is finitely approximable, or residually finite, if a � b implies there
is a filter F of A of finite index such that a ∈ F and b /∈ F.

Corollary 4.6 Let A be a Heyting algebra and let X be its Esakia space.

(1) If the variety generated by A is finitely generated, then A � Aσ � ̂A iff X0 is
dense in X and 〈X0, ≤〉 is order-isomorphic to 〈X, ≤〉.

(2) If X has infinite chains, then Aσ is not isomorphic to ̂A. Nevertheless, there
are Heyting algebras whose Esakia spaces have infinite chains but A is still
isomorphic to Aσ ; also, there are Heyting algebras whose Esakia spaces have
infinite chains but A is still isomorphic to ̂A.

(3) If A is a finitely generated and finitely approximable Heyting algebra, then A is
isomorphic to ̂A.

Proof (1) follows from Corollary 4.5 and the fact that Xfin = X whenever A gener-
ates a finitely generated variety of Heyting algebras (see, e.g., [3, Theorem 5.1]). For
(2), observe that if X has infinite chains, then Xfin �= X, and apply Theorem 4.4.2. For
an example of a Heyting algebra A whose Esakia space has infinite chains but A is
still isomorphic to Aσ , observe that the Priestley space constructed in Example 3.13 is
in fact an Esakia space. Therefore, the corresponding Heyting algebra is our desired
example. Finally, for an example of a Heyting algebra A whose Esakia space has
infinite chains but A is still isomorphic to ̂A take the Heyting algebra A of positive
integers with top. The Esakia space X of A is order-isomorphic to the negative
integers with bottom (see Fig. 8). So X0 = Xfin, and so A � ̂A � A. For (3) observe

Fig. 8 Corollary 4.6.2
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that if A is a finitely generated and finitely approximable Heyting algebra, then it
follows from [4, Section 3.1] and [2, Theorem 3.1] that X0 = Xiso = Xfin and that X0

is dense in X, thus the result follows from Theorem 4.4.1. ��

Corollary 4.7 For a Boolean algebra A, the following conditions are equivalent:

(1) A � Aσ � ̂A.
(2) A is atomic and the set of atoms of A has the same cardinality as the set of

ultrafilters of A.
(3) A is atomic and the cardinality of the set of free ultrafilters of A is less than or

equal to the cardinality of the set of atoms of A.

Proof Suppose A is a Boolean algebra and X is its Stone space. Then X0 = Xiso,
there is a bijection between atoms of A and Xiso, and A is atomic iff Xiso is dense in X.
Moreover, an order-isomorphism between X0 and X is simply a bijection. Now since
the variety of Boolean algebras is a finitely generated variety of Heyting algebras,
the result follows from Corollary 4.6.1. ��

The rest of this section we will be concerned with necessary and sufficient
conditions for the MacNeille, canonical, and profinite completions of a Heyting
algebra A to be isomorphic as completions of A. First off, as a reformulation of
Theorem 3.14 we obtain:

Theorem 4.8 For a Heyting algebra A, there is an isomorphism of completions
α : (A, η) → (Aσ , ζ ) iff A is finite. In particular, if A is a Boolean algebra, then
(A, η) � (Aσ , ζ ) iff A is finite.

Now we obtain a necessary and sufficient condition for an isomorphism β : A →
̂A to commute with η and ι.

Lemma 4.9 Let 〈X, τ 〉 be a topological space with Y ⊆ X dense in X. If Z ⊆ X is
open and Z ∩ Y is closed in X, then Z ⊆ Y.

Proof Let τZ denote the subspace topology on Z and let CZ denote the closure
operator in 〈Z , τZ 〉. Since Z is open in 〈X, τ 〉, we have Z ∩ Y is dense in 〈Z , τZ 〉.
Therefore, CZ (Z ∩ Y) = Z . Because Z ∩ Y is closed in 〈X, τ 〉, it is also closed in
〈Z , τZ 〉. Thus, Z ∩ Y = CZ (Z ∩ Y) = Z . It follows that Z ⊆ Y. ��

Lemma 4.10 Let A be a Heyting algebra and let X be its Esakia space. If A � ̂A, then
X0 = Xiso ⊆ Xfin. Consequently, Xfin is dense and A is finitely approximable.

Proof Since A � ̂A, it follows from Theorem 4.4.1 that X0 is dense in X, and
that 〈X0,≤〉 is order-isomorphic to 〈Xfin,≤〉. As X0 is dense in X, by Lemma 3.6,
X0 = Xiso. From 〈X0,≤〉 � 〈Xfin,≤〉 it follows that ↑x ∩ X0 is finite for each x ∈ X0.
Since X is Hausdorff, ↑x ∩ X0 is closed. Moreover, because x ∈ X0, ↑x is open by
definition; so by Lemma 4.9, ↑x ⊆ X0. Therefore, ↑x = ↑x ∩ X0 is finite, whence
x ∈ Xfin. It follows that X0 ⊆ Xfin, so Xfin is dense, and so, by [2, Theorem 3.1], A
is finitely approximable. ��
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Note that A � ̂A does not imply that X0 is equal to Xfin as the following example
shows.

Example 4.11 Let B be the Boolean algebra of finite and cofinite subsets of ω and
let X be its Stone space. Then X is homeomorphic to the one-point compactification
of ω (see Fig. 3), X0 = Xiso = ω and it is a proper subset of Xfin = X. On the other
hand, both B and ̂B are isomorphic to the powerset of ω. Since Bσ � P(X) � P(ω),
because both ω and X are countable, it follows that B � ̂B � Bσ .

Lemma 4.12 Let A be a Heyting algebra and let X be its Esakia space. Then the
following conditions are equivalent:

(1) Xfin ⊆ X0.
(2) Each filter of A of finite index is principal.

Proof (1) ⇒ (2): Let F be a filter of A and let CF be the corresponding closed upset
of X. If F is of finite index, then A/θF is finite, and so CF is also finite. Therefore, by
(1), CF is a finite subset of X0, so is clopen. Thus, F is a principal filter.

(2) ⇒ (1): Let x ∈ Xfin. Then ↑x is a finite closed upset of X. Therefore, the
corresponding filter of A is of finite index, hence principal by (2). It follows that
↑x is a finite clopen upset of X. Thus, x is an isolated point of X and ↑x is clopen, so
x ∈ X0. ��

As follows from [4, Chapter 3], if A is the free n-generated Heyting algebra and
X is its Esakia space, then Xfin ⊆ X0, so each filter of A of finite index is principal.

Theorem 4.13 Let A be a Heyting algebra and let X be its Esakia space. Then the
following conditions are equivalent:

(1) There is an isomorphism of completions γ : (A, η) → ( ̂A, ι).
(2) X0 is dense and X0 = Xfin.
(3) A is finitely approximable and each filter of A of finite index is principal.

Proof (1) ⇒ (2): Suppose that there is an isomorphism γ : A → ̂A such that γ ◦ η =
ι. Then A � ̂A, so by Theorem 4.4 and Lemma 4.10, X0 is dense and X0 ⊆ Xfin.
It is left to be shown that Xfin ⊆ X0. By Lemma 4.2, (A, η) � (

Up(X0), ϕ0
)

and
( ̂A, ι) � (

Up(Xfin), ϕfin
)

. Therefore, γ ◦ η = ι implies there is a lattice isomorphism
λ : Up(X0) → Up(Xfin) such that λ ◦ ϕ0 = ϕfin. Let x ∈ Xfin. Then ↑x ∈ Up(Xfin).
Since λ is onto, there is U ∈ Up(X0) such that λ(U) = ↑x. We have U = ⋃{↑y ∩ X0 |
y ∈ U}. From y ∈ X0 it follows that ↑y is a clopen upset of X. Therefore, there is
ay ∈ A such that ↑y = ϕ(ay). Thus,

U =
⋃

{↑y ∩ X0 | y ∈ U}

=
⋃

{

ϕ(ay) ∩ X0 | y ∈ U
}

=
⋃

{

ϕ0(ay) | y ∈ U
}

,
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and so

↑x = λ(U)

= λ
(
⋃

{

ϕ0(ay) | y ∈ U
}

)

=
⋃

{

λϕ0(ay) | y ∈ U
}

)

=
⋃

{ϕfin(ay) | y ∈ U
}

)

.

Consequently, there is y ∈ X0 such that ↑x = ϕfin(ay) = ϕ(ay) ∩ Xfin = ↑y ∩
Xfin = ↑y since y ∈ X0 ⊆ Xfin. It follows that x = y, so x ∈ X0, and so X0 = Xfin.

(2) ⇒ (1): If X0 is dense, then by Theorem 3.7, there is an isomorphism f : A →
Up(X0) such that f ◦ η = ϕ0. From X0 = Xfin it follows that Xfin is dense, Up(X0) =
Up(Xfin), and ϕ0 = ϕfin. By Lemma 4.2, there is an isomorphism h : ̂A → Up(Xfin)

such that h ◦ ι = ϕfin. Let γ = h−1 ◦ f . Then γ : A → ̂A is an isomorphism such that
γ ◦ η = ι.

(2) ⇒ (3): If X0 is dense and X0 = Xfin, then Xfin is also dense, hence A is finitely
approximable by [2, Theorem 3.1]. Moreover, Xfin ⊆ X0 implies, by Lemma 4.12,
that each filter of A of finite index is principal.

(3) ⇒ (2): If A is finitely approximable, then Xfin is dense by [2, Theorem 3.1].
Therefore, X0 ⊆ Xiso ⊆ Xfin. Moreover, since each filter of A of finite index is
principal, by Lemma 4.12, Xfin ⊆ X0. Thus, X0 = Xfin and X0 is dense. ��

Among the examples of Heyting algebras that satisfy conditions of Theorem
4.13 are finitely generated finitely approximable Heyting algebras (cf. Corollary
4.6.3). Thus, for finitely generated finitely approximable Heyting algebras A, the
strengthening of Corollary 4.6.3 to the isomorphism of A and ̂A that commutes
with η and ι is an immediate consequence of Theorem 4.13. Another immediate
consequence of Theorems 4.13 and 4.8 is the following:

Corollary 4.14 For a Heyting algebra A, (A, η) � (Aσ , ζ ) � ( ̂A, ι) iff A is finite. In
particular, if A is a Boolean algebra, then (A, η) � (Aσ , ζ ) � ( ̂A, ι) iff A is finite.

We conclude by summarizing the main theorems of this section.

Corollary 4.15 Let A be a Heyting algebra.

(1) (a) A � Aσ iff A is completely join-prime generated and 〈J∞(A),≥〉 is order-
isomorphic to the poset of prime filters of A.

(b) (A, η) � (Aσ , ζ ) iff A is finite.
(2) (a) A � ̂A iff A is completely join-prime generated and 〈J∞(A),≥〉 is order-

isomorphic to the poset of prime filters of A of finite index.
(b) (A, η) � ( ̂A, ι) iff A is finitely approximable and each filter of A of finite

index is principal.
(3) Aσ � ̂A iff (Aσ , ζ ) � ( ̂A, ι) iff each prime filter of A is of finite index.
(4) (a) A � Aσ � ̂A iff A is completely join-prime generated, 〈J∞(A),≥〉 is iso-

morphic to the poset of prime filters of A, and each prime filter of A is of
finite index.

(b) (A, η) � (Aσ , ζ ) � ( ̂A, ι) iff A is finite.
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5 Further Directions

The results of Section 4 can easily be modified to apply to modal algebras in light of
the fact that the Jónsson-Tarski duality for modal algebras is essentially the Esakia
duality formulated for modal algebras. The modal algebra case of Theorem 4.13 and
Corollary 4.6.3 will be described in detail in [20].

More generally, using the duality theory developed by Goldblatt [11], we would
expect that our main results generalize to the case of distributive lattices with
operators. In fact, such results as those in [8] and [12] indicate that distributivity of
the underlying lattice may not be essential at all.

Acknowledgements We are greatly indebted to the referee for many valuable suggestions. More
specifically, the notion of a principally separated lattice (Definition 2.4.1) and the fact that there exist
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