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ROUGH SETS DETERMINED BY QUASIORDERS

JOUNI JÄRVINEN, SÁNDOR RADELECZKI, AND LAURA VERES

Abstract. In this paper, the ordered set of rough sets determined by
a quasiorder relation R is investigated. We prove that this ordered set is
a complete, completely distributive lattice. We show that on this lattice
can be defined three different kinds of complementation operations, and
we describe its completely join-irreducible elements. We also character-
ize the case in which this lattice is a Stone lattice. Our results generalize
some results of J. Pomyka la and J. A. Pomyka la (1988) and M. Gehrke
and E. Walker (1992) in case R is an equivalence.

1. Introduction

Rough set theory was introduced by Z. Pawlak in [18]. His idea was to
develop a formalism for dealing with vague concepts and sets. In rough set
theory it is assumed that our knowledge is restricted by an indiscernibility
relation. An indiscernibility relation is an equivalence E such that two ele-
ments of a universe of discourse U are E-equivalent if we cannot distinguish
these two elements by their properties known by us. By the means of an
indiscernibility relation E, we can partition the elements of U into three
disjoint classes with respect to any set X ⊆ U :

(1) The elements which are certainly in X. These are elements x ∈ U whose
E-class x/E is included in X.

(2) The elements which certainly are not in X. These are elements x ∈ U
such that their E-class x/E is included in X’s complement Xc.

(3) The elements which are possibly in X. These are elements whose E-
class intersects with both X and Xc. In other words, x/E is included
neither in X nor in Xc.

Based on this observation, Z. Pawlak defined the lower approximation

XH of X to be the set of those elements x ∈ U whose E-class is included
in X. The upper approximation XN of X consists of elements x ∈ X whose
E-class intersects with X. Then, the sets XH and XN can be viewed as
sets of elements that belong certainly and possibly to X, respectively. The
difference XN \XH can be viewed as the actual area of uncertainty.

Interestingly, we may define another indiscernibility relation, but now
between subsets of U . The relation ≡ is based on approximations and it
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is called rough equality. The sets X and Y are ≡-related if both of their
approximations are the same, that is, XH = Y H and XN = Y N. The equiv-
alence classes of ≡ are called rough sets. Each element in the same rough
set looks the same, when observed through the knowledge given by the in-
discernibility relation E. Namely, if X ≡ Y , then exactly the same elements
belong certainly and possibly to X and Y .

Lattice-theoretical study of rough sets was initiated by T. B. Iwiński
in [11]. He noticed that rough sets can be represented simply by their
approximations. Hence, the set of rough sets can be defined as

RS = {(XH,XN) | X ⊆ U}.

T. B. Iwiński also noted that RS may be canonically ordered by the coor-
dinatewise order:

(XH,XN) ≤ (Y H, Y N) ⇐⇒ XH ⊆ Y H and XN ⊆ Y N.

J. Pomyka la and J. A. Pomyka la showed in [19] that RS = (RS ,≤)
is a Stone lattice. Later this result was improved by S. D. Comer [7] by
showing that in fact RS is a regular double Stone lattice. Note that a
double Stone lattice (L,≤) with a pseudocomplement ∗ : L → L and a dual
pseudocomplement + : L → L is a regular double Stone lattice if x∗ = y∗

and x+ = y+ imply x = y for all x, y ∈ L; see [23].
Finally, in [10] M. Gehrke and E. Walker described the structure of RS

precisely. They showed that RS is isomorphic to 2I × 3J , where 2 and 3

are the chains of two and three elements, I is the set of singleton E-classes,
J is the set of non-singleton equivalence classes of E, 2I is the pointwise
ordered set of all mappings from I to the two-element chain, and 3J is the
pointwise ordered set of all maps from J to the 3-element chain. Note that
if each element of U is indiscernible only with itself, then E is the identity
relation, all E-classes are singletons, and RS is isomorphic to 2U . This may
be interpreted so that rough sets really generalize “classical sets”.

In the literature can be found numerous studies on rough sets that are
determined by so-called information relations reflecting distinguishability or
indistinguishability of the elements of the universe of discourse; see [14, 15]
for further references. For instance, E. Or lowska and Z. Pawlak introduced
in [16] many-valued information systems in which each attribute attaches
a set of values to objects. Therefore, in many-valued information systems,
it is possible to express, for example, similarity, informational inclusion,
diversity, and orthogonality in terms of information relations.

The idea now is that R may be an arbitrary information relation, and
rough lower and upper approximations are then defined in terms of R. This
means that x ∈ XN if there is y ∈ X such that xR y, and x ∈ XH if xR y
implies y ∈ X. Rough equality relation, the set of rough sets RS , and
its partial order are defined as before. This kind of generalization is well
justified since now it is possible to study structures determined by other
possible types of relation between objects, such as, for example, similarity
or order.

It is known that if R is reflexive and symmetric, then RS is not always
even a semilattice [12]. Similarly, if R is just transitive, RS is not neces-
sarily a semilattice [13]. However, if R is symmetric and transitive, RS is
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a complete double Stone lattice [13]. Unfortunately, the structure of RS
in case R is a quasiorder, that is, R is reflexive and transitive, has been
unknown. In this paper, we prove that if R is a quasiorder, then RS is a
complete sublattice of ℘(U) × ℘(U).

This paper is structured as follows. In the next section, we give the
definition of rough sets determined by arbitrary relations, and recall some
of their well-known properties. We also present a decomposition theorem
for rough sets that are defined by a relation that is at least left-total. At the
end of the section, we recall the essential connection between quasiorders
and Alexandrov topologies. Section 3 is devoted to our main result showing
that for any quasiorder R, RS is a complete sublattice of ℘(U) × ℘(U).
Note that this implies directly that RS is completely distributive. Then, we
study the lattice structure of RS more carefully in Section 4. We show that
there can be defined three different kinds of complementation operations.
The completely join-irreducible and completely meet-irreducible elements of
RS are described in Section 5. In Section 6, we characterize the case in
which RS is a Stone lattice.

2. Rough Set Approximations

We begin by defining the rough set approximations based on arbitrary
binary relations. Let R be any binary relation on U . We denote for any x ∈
U , R(x) = {y ∈ U | xR y}. For any subset X ⊆ U , the lower approximation

of X is

XH = {x ∈ U | R(x) ⊆ X}

and the upper approximation of X is

XN = {x ∈ U | R(x) ∩X 6= ∅}.

Let Xc denote the complement U \X of X. Then,

XNc = XcH and XHc = XcN,

that is, H and N are dual. In addition,
(

⋃

H
)

N

=
⋃

{XN | X ∈ H}

and
(

⋂

H
)

H

=
⋂

{XH | X ∈ H}

for all H ⊆ ℘(U). The last two equations imply that the maps N and H are
order-preserving.

We assume that the reader is familiar with the notions of reflexive, sym-
metric, transitive, quasiorder, and equivalence relations. A relation R is
left-total, if for all x ∈ U , there exists y ∈ U such that xR y. Note that
every reflexive relation is left-total. In the literature left-total relations are
also called total or serial relations, and quasiorders are named as preorders.

Below is listed how properties of the relation R may be expressed in terms
of approximations. Note that these well-known equivalences are closely re-
lated to correspondence results between modal logic axiom schemata and
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different types of Kripke frames; see [2, 5], for instance. For any binary
relation R on U ,

R is left-total ⇐⇒ (∀X ⊆ U)XH ⊆ XN,

R is reflexive ⇐⇒ (∀X ⊆ U)X ⊆ XN,

R is symmetric ⇐⇒ (∀X ⊆ U)X ⊆ XNH,

R is transitive ⇐⇒ (∀X ⊆ U)XNN ⊆ XN.

It should be noted that rough sets have close connections to modal, intu-
itionistic and many-valued logics [17].

Rough sets may now be defined as in case of equivalences. Let us denote
for any X ⊆ U ,

A(X) = (XH,XN),

and call it the rough set of X. Furthermore, we denote by

RS = {A(X) | X ⊆ U}

the set of all rough sets. The set RS can be ordered coordinatewise by

(XH,XN) ≤ (Y H, Y N) ⇐⇒ XH ⊆ Y H and XN ⊆ Y N,

obtaining in this way a bounded partially ordered set RS = (RS ,≤) with
A(∅) = (∅H, ∅) as the least element and A(U) = (U,UN) as the greatest
element. A rough set A(X) is called an exact element of RS if XH = X =
XN.

Let us define the mapping:

c : RS → RS ,A(X) 7→ A(Xc).

Since c((XH,XN)) = (XNc,XHc) for any X ⊆ U , the mapping c is well
defined, and it is easy to see that the pair (c, c) is an order-reversing Galois
connection on RS. This implies directly the following proposition.

Proposition 2.1. The partially ordered set RS is self-dual, that is, RS is

order-isomorphic to its dual RSop.

For any binary relation R on U , a set C is called a connected component of
R, if C is an equivalence class of the smallest equivalence relation containing
R. Let us denote by Co the set of all connected components. Clearly, for
any connected component C ∈ Co and x ∈ U , R(x) ∩ C 6= ∅ implies x ∈ C,
and x ∈ C implies R(x) ⊆ C. Hence, CN ⊆ C ⊆ CH.

Let R be a left-total relation. Because XH ⊆ XN for every X ⊆ U ,
any connected component C ∈ Co of R satisfies CH = CN = C and thus
A(C) = (C,C) is an exact element of RS . Additionally, we denote for each
C ∈ Co by RS (C) the set of rough sets on the component C determined
by the restriction of R to C. The corresponding ordered set is denoted by
RS(C).

Next we present a decomposition theorem for rough sets determined by
left-total relations. First, we prove the following lemma.

Lemma 2.2. If R is a left-total relation on U , then the following assertions

hold.
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(i) If {Ci | i ∈ I} ⊆ Co is a subset of connected components of R, then for

any family {(XH

i ,X
N

i ) ∈ RS (Ci) | i ∈ I}, the pair
(
⋃

i∈I X
H

i ,
⋃

i∈I X
N

i

)

is a rough set on U .

(ii) If (XH,XN) is a rough set on U , then the pair (XH ∩C,XN ∩C) is a

rough set on C for any connected component C ∈ Co.

Proof. (i) Clearly,
(
⋃

i∈I Xi

)

N

=
⋃

i∈I X
N

i . We will show that also
(
⋃

i∈I Xi

)

H

=
⋃

i∈I X
H

i . Since XH

i ⊆
(
⋃

i∈I Xi

)

H

for all i ∈ I, we have
⋃

i∈I X
H

i ⊆
(
⋃

i∈I Xi

)

H

. On the other hand, let x ∈
(
⋃

i∈I Xi

)

H

. Because
R(x) 6= ∅ and R(x) ⊆

⋃

i∈I Xi ⊆
⋃

i∈I Ci, there exist k ∈ I and y ∈ Ck such
that xR y. Hence, x ∈ Ck and R(x) ⊆ Ck. This implies

R(x) ⊆ Ck ∩
(

⋃

i∈I

Xi

)

=
⋃

i∈I

(

Ck ∩Xi

)

= Xk,

because Xk ⊆ Ck and Xi ∩ Ck = ∅ for all i ∈ I \ {k}. Thus, we ob-

tain x ∈ XH

i ⊆
⋃

i∈I X
H

i , which gives
(
⋃

i∈I Xi

)

H

=
⋃

i∈I X
H

i . Therefore,

A
(
⋃

i∈I Xi

)

=
(
⋃

i∈I X
H

i ,
⋃

i∈I X
N

i

)

is a rough set on U .

(ii) Let C ∈ Co. We prove that (X∩C)H = XH∩C and (X∩C)N = XN∩C.
It is easy to see that

(X ∩C)H = XH ∩ CH = XH ∩C.

Furthermore, (X ∩C)N ⊆ XN and (X ∩ C)N ⊆ CN = C imply (X ∩ C)N ⊆
XN ∩ C. For the converse, suppose that x ∈ XN ∩ C. Then, R(x) ∩X 6= ∅
and R(x) ⊆ C imply R(x) ∩ (X ∩ C) = (R(x) ∩ C) ∩ X = R(x) ∩ X 6= ∅,
that is, x ∈ (X ∩C)N. This proves (X ∩ C)N = XN ∩ C. �

Corollary 2.3. If R is a left-total relation, then for any subset H ⊆ Co of

the connected components of R, the rough set A (
⋃

H) is an exact element

of RS.

Proof. Let H ⊆ Co. By the proof of Lemma 2.2(i),
(

⋃

H
)

H

=
⋃

C∈H

CH =
⋃

H =
⋃

C∈H

CN =
(

⋃

H
)

N

.

�

For any index set I, let P =
∏

i∈I Pi be the Cartesian product of the
partially ordered sets Pi = (Pi,≤i), and let xi denote the i-th coordinate of
an element x ∈ P =

∏

i∈I Pi. We will also write x = (xi)i∈I . Recall that
the partial order ≤ of P is defined coordinatewise (see e.g [25]), that is, for
any x, y ∈ P , we have x ≤ y if and only if xi ≤i yi for all i ∈ I.

Theorem 2.4. If R is a left-total relation on U , then RS is order-

isomorphic to
∏

C∈Co
RS(C).

Proof. Assume that Co = {Ci | i ∈ I}. Consider the maps

Φ: RS →
∏

i∈I

RS (Ci) and Ψ:
∏

i∈I

RS (Ci) → RS

defined by

Φ(A(X)) = ((XH ∩ Ci,X
N ∩ Ci))i∈I
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for any A(X) = (XH,XN) ∈ RS , and

Ψ(((XH

i ,X
N

i ))i∈I) =
(

⋃

i∈I

XH

i ,
⋃

i∈I

XN

i

)

for any ((XH

i ,X
N

i ))i∈I ∈
∏

i∈I RS (Ci).

In view of Lemma 2.2, the maps Φ and Ψ are well-defined, and it is easy
to check that both Φ and Ψ are order-preserving. Hence, to prove that Φ
and Ψ are order-isomorphisms, it is enough to show that they are mutually
inverse maps.

For any A(X) = (XH,XN) ∈ RS , we obtain:

Ψ (Φ(A(X))) = Ψ(((XH ∩ Ci,X
N ∩ Ci))i∈I)

=
(

⋃

i∈I

(XH ∩ Ci),
⋃

i∈I

(XN ∩ Ci)
)

=
(

XH ∩
(

⋃

i∈I

Ci

)

,XN ∩
(

⋃

i∈I

Ci

)

)

= (XH,XN)

= A(X).

Furthermore, for any ((XH

i ,X
N

i ))i∈I ∈
∏

i∈I RS (Ci), we have:

Φ(Ψ(((XH

i ,X
N

i ))i∈I)) = Φ
(

(

⋃

j∈I

XH

j ,
⋃

j∈J

XN

j

)

)

=
((

(

⋃

j∈I

XH

j

)

∩Ci,
(

⋃

j∈I

XN

j

)

∩ Ci

))

i∈I
.

Because (XH

j ,X
N

j ) ∈ RS (Cj) for every j ∈ I, XH

j and XN

j are subsets of Cj.

Additionally, for any i, j ∈ I such that i 6= j, Ci∩Cj = ∅. These facts imply
that

(

⋃

j∈I

XH

j

)

∩ Ci =
⋃

j∈I

(

XH

j ∩ Ci

)

= XH

i

and
(

⋃

j∈I

XN

j

)

∩ Ci =
⋃

j∈I

(

XN

j ∩ Ci

)

= XN

i ,

for each i ∈ I. Thus, we obtain Φ(Ψ(((XH

i ,X
N

i ))i∈I)) = ((XH

i ,X
N

i ))i∈I .
In view of the above equalities, the maps Φ and Ψ are order-preserving

inverse mappings of each other and hence they are order-isomorphisms. So,
RS and

∏

C∈Co
RS(C) are order-isomorphic. �

We may also determine rough set approximations in terms of the inverse
R−1 of R, that is,

X▽ = {x ∈ U | R−1(x) ⊆ X}

and

X△ = {x ∈ U | R−1(x) ∩X 6= ∅}.

Interestingly, the pairs (N,▽) and (△,H) are order-preserving Galois connec-
tions on ℘(U). The end of this section is devoted to approximations deter-
mined by quasiorders. First, we recall the notion of Alexandrov topologies
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that is closely connected to quasiorders – for further details see [1, 3, 9], for
example.

An Alexandrov topology is a topology T that contains also all arbitrary
intersections of its members. Let T be an Alexandrov topology T on U .
Then, for each X ⊆ U , there exists the smallest neighbourhood

NT (X) =
⋂

{Y ∈ T | X ⊆ Y }.

In particular, the smallest neighbourhood of a point x ∈ U is denoted by
NT (x). The family

BT = {NT (x) | x ∈ U}

is the smallest base of the Alexandrov topology T . This means that every
member X of T can be expressed as a union of some (or none) elements of
BT , that is, X =

⋃

{NT (x) | x ∈ X}. In addition, BT is smallest such set.
There is a close connection between quasiorders and Alexandrov topolo-

gies. This correspondence will turn very useful in Section 5, where we will
study the completely join-irreducible elements of RS. Let R be a quasiorder
on a set U . We may now define an Alexandrov topology TR on U consisting
of all “upward-closed” subsets of U with respect to the relation R, that is,

TR = {A ⊆ U | (∀x, y ∈ U) x ∈ A & xR y =⇒ y ∈ A}

On the other hand, the set R(x) is the smallest neighbourhood of the point
x in the Alexandrov topology TR and clearly y ∈ R(x) if and only if xR y.
This hints how we may also determine quasiorders by means of Alexandrov
topologies. If T is an Alexandrov topology on U , then we define a quasiorder
RT on U by setting

xRT y ⇐⇒ y ∈ NT (x).

The correspondences R 7→ TR and T 7→ RT are one-to-one. It is also well
known that the categories of quasiordered sets and Alexandrov spaces are
isomorphic, as discussed in [8], for example.

For a quasiorder R, the rough approximations satisfy for all X ⊆ U :

XN▽ = XN, X△H = X△, XH△ = XH, X▽N = X▽.

These approximations determine two Alexandrov topologies on U :

T N = {XN | X ⊆ U} = {X▽ | X ⊆ U}

and
T H = {XH | X ⊆ U} = {X△ | X ⊆ U}.

Note that T H is the same as TR above. Clearly, these topologies are dual,
that is, for all X ⊆ U ,

X ∈ T N ⇐⇒ Xc ∈ T H

For the Alexandrov topology T N:

(i) N : ℘(U) → ℘(U) is the smallest neighbourhood operator.
(ii) △ : ℘(U) → ℘(U) is the closure operator. Note that the family of closed

sets for the topology T N is T H.
(iii) ▽ : ℘(U) → ℘(U) is the interior operator, that is, it maps each set to

the greatest open set contained into the set in question.
(iv) The set { {x}N | x ∈ U} = {R−1(x) | x ∈ U} is the smallest base.

Similarly, for the topology T H:
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(i) △ : ℘(U) → ℘(U) is the smallest neighbourhood operator.
(ii) N : ℘(U) → ℘(U) is the closure operator.
(iii) H : ℘(U) → ℘(U) is the interior operator.
(iv) The set { {x}△ | x ∈ U} = {R(x) | x ∈ U} is the smallest base.

3. Lattices of Rough Sets Determined by Quasiorders

In this section, we prove that the quasiorder-based rough sets form a
complete lattice.

We start by considering cofinal sets. Let R be a transitive relation on a
non-empty set U . A successor of x ∈ U is an element y ∈ U such that xR y.
Let X ⊆ Y ⊆ U . Then, X is cofinal in Y if each x ∈ Y has a successor in
X. By using the notation introduced in Section 2, the set of successors of x
is simply R(x). Additionally, X is cofinal in Y if and only if R(x) ∩X 6= ∅
for all x ∈ Y , which is equivalent to Y ⊆ XN. Since X ⊆ Y , this actually
means that X is cofinal in Y if and only if XN = Y N. We also say that a
set is cofinal, if it is cofinal in U .

In the proof of our main result, we will use the following theorem for
transitive relations on U by A. H. Stone.

Theorem 3.1 (Theorem 1 of [24]). A necessary and sufficient condition

that the set U has a partition into k cofinal subsets, is that each element of

U has at least k successors.

Let R be a quasiorder on U . Then for all a, b ∈ U ,

aR b ⇐⇒ b ∈ R(a) ⇐⇒ R(b) ⊆ R(a),

and |R(a)| ≥ 1. Recall from Section 2 that since R is a quasiorder, N is a
closure operator and H is an interior operator. Thus, for any X ⊆ U ,

XH ⊆ X ⊆ XN, XHH = XH, and XNN = XN.

In addition, X ⊆ Y implies XH ⊆ Y H and XN ⊆ Y N for any X,Y ⊆ U .
These properties are needed in the proof of our next theorem.

As we already mentioned, J. Pomyka la and J. A. Pomyka la showed in
[19] that for equivalence relations, RS is a Stone lattice. In their proof they
used Zermelo’s Axiom of Choice. Note that the proof of Theorem 3.1 above
also requires Axiom of Choice.

Theorem 3.2. If R is a quasiorder on a non-empty set U , then RS is a

complete sublattice of ℘(U) × ℘(U).

Proof. To prove that RS is a complete sublattice of ℘(U)×℘(U), it suffices
to show that for any family {A(Xi) | i ∈ I} = {(XH

i ,X
N

i ) | i ∈ I} of rough
sets, the pairs

(
⋂

i∈I X
H

i ,
⋂

i∈I X
N

i

)

and
(
⋃

i∈I X
H

i ,
⋃

i∈I X
N

i

)

also are rough
sets.

(1) First, we construct a set W ⊆ U that satisfies WH =
⋂

i∈I X
H

i and
WN =

⋂

i∈I X
N

i . Let us consider the set

Z =
⋂

i∈I

XN

i \
(

⋂

i∈I

Xi

)

N

,

and observe that for any a ∈ Z, we have |R(a)| ≥ 2. Indeed, by the definition
of Z, a ∈ Z means that R(a)∩Xi 6= ∅ for all i ∈ I and R(a)∩

(
⋂

i∈I Xi

)

= ∅.
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If R(a) has the form R(a) = {a}, then R(a) ∩ Xi 6= ∅ implies a ∈ Xi for
each i ∈ I, that is, a ∈

⋂

i∈Xi, a contradiction.
Let us first consider the case ZH 6= ∅. Note that each successor of any

a ∈ ZH is also in ZH, because if b is a successor of a, then aR b implies
R(b) ⊆ R(a) ⊆ Z, that is, b ∈ ZH. This then means that each a ∈ ZH

has at least two successors in ZH, and we may apply Theorem 3.1 to the
set ZH with the relation R′ = R ∩ (ZH × ZH). So, there exist two disjoint
sets A,B ⊆ ZH that are cofinal in the quasiordered set (ZH, R′). But since
R′ ⊆ R, A and B are cofinal in ZH with respect to the original relation R.
This gives ZH ⊆ AN and ZH ⊆ BN. In the case ZH = ∅, we set A = B = ∅.

Let us define the set

W =
(

⋂

i∈I

Xi

)

∪ (Z \ A).

We will show that WH =
⋂

i∈I X
H

i and WN =
⋂

i∈I X
N

i .

Since
⋂

i∈I Xi ⊆ W ,
⋂

i∈I X
H

i =
(
⋂

i∈I Xi

)

H

⊆ WH. In order to prove the
converse inclusion WH ⊆

⋂

i∈I X
H

i , suppose that a ∈ WH. Then, R(a) ⊆

W =
(
⋂

i∈I Xi

)

∪ (Z \ A), and next we will prove that necessarily R(a) ∩
(Z \ A) = ∅.

Indeed, if R(a) ∩ (Z \ A) 6= ∅, then there is b ∈ R(a) ∩ (Z \ A). So,
R(b) ⊆ R(a) ⊆ W , and b ∈ Z implies R(b) ∩

(
⋂

i∈I Xi

)

= ∅. Therefore, we
must have R(b) ⊆ Z \A. In the case ZH = ∅, this implies a contradiction. If
ZH 6= ∅, then from the fact that A is cofinal in ZH, we get b ∈ ZH ⊆ AN. On
the other hand, R(b) ⊆ (Z \ A) implies R(b) ∩A = ∅ contradicting b ∈ AN.
Hence, we have R(a) ∩ (Z \ A) = ∅.

The facts R(a) ∩ (Z \ A) = ∅ and R(a) ⊆ W imply R(a) ⊆
⋂

i∈I Xi, that

is, a ∈
(
⋂

i∈I Xi

)

H

=
⋂

i∈I X
H

i . Therefore, we obtain WH =
⋂

i∈I X
H

i .
To conclude part (1), let us show the equality WN =

⋂

i∈I X
N

i . Obviously,
⋂

i∈I Xi ⊆
⋂

i∈I X
N

i and (Z \ A) ⊆
⋂

i∈I X
N

i imply W ⊆
⋂

i∈I X
N

i . Since
Alexandrov topologies are closed also with respect to arbitrary intersections,
⋂

i∈I X
N

i belongs to T N, and therefore WN ⊆
(
⋂

i∈I X
N

i

)

N

=
⋂

i∈I X
N

i .
Conversely, we prove

⋂

i∈I X
N

i ⊆ WN by showing first that Z ⊆ (Z \A)N.
For that, take any z ∈ Z. Clearly, we may now assume z ∈ A, because
otherwise there is nothing left to prove. Because A is cofinal in ZH, we have
A ⊆ ZH ⊆ BN. In addition, B ⊆ (Z \ A) implies BN ⊆ (Z \ A)N. Thus,
z ∈ A ⊆ (Z \A)N proving Z ⊆ (Z \A)N. Therefore, we may write:

⋂

i∈I

XN

i =
(

⋂

i∈I

Xi

)

N

∪
(

⋂

i∈I

XN

i \
(

⋂

i∈I

Xi

)

N
)

=
(

⋂

i∈I

Xi

)

N

∪ Z

⊆
(

⋂

i∈I

Xi

)

N

∪ (Z \A)N

⊆ WN.

This proves WN =
⋂

i∈I X
N

i . Hence, (WH,WN) =
(
⋂

i∈I X
H

i ,
⋂

i∈I X
N

i

)

is a
rough set.
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(2) We will prove that
(
⋃

i∈I X
H

i ,
⋃

i∈I X
N

i

)

is a rough set. This is done
by constructing a set V ⊆ U such that V H =

⋃

i∈I X
H

i and V N =
⋃

i∈I X
N

i .
Let us first consider the set

S =
(

⋃

i∈I

Xi

)

N

\
(

⋃

i∈I

XH

i

)

and observe that for each b ∈ S, |R(b)| ≥ 2. Indeed, if we suppose that R(b)

has only one element, that is, R(b) = {b}, then b ∈
(
⋃

i∈I Xi

)

N

=
⋃

i∈I X
N

i

implies R(b) ∩Xk 6= ∅ for some k ∈ I, that is b ∈ Xk. However, in this case
{b} = R(b) ⊆ Xk implies b ∈ XH

k , a contradiction.
Let us first assume that SH 6= ∅. As in case (1), we note that every a ∈ SH

has at least two successors in SH and we may deduce that there exists two
disjoint cofinal subsets A and B of SH. This means that SH ⊆ AN and
SH ⊆ BN. Furthermore, if SH = ∅, we set A = B = ∅.

Let us define the sets H and V by

H =
{

a ∈ S | R(a) *
(

⋃

i∈I

Xi

)

N
}

,

V =
(

⋃

i∈I

XH

i

)

∪H ∪A.

Observe that V ⊆
(
⋃

i∈I Xi

)

N

. This is because
⋃

i∈I X
H

i ⊆
⋃

i∈I Xi ⊆
(
⋃

i∈I Xi

)

N

and A,H ⊆ S ⊆
(
⋃

i∈I Xi

)

N

by definition.

Now, we will prove that

V H =
⋃

i∈I

XH

i and V N =
⋃

i∈I

XN

i .

Indeed, we have XH

i ⊆ V for all i ∈ I by the definition of V . Therefore, for
all i ∈ I, XH

i = XHH

i ⊆ V H, which gives
⋃

i∈I

XH

i ⊆ V H.

To show the converse, suppose that a ∈ V H. Then,

a ∈ R(a) ⊆ V =
(

⋃

i∈I

XH

i

)

∪H ∪A.

Observe that a ∈ H is not possible, since R(a) ⊆ V ⊆
(
⋃

i∈I Xi

)

N

. Next we
will show that a ∈ A is also excluded.

Indeed, if a ∈ A, then necessarily SH 6= ∅. The inclusions A ⊆ SH ⊆ BN

imply a ∈ BN. This means that there exists an element b ∈ B with aR b
and b ∈ R(a) ⊆

(
⋃

i∈I X
H

i

)

∪H ∪ A. Option b ∈ A is not possible, because

A ∩ B = ∅. Also b ∈ H is impossible, because R(b) ⊆ R(a) ⊆
(
⋃

i∈I Xi

)

N

.
Finally, the remaining case b ∈

⋃

i∈I X
H

i contradicts with b ∈ B ⊆ S =
(
⋃

i∈I Xi

)

N

\
(
⋃

i∈I X
H

i

)

.
Because we showed that a ∈ H and a ∈ A are not possible, we have that

a ∈
⋃

i∈I X
H

i . Therefore, the inclusion V H ⊆
⋃

i∈I X
H

i is verified and we
may write V H =

⋃

i∈I X
H

i .
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Let us prove now the equality V N =
⋃

i∈I X
N

i . Because V ⊆
(
⋃

i∈I Xi

)

N

,
we have

V N ⊆
(

⋃

i∈I

Xi

)

NN

=
(

⋃

i∈I

Xi

)

N

=
⋃

i∈I

XN

i .

To prove the reverse inclusion, suppose that a ∈
⋃

i∈I X
N

i . Then, there
exists k ∈ I such that a ∈ XN

k , and this implies R(a) ∩ Xk 6= ∅. If

R(a) ∩
(
⋃

i∈I X
H

i

)

6= ∅ holds, then a ∈
(
⋃

i∈I X
H

i

)

N

⊆ V N, and the proof

is completed. Therefore, we now assume R(a) ∩
(
⋃

i∈I X
H

i

)

= ∅, that is,

a ∈
(

⋃

i∈I

Xi

)

N

\
(

⋃

i∈I

XH

i

)

= S.

If R(a) *
(
⋃

i∈I Xi

)

N

, then a ∈ H ⊆ V ⊆ V N and the proof is again

completed. Hence, we restrict ourselves to the case R(a) ⊆
(
⋃

i∈I Xi

)

N

.
However, in this case we get R(a) ⊆ S, because we have R(a) ∩

(
⋃

i∈I X
H

i

)

= ∅ by our hypothesis. Hence, we get a ∈ SH and therefore
SH 6= ∅. Then, SH ⊆ AN, because A is cofinal in SH. Since A ⊆ V , we
conclude that a ∈ AN ⊆ V N. This implies

⋃

i∈I

XN

i = V N.

Hence,
(
⋃

i∈I X
H

i ,
⋃

i∈I X
N

i

)

is a rough set, which completes the proof. �

The next corollary describes the meets and the joins in the complete
lattice RS.

Corollary 3.3. If R is a quasiorder on a non-empty set U , then RS is a

completely distributive complete lattice such that
∧

i∈I

A(Xi) =
(

⋂

i∈I

XH

i ,
⋂

i∈I

XN

i

)

and
∨

i∈I

A(Xi) =
(

⋃

i∈I

XH

i ,
⋃

i∈I

XN

i

)

for all {A(Xi) | i ∈ I} ⊆ RS.

Proof. As RS is a complete sublattice of the completely distributive lattice
℘(U) × ℘(U), it is always completely distributive. Because the meet and
the join of {A(Xi) | i ∈ I} in RS coincide with their meet and join in the
lattice ℘(U) × ℘(U), we obtain the required formulas. �

4. Complementation in the Lattice of Rough Sets

In the previous section, we showed that for any quasiorder R, RS is a
completely distributive complete lattice. In this section, we describe differ-
ent types of complementation operations in RS.

Let us first consider the mapping

c : RS → RS , A(X) 7→ A(Xc)

introduced already in Section 2. Now, for all α, β ∈ RS , we have

c(α ∨ β) = c(α) ∧ c(β)

c(α ∧ β) = c(α) ∨ c(β)

c(c(α)) = α
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This means that c is so-called de Morgan operation on the lattice RS (for the
notion, see [4], for instance). Note that α∨c(α) = (U,U) and α∧c(α) = (∅, ∅)
do not generally hold. However, XH ∩ XcH = (X ∩ Xc)H = ∅H = ∅ and
XN ∪XcN = (X ∪Xc)N = UN = U for any X ⊆ U .

Let (L,≤) be a lattice with a least element 0. An element x∗ is a pseu-

docomplement of x ∈ L, if x ∧ x∗ = 0 and for all a ∈ L, x ∧ a = 0 implies
a ≤ x∗. An element can have at most one pseudocomplement. A lattice is
pseudocomplemented if each element has a pseudocomplement.

Since any completely distributive complete lattice is both pseudocomple-
mented and dually pseudocomplemented, we may write the following result
by Corollary 3.3.

Proposition 4.1. If R is a quasiorder on a non-empty set U , then both RS
and its dual RSop are pseudocomplemented lattices.

In the next proposition we will determine pseudocomplement operation.

Proposition 4.2. In the lattice RS, for each X ⊆ U , we have

A(X)∗ = A(XN△c).

Proof. A(X) ∧ A(XN△c) = (∅, ∅), because XN△cN = XN△Hc = XN△c and
XN ∩XN△c = ∅ if and only if XN ⊆ XN△, and the latter holds trivially. For
the other part, XH ∩XN△cH ⊆ XN ∩XN△c = ∅.

On the other hand, if A(X) ∧ A(Y ) = (∅, ∅), then XN ∩ Y N = ∅ and
Y N ⊆ XNc. This implies Y ⊆ Y N▽ ⊆ XNc▽ = XN△c, from which we get
A(Y ) ≤ A(XN△c). Thus, A(X)∗ = A(XN△c). �

Notice that RS is not necessarily a Stone lattice. In the final section, we
give a condition under which RS is a Stone lattice.

We conclude this section by describing also dual pseudocomplements in
RS. A dual pseudocomplement x+ of x ∈ L in a lattice (L,≤) with a
greatest element 1 is such that x∨ x+ = 1 and x∨ y = 1 implies x+ ≤ y for
all y ∈ L.

Proposition 4.3. In the lattice RS, for each X ⊆ U , we have

A(X)+ = A(XH▽c).

Proof. A(X) ∨ A(XH▽c) = (U,U), because XH▽cH = XH▽Nc = XH▽c, and
XH▽ ⊆ XH implies XHc ⊆ XH▽c and XH∪XH▽c ⊇ XH∪XHc = U . Similarly,
XN ∪XH▽cN ⊇ XH ∪XH▽c = U .

If A(X) ∨ A(Y ) = (U,U), then XH ∪ Y H = U and XHc ⊆ Y H. This
implies XH▽c = XHc△ ⊆ Y H△ ⊆ Y . From this we directly obtain A(XH▽c) ≤
A(Y ). �

5. Completely Irreducible Elements

In this section, we find the set of completely join-irreducible elements
of RS, and show how all elements can be represented as a join of these.
Also completely meet-irreducible elements are characterized. For a complete
lattice L, an element x ∈ L is completely join-irreducible if for every subset
S of L, x =

∨

S implies that x ∈ S; see [22].
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Notice that for any Alexandrov topology T , the family BT = {NT (x) |
x ∈ U} of the neighbourhoods of the points consists of the completely join-
irreducible elements of the complete lattice (T ,⊆). This means that for all
X ∈ BT and H ⊆ T , X =

⋃

H implies X = Y for some Y ∈ H.
Let us define the set of rough sets

J = {(∅, {x}N) | |R(x)| ≥ 2} ∪ {({x}△, {x}△N) | x ∈ U}.

We can write the following lemma.

Lemma 5.1. The members of J are completely join-irreducible.

Proof. If |R(x)| ≥ 2, then R(x) 6⊆ {x} and {x}H = ∅, which implies
A({x}) = (∅, {x}N) ∈ RS. Because {x}N is a member of the smallest
base {{x}N | x ∈ U} of the topology T N, {x}N is completely join irreducible
in the complete lattice (T N,⊆). This means that {x}N =

⋃

i∈I X
N

i implies
{x}N = XN

i for some i ∈ I. Therefore, the rough set A({x}) = (∅, {x}N) is
completely join-irreducible in RS.

It is clear that for each x ∈ U , A({x}△) = ({x}△, {x}△N) ∈ RS, because
{x}△H = {x}△. We show that ({x}△, {x}△N) is completely join-irreducible.
Suppose that there exists a family {A(Xi)}i∈I = {(XH

i ,X
N

i )}i∈I such that

({x}△, {x}△N) =
∨

i∈I

A(Xi) =
(

⋃

i∈I

XH

i ,
⋃

i∈I

XN

i

)

.

Since {x}△ is a member of the smallest base {{x}△ | x ∈ U} of the topology
T H, {x}△ is completely join-irreducible in the lattice (T H,⊆). Therefore,
{x}△ =

⋃

i∈I X
H

i implies {x}△ = XH

i for some i ∈ I. Since XH

i ⊆ Xi, this
also gives {x}△N ⊆ XN

i . The converse, XN

i ⊆ {x}△N, holds trivially. Thus,
{x}△N = XN

i and
({x}△, {x}△N) = (XH

i ,X
N

i ).

Hence, ({x}△, {x}△N) is completely join-irreducible in RS. �

Our next theorem shows that J is the set of all completely join-irreducible
elements.

Theorem 5.2. J is the set of completely join-irreducible elements of the

complete lattice RS. Any nonzero element of RS is a join of some com-

pletely join-irreducible elements of J .

Proof. Next, we will prove that each (XH,XN) ∈ RS can be expressed as
the join of some elements in J . We begin by showing that for all X ⊆ U ,

XH =
⋃

{{x}△ | {x}△ ⊆ X}.

Because XH ∈ T H and {{x}△ | x ∈ U} is the smallest base of the topology
T H, we get

XH =
⋃

{{x}△ | x ∈ XH}

=
⋃

{{x}△ | R(x) ⊆ X}

=
⋃

{{x}△ | {x}△ ⊆ X}.

Since
⋃

{{x}△ | {x}△ ⊆ X} ⊆ X and N distributes over unions, we have
⋃

{{x}△N | {x}△ ⊆ X} ⊆ XN.
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Hence,
∨

{({x}△, {x}△N) | {x}△ ⊆ X} ≤ (XH,XN).

Obviously,
∨

{(∅, {x}N) | x ∈ X and |R(x)| ≥ 2} ≤ (XH,XN)

Next we will show that

(XH,XN) =
∨

{(∅, {x}N) | x ∈ X and |R(x)| ≥ 2}

∨
∨

{({x}△, {x}△N) | {x}△ ⊆ X}.

Let x ∈ XN. If |R(x)| = 1, then clearly also x ∈ XH. In this case, {x}△ =
{x} ⊆ X, x ∈ {x}△, and x ∈ {x}△N.

If |R(x)| ≥ 2, then we consider three different cases: (i) x ∈ XH, (ii)
x ∈ X \XH, and (iii) x ∈ XN \X.

(i) If x ∈ XH, then x ∈ {x}△ = R(x) ⊆ X, and trivially x ∈ {x}△N.
(ii) If x ∈ X, but x /∈ XH, then {x}△ = R(x) 6⊆ X. However, x ∈ {x}N

and x ∈ X. In addition, x ∈ X and x /∈ XH imply |R(x)| ≥ 2 and {x}H = ∅.
(iii) If x ∈ XN, but x /∈ X, then necessarily x ∈ {y}N for some y ∈ X such

that x 6= y. We have now two possibilities, either R(y) ⊆ X or R(y) 6⊆ X. If
{y}△ = R(y) ⊆ X, then necessarily x /∈ {y}△. However, x ∈ {y}N ⊆ {y}△N.
If R(y) 6⊆ X, then R(y) = {y}△ contains at least two elements, because
y ∈ X. This implies {y}H = ∅. Thus, (∅, {y}N) ∈ RS and recall that
x ∈ {y}N and y ∈ X. �

Clearly, the image of the set J under the mapping c : A(X) 7→ A(Xc) is

M = {A({x}c) | |R(x)| ≥ 2} ∪ {A({x}△c) | x ∈ U}

= {({x}Nc, U) | |R(x)| ≥ 2} ∪ {({x}△Nc, {x}△c) | x ∈ U}.

Since the completely meet-irreducible elements of the lattice RS are just
the completely join-irreducible elements of its dual RSop, and because RS
is order-isomorphic to RSop via the mapping A(X) 7→ A(Xc), we obtain
the following corollary.

Corollary 5.3. M is the set of completely meet-irreducible elements of

the complete lattice RS. Any nonunit element of RS is a meet of some

completely meet-irreducible elements of M.

6. Characterization of the Stonean Case

In the case of a quasiorder R ⊆ U×U , the smallest equivalence containing
R is R ∨ R−1, where ∨ denotes the join in the lattice of all quasiorders on
U ordered with the set-inclusion relation ⊆. Furthermore, R∨R−1 is equal
to the transitive closure of the relation R ∪ R−1. Hence, the connected
components of R are just the equivalence classes of R ∨R−1.

Proposition 6.1. Let R be a quasiorder on U . Then, the following asser-

tions are equivalent for any X ⊆ U :

(i) A(X) is a complemented element of RS;
(ii) A(X) is an exact element of RS ;

(iii) X is a union of some equivalence classes of R ∨R−1.
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Proof. (i)⇒(ii): Assume that there exists a set Y ⊆ U such that A(Y ) is the
complement of A(X). Then, XN∩Y N = ∅ and XH∪Y H = U . Thus, we have
Y c ⊆ Y Hc ⊆ XH ⊆ X ⊆ XN ⊆ Y Nc ⊆ Y c, proving XH = X = XN = Y c.

(ii)⇒(iii): Clearly, (ii) implies XH = X and X▽ = XN▽ = XN = X.
Hence, for any x ∈ X, we have (R ∪R−1)(x) ⊆ X, that is, X is closed with
respect to the relation R ∪ R−1. Then, X must also be closed with respect
to the transitive closure R∨R−1 of R∪R−1, that is, (R∨R−1)(x) ⊆ X for
all x ∈ X. This implies X =

⋃

{(R ∨R−1)(x) | x ∈ X}.
(iii)⇒(i): Suppose that X =

⋃

H, where H is a set of some equivalence
classes of R ∨ R−1. Because for each C ∈ H, the set C is a connected
component of R, XH = XN = X by Corollary 2.3. Then, XcH = XNc =
Xc = XHc = XcN, that is, also A(Xc) is an exact element of RS . Since
A(X) ∧A(Xc) = (X ∩Xc,X ∩Xc) = (∅, ∅) = A(∅) and A(X) ∨A(Xc) =
(X ∪Xc,X ∪Xc) = (U,U) = A(U), we have that A(X) is a complemented
element of RS. �

Remark 6.2. If the assumption of Proposition 6.1 is satisfied, then from the
arguments of the above proof it follows also that A(X) is exact if and only
if A(Xc) is exact.

An element a of a bounded lattice L = (L,≤) is called a central element

of L if a is complemented and for all x, y ∈ L the sublattice generated by
{a, x, y} is distributive. Notice that the complement of a central element
is unique and it is also a central element of L. Clearly, the least element
0 and the greatest element 1 of L are always central elements. It is known
that L ∼= L1 × L2 for some nontrivial bounded lattices L1 and L2 if and
only if there exists a pair of central elements c1, c2 ∈ L \ {0, 1} such that
(c1] ∼= L1, (c2] ∼= L2 and c1 and c2 are complements of each other, where
(x] denotes the principal ideal {y ∈ L | y ≤ x} of x (for details, see e.g.
[20, 21]). A lattice L is directly indecomposable if there are no nontrivial
lattices L1 and L2 satisfying L ∼= L1 × L2 (see [6], for instance). Clearly,
this is equivalent to the fact that L has no nontrivial central elements. It is
also obvious that the central elements of a bounded distributive lattice are
exactly its complemented elements.

Proposition 6.3. The following assertions are true for any quasiorder R.

(i) For any connected component C ∈ Co, the lattice RS(C) is directly

indecomposable.

(ii) The lattice RS is directly indecomposable if and only if R is a connected

quasiorder, that is, R has a single connected component.

Proof. (i) Assume that there exists C ∈ Co such that the lattice RS(C)
is directly decomposable. Then, RS(C) has at least one nontrivial central
element. This means that in RS(C) exists a complemented element A(X)
for some X ⊆ C such that A(X) 6= (∅, ∅) and A(X) 6= (C,C). Then,
according to Proposition 6.1, X is a join of some equivalence classes of the
restriction of R ∨ R−1 to C. However (x, y) ∈ R ∨ R−1 is satisfied for all
x, y ∈ C, because C is an equivalence class of R ∨ R−1. This fact implies
X = C, that is, A(X) = (C,C), a contradiction.

(ii) If R is a connected quasiorder on U , then R∨R−1 has just one equiv-
alence class U . Therefore, by applying Proposition 6.1, the complemented
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elements are just A(∅) and A(U). This means that RS contains only the
trivial central elements A(∅) and A(U) that are the least and the greatest
elements of RS, respectively. Thus, the lattice RS is directly indecompos-
able.

The other part is an obvious consequence of (i) and the isomorphism of
RS and

∏

C∈Co
RS(C) established in Theorem 2.4. �

Let L be a pseudocomplemented bounded distributive lattice. If x∗∨x∗∗ =
1 holds for all x ∈ L, then L is called a Stone lattice. Obviously, this
is equivalent to the fact that x∗ is a complemented element of L for each
x ∈ L.

Theorem 6.4. Let R be a quasiorder on U . Then, RS is a Stone lattice if

and only if R−1 ◦R = R ∨R−1.

Proof. Assume that RS is a Stone lattice. Then, for any X ⊆ U , the rough
set A(X)∗ = A(XN△c) is a complemented element of RS. This implies
by Proposition 6.1 and Remark 6.2 that A(XN△c) and also its complement
A(XN△) are exact elements of RS . Let x be an arbitrary element of U and
let us set X = {x}. Then, it is easy to see that XN△ = (R−1 ◦ R)(x).
By Proposition 6.1, (R−1 ◦R)(x) is equal to the union of some equivalence
classes of R∨R−1. Because R−1 ◦R ⊆ R∨R−1, this implies (R−1 ◦R)(x) =
(R∨R−1)(x). As this equality is satisfied for all x ∈ U , we obtain R−1 ◦R =
R ∨R−1.

Conversely, assume that the condition of Theorem 6.4 and the equality
R−1 ◦ R = R ∨ R−1 are satisfied. Then, according to Corollary 3.3 and
Proposition 4.1, RS is a distributive pseudocomplemented complete lattice.
We have to show that A(X)∗ is complemented for any X ⊆ U .

Assume that X ⊆ U . Let x ∈ XN△ and y ∈ (R ∨ R−1)(x). Then, by
the definition of XN△, there exist z ∈ R−1(x) ∩ XN and v ∈ R(z) ∩ X.
These mean xR−1 z and z R v, from which we obtain (x, v) ∈ R−1 ◦R with
v ∈ X. Therefore, (v, x) ∈ R ∨ R−1, and so (x, y) ∈ R ∨ R−1 implies
(v, y) ∈ R ∨ R−1. This means that y ∈ (R ∨ R−1)(v) = (R−1 ◦ R)(v) =
{v}N△ ⊆ XN△. This result proves that (R∨R−1)(x) ⊆ XN△ for all x ∈ XN△.
From this we get that XN△ is the union of some classes of R ∨ R−1. So,
by Proposition 6.1, A(XN△) is a complemented and exact element of RS.
Then, by Remark 6.2, also A(X)∗ = A(XN△c) is an exact and complemented
element of RS. Therefore, RS is a Stone lattice. �

A partially ordered set (P,≤) is called down-directed, if for any a, b ∈ P
there exists c ∈ P with c ≤ a, b. In what follows, we deduce some corol-
laries of the above theorem in cases R is a partial order or an equivalence,
respectively. Notice that case (i) of the next corollary shows that the result
of M. Gehrke and E. Walker stating that for equivalences, RS is isomorphic
two and three elements also follows in an alternative way from our Theo-
rem 6.4. We note that the details on the direct decomposition of complete
Stone lattices can be found in [20].
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Corollary 6.5. Let R be a binary relation on U .

(i) If R is an equivalence, then RS is a completely distributive Stone lattice

which is isomorphic to a direct product of chains of two and three

elements [10, Theorem 2].
(ii) If R is a partial order, then RS is a Stone lattice if and only if any

connected component of (U,R) is down-directed.

Proof. (i) The fact that RS is a completely distributive lattice follows from
Corollary 3.3. Additionally, R−1 ◦R = R∨R−1 because R is an equivalence.
Hence, Theorem 6.4 implies that RS is a Stone lattice. In view of Theo-
rem 2.4, we have that RS and

∏

C∈Co
RS(C) are isomorphic, where Co is

now the set of the equivalence classes of R. If C ∈ Co consists of a single
element a, then RS (C) = {(∅, ∅), ({a}, {a})} and RS(C) is a chain of two
elements. Similarly, if |C| ≥ 2, then RS (C) = {(∅, ∅), (∅, C), (C,C)} and
RS(C) is a chain of three elements. Therefore, RS is of the form 2I × 3J ,
where I∪J = Co and I∩J = ∅. As earlier, I stands for singleton equivalence
classes and J denotes non-singleton R-classes.

(ii) As the connected components in Co are the equivalence classes of
R ∨ R−1, it is easy to check that R−1 ◦ R = R ∨ R−1 if and only if for
any C ∈ Co and a, b ∈ C, there exists c ∈ C with cR a and cR b. This
means that all connected components C are down-directed with respect to
the partial order R restricted to C. �
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