Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 09/33

Strict betweennesses induced by posets as well as by graphs

Rautenbach, Dieter; Schäfer, Philipp Matthias

Strict Betweennesses induced by Posets as well as by Graphs

Dieter Rautenbach and Philipp Matthias Schäfer

Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, emails: dieter.rautenbach@tu-ilmenau.de, philipp.schaefer@gmail.com

Abstract

For a finite poset $P=(V, \leq)$, let $\mathcal{B}_{s}(P)$ consist of all triples $(x, y, z) \in V^{3}$ such that either $x<y<z$ or $z<y<x$. Similarly, for every finite, simple, and undirected graph $G=(V, E)$, let $\mathcal{B}_{s}(G)$ consist of all triples $(x, y, z) \in V^{3}$ such that y is an internal vertex on an induced path in G between x and z. The ternary relations $\mathcal{B}_{s}(P)$ and $\mathcal{B}_{s}(G)$ are well-known examples of so-called strict betweennesses. We characterize the pairs (P, G) of posets P and graphs G on the same ground set V which induce the same strict betweenness relation $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$.

Keywords: poset; graph; induced path; betweenness; convexity
MSC 2010 classification: 05C99, 06A06, 52A01, 52 A 37

1 Introduction

The axiomatic study and formalization of what betweenness should mean as a mathematical term goes back to Huntington and Kline [8] in 1917. Two prominent examples of such betweennesses are those induced by metrics studied by Menger [11] in 1928 and those induced by posets studied by Birkhoff [2] in 1948. While Altwegg [1] provided a complete axiomatic description of the latter kind of betweennesses which was generalized by Sholander [13] and recently by Düntsch and Urquhart [6], a similar result is unknown for the former kind (see Chvátal [3] for a detailed discussion).

In the present paper we consider so-called strict betweennesses on a finite ground set V defined as a ternary relation $\mathcal{B}_{s} \subseteq V^{3}$ on V such that $(x, y, z) \in \mathcal{B}_{s}$ implies that x, y, and z are pairwise distinct and that $(z, y, x) \in \mathcal{B}_{s}$. Two natural examples of strict betweennesses discussed by Chvátal in [4] are derived from posets and graphs.

For a finite poset $P=(V, \leq)$, Lihová [10] defines the strict order betweenness as

$$
\mathcal{B}_{s}(P)=\left\{(x, y, z) \in V^{3} \mid x<y<z \text { or } z<y<x\right\} .
$$

Using Altwegg's result [1], she gives a complete axiomatic description of strict order betweennesses in [10].

For a finite, simple, and undirected graph $G=(V, E)$, the strict induced path betweenness is defined as
$\mathcal{B}_{s}(G)=\left\{(x, y, z) \in V^{3} \mid y\right.$ is an internal vertex on an induced path in G between x and $\left.z\right\}$.
Convexity notions based on induced paths were studied by Jamison-Waldner [9] and Duchet [5].
In the present note we consider the situation when these two examples of strict betweennesses coincide. More specifically, we characterize the pairs (P, G) of posets P and graphs G on the same ground set V which induce the same strict betweenness relation $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$. After introducing some terminology and preliminary results in Section 2 we prove our main result in Section 3.

2 Some Terminology and Preliminaries

In the sequel all posets, graphs, and digraphs will be finite. Furthermore, all graphs and digraphs will be simple.

Let $P=(V, \leq)$ be a poset. Let u and v be in V. If $u \leq v$ and $u \neq v$, then we write $u<v$. If either $u \leq v$ or $v \leq u$, then u and v are called comparable. The Hasse diagram $\mathcal{H}(P)$ of P is the digraph with vertex set V where (u, w) is an arc of $\mathcal{H}(P)$ if and only if $u<w$ and there is no element $v \in V$ with $u<v<w$. The vertex set of a component of the underlying undirected graph of the Hasse diagram $\mathcal{H}(P)$ is called a weak component of P. A poset is called weakly connected if it has exactly one weak component. A poset $P^{\prime}=\left(V, \leq^{\prime}\right)$ is said to arise by an inversion of a weak component of P if there is some weak component U of P and $\leq^{\prime}=(\leq \backslash(U \times U)) \cup\{u \leq v \mid u, v \in U \wedge v \leq u\}$. Note that $\mathcal{B}_{s}(P)=\mathcal{B}_{s}\left(P^{\prime}\right)$ in this case. If $P=(V, \leq)$ is a poset, $G=(V, E)$ is a graph, $D=(V, A)$ is a digraph, and U is a subset of V, then the subposet $P[U]$ of P induced by U is $\left(U, \leq \cap U^{3}\right)$, the subgraph $G[U]$ of G induced by U is $\left(U, E \cap\binom{U}{2}\right.$) where $\binom{U}{2}$ denotes the set of all 2-element subsets of U, and the subdigraph $D[U]$ of D induced by U is $(U, A \cap(U \times U))$.

Clearly, some relations of a poset as well as some edges of a graph may be irrelevant for the induced betweennesses. Therefore, it suffices to consider suitably reduced posets and graphs. A poset P is reduced if every arc of its Hasse diagram $\mathcal{H}(P)$ is contained in a directed path of order 3. Similarly, a graph G is reduced if no component of G of order at least two is complete. We summarize some simple observations concerning reduced posets and graphs.

Proposition 1 (i) For every poset $P=(V, \leq)$, there is a reduced poset $P^{\prime}=\left(V, \leq^{\prime}\right)$ with $\leq^{\prime} \subseteq \leq$ and $\mathcal{B}_{s}(P)=\mathcal{B}_{s}\left(P^{\prime}\right)$. Furthermore, a reduced poset is uniquely determined by its strict order betweenness up to inversions of weak components.
(ii) For every graph $G=(V, E)$, there is a reduced graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ and $\mathcal{B}_{s}(G)=$ $\mathcal{B}_{s}\left(G^{\prime}\right)$. Furthermore, a reduced graph is uniquely determined by its strict order betweenness.

Proof: (i) Let the digraph H^{\prime} arise from the Hasse diagram $\mathcal{H}(P)$ of P by deleting all arcs which do not belong to directed paths of order 3. The poset P^{\prime} whose Hasse diagram is H^{\prime} has the desired properties.

Let $P=(V, \leq)$ be a reduced poset. Let G denote the underlying undirected graph of the Hasse diagram $\mathcal{H}(P)=(V, A)$. By definition, $u v$ is an edge of G if and only if there is no element $x \in V$ with $(u, x, v) \in \mathcal{B}_{s}(P)$ and there is some element $y \in V$ with either $(u, v, y) \in \mathcal{B}_{s}(P)$ or $(y, u, v) \in \mathcal{B}_{s}(P)$. Therefore, $\mathcal{B}_{s}(P)$ uniquely determines G. Let $u v, v w$ be two distinct incident edges of G. Since

$$
(((u, v),(v, w) \in A) \vee((v, u),(w, v) \in A)) \Leftrightarrow(u, v, w) \in \mathcal{B}_{s}(P),
$$

P is uniquely determined by $\mathcal{B}_{s}(P)$ up to inversions of weak components.
(ii) The graph which arises from G by deleting all edges which belong to complete components has the desired properties.

In order to prove the uniqueness, let $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ be two graphs with $\mathcal{B}_{s}\left(G_{1}\right)=$ $\mathcal{B}_{s}\left(G_{2}\right)$. For contradiction, we assume that $u v \in E_{1} \backslash E_{2}$.

If $u v$ belongs to an induced path $u v w$ in G_{1}, then $(u, v, w) \in \mathcal{B}_{s}\left(G_{1}\right)$. Hence G_{2} contains an induced path P between u and w such that v is an internal vertex of P. Since $u v \notin E_{2}$, there is a vertex x on P between u and v and $(u, x, v) \in \mathcal{B}_{s}\left(G_{2}\right) \backslash \mathcal{B}_{s}\left(G_{1}\right)$ which is a contradiction. Hence, we may assume that $u v$ does not belong to an induced path of order 3. This implies that $N_{G_{1}}[u]=N_{G_{1}}[v]$.

If u and v have two non-adjacent common neighbours, say x and y, then $(x, u, y),(x, v, y) \in \mathcal{B}_{s}\left(G_{1}\right)$. This implies that G_{2} contains two - not necessarily distinct - induced paths between x and y which contain u and v as internal vertices, respectively. Hence G_{2} contains a path between u and v. Since $u v \notin E_{2}$, there is a vertex $x \in V$ with $(u, x, v) \in \mathcal{B}_{s}\left(G_{2}\right) \backslash \mathcal{B}_{s}\left(G_{1}\right)$ which is a contradiction. Hence all common neighbours of u and v are adjacent.

Since G_{1} is reduced, some vertex in $N_{G_{1}}[u]$, say x, has a neighbour, say y, which does not belong to $N_{G_{1}}[u]$. Since $u x y$ and $v x y$ are induced paths in G_{1}, we have $(u, x, y),(v, x, y) \in \mathcal{B}_{s}\left(G_{1}\right)$. This implies that G_{2} contains an induced path between u and y and an induced path between v and y. Hence G_{2} contains a path between u and v. Since $u v \notin E_{2}$, there is a vertex $z \in V$ with $(u, z, v) \in \mathcal{B}_{s}\left(G_{2}\right) \backslash \mathcal{B}_{s}\left(G_{1}\right)$ which is a contradiction. This completes the proof.

Note that the proof of Proposition 1 (i) immediately yields an efficient algorithm to reconstruct a poset - up to inversions of weak components - from its strict order betweenness. Since the strict order betweenness of a poset can be constructed in polynomial time, this also yields an efficient and constructive algorithm to check whether a given betweenness is a strict order betweenness.

For graphs the situation is different. The proof of Proposition 1 (ii) does not immediately provide an efficient algorithm to reconstruct a graph from its strict induced path betweenness. Nevertheless, if $G=(V, E)$ is a graph, E^{\prime} denotes the set of edges of G which belong to an induced path of order 3, and $E^{\prime \prime}=E \backslash E^{\prime}$, then it is easy to see that for $u, v \in V$ with $u \neq v$ we have

- $u v \in E^{\prime}$ if and only if there is no $x \in V \backslash\{u, v\}$ with $(u, x, v) \in \mathcal{B}_{s}(G)$ and there is some $y \in V \backslash\{u, v\}$ with either $(u, v, y) \in \mathcal{B}_{s}(G)$ or $(y, u, v) \in \mathcal{B}_{s}(G)$ and
- $u v \in E^{\prime \prime}$ if and only if $u v \notin E^{\prime}, u$ and v belong to the same component of $\left(V, E^{\prime}\right)$, and there is no $x \in V \backslash\{u, v\}$ with $(u, x, v) \in \mathcal{B}_{s}(G)$.

These observations - which also allow an alternative uniqueness proof for the reduced graph in Proposition 1 - yield an efficient algorithm to reconstruct a graph from its strict induced path betweenness. Unfortunately, given a graph G and three distinct vertices x, y, and z, it is a NPcomplete problem to decide whether G contains an induced path between x and z which contains y as an internal vertex [7], i.e. given a graph G, we can most likely not construct its strict induced path betweenness in polynomial time.

3 Posets P and Graphs G with $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$

A weak component U of a reduced poset $P=(V, \leq)$ is called layered if there is a partition

$$
\begin{equation*}
U=U_{1} \cup U_{2} \cup \ldots \cup U_{l} \tag{1}
\end{equation*}
$$

of U such that

$$
\begin{equation*}
\mathcal{H}(P[U])=\left(U, \bigcup_{i=1}^{l-1} U_{i} \times U_{i+1}\right) \tag{2}
\end{equation*}
$$

Similarly, a component of a reduced graph $G=(V, E)$ with vertex set U is called layered if there is a partition of U as in (1) such that

$$
\begin{equation*}
G[U]=\left(U, \bigcup_{i=1}^{l-1}\binom{U_{i} \cup U_{i+1}}{2}\right) . \tag{3}
\end{equation*}
$$

Note that, since P or G is reduced, either $|U|=1$ or $l \geq 3$.
The following is our main result.
Theorem 2 If $P=(V, \leq)$ is a reduced poset and $G=(V, E)$ is a reduced graph, then $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$ if and only if
(i) a subset of V is a weak component of P if and only it is the vertex set of a component of G and
(ii) for every weak component U of P there is a partition of U as in (1) such that (2) and (3) hold simultaneously.

Before we proceed to the proof of Theorem 2 we establish a series of lemmas.
Lemma 3 If U is a weak component of a reduced layered poset $P=(V, \leq)$ and $U=U_{1} \cup U_{2} \cup \ldots \cup U_{l}$ is a partition of U such that (2) holds, then the graph $G[U]$ as in (3) is the unique reduced graph with $\mathcal{B}_{s}(P[U])=\mathcal{B}_{s}(G[U])$.

Proof: Since the result is trivial for $|U|=1$, we may assume that $l \geq 3$.
Since it is straightforward to verify that the graph $G[U]$ as in (3) is reduced and satisfies $\mathcal{B}_{s}(P[U])=$ $\mathcal{B}_{s}(G[U])$, we proceed to the proof of the uniqueness of $G[U]$. Therefore, let $G^{\prime}=\left(U, E^{\prime}\right)$ be a reduced graph with $\mathcal{B}_{s}(P[U])=\mathcal{B}_{s}\left(G^{\prime}\right)$.

If $1 \leq i \leq l-2$ and $v_{j} \in U_{j}$ for $j \in\{i, i+1, i+2\}$, then $\left(v_{i}, v_{i+1}, v_{i+2}\right) \in \mathcal{B}_{s}(P)$. Furthermore, there is no $v \in V$ such that either $\left(v_{i}, v, v_{i+1}\right) \in \mathcal{B}_{s}(P)$ or $\left(v_{i+1}, v, v_{i+2}\right) \in \mathcal{B}_{s}(P)$. Hence $v_{i} v_{i+1} v_{i+2}$ is an induced path in G^{\prime}. This implies that G^{\prime} contains all edges of the form $u v$ with $u \in U_{i}$ and $v \in U_{i+1}$ for some $1 \leq i \leq l-1$.

If $\left|U_{i}\right| \geq 2$ for some $1 \leq i \leq l-1, v_{i}, v_{i}^{\prime} \in U_{i}$, and $v_{i+1} \in U_{i+1}$, then $\left(v_{i}, v_{i+1}, v_{i}^{\prime}\right) \notin \mathcal{B}_{s}(P)$. Hence $v_{i} v_{i+1} v_{i}^{\prime}$ is no induced path in G^{\prime}. Since $v_{i} v_{i+1}$ and $v_{i}^{\prime} v_{i+1}$ are edges of G^{\prime}, this implies that $v_{i} v_{i}^{\prime}$ is an
edge of G^{\prime}. By symmetry, this implies that G^{\prime} contains all edges of the form $u v$ with $u, v \in U_{i}$ and $u \neq v$ for some $1 \leq i \leq l$, i.e. G^{\prime} contains the graph $G[U]$ as a subgraph.

If $u v \in E^{\prime}$ for some $u \in U_{i}$ and $v \in U_{j}$ with $j-i>2$ and $u^{\prime} \in U_{i+1}$, then $u<u^{\prime}<v$ and hence $\left(u, u^{\prime}, v\right) \in \mathcal{B}_{s}(P)$. This implies that G^{\prime} contains an induced path between u and v which has at least one internal vertex. Therefore, u and v are not adjacent in G^{\prime}. By symmetry, this implies that G^{\prime} coincides with $G[U]$.

We define some specific small digraphs which will play a central role (cf. Figure 1).

$$
\begin{aligned}
H_{1}= & \left(\left\{x_{1}, x_{2}, y_{1}, y_{2}, z\right\},\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(x_{2}, z\right),\left(y_{2}, z\right)\right\}\right), \\
H_{2}= & \left(\left\{x_{1}, x_{2}, y_{1}, y_{2}, z\right\},\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(y_{1}, x_{2}\right),\left(x_{2}, z\right),\left(y_{2}, z\right)\right\}\right), \\
H_{3}= & \left(\left\{x_{1}, x_{2}, x_{3}, x_{4}, y\right\},\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{4}\right),\left(y, x_{3}\right)\right\}\right), \\
H_{4}(l)= & \left(\left\{x_{0}, x_{1}, \ldots, x_{l}, y\right\},\left\{\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{l-1}, x_{l}\right),\left(x_{0}, y\right),\left(y, x_{l}\right)\right\}\right) \\
& \text { for } l \geq 3 .
\end{aligned}
$$

Figure 1 The digraphs H_{1}, H_{2}, H_{3}, and $H_{4}(l)$.
For a digraph $H=(V, A)$, let H^{-1} denote the digraph with the same vertex set V and arc set $A^{-1}=\{(v, u) \mid(u, v) \in A\}$.

Lemma 4 If P is a reduced poset whose Hasse diagram $\mathcal{H}(P)$ belongs to

$$
\mathcal{H}=\left\{H_{i}, H_{i}^{-1} \mid 1 \leq i \leq 3\right\} \cup\left\{H_{4}(l) \mid l \geq 3\right\},
$$

then there exists no graph G such that $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$.
Proof: We will only give details for H_{1} and H_{2}. The remaining cases can be proved similarly and are left to the reader. Therefore, let P be such that $\mathcal{H}(P)$ is either H_{1} or H_{2}. For contradiction, we assume the existence of a graph G with $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$.

Since $\left(x_{1}, x_{2}, z\right) \in \mathcal{B}_{s}(P)$ and there is no element x_{2}^{\prime} different from x_{2} such that $\left(x_{1}, x_{2}^{\prime}, z\right) \in \mathcal{B}_{s}(P)$, $x_{1} x_{2} z$ is an induced path in G. Similarly, $y_{1} y_{2} z$ is an induced path in G. Since $\left(x_{2}, z, y_{2}\right) \notin \mathcal{B}_{s}(P)$, $x_{2} y_{2}$ is an edge of G. Since $\left(x_{1}, x_{2}, y_{2}\right) \notin \mathcal{B}_{s}(P), x_{1} y_{2}$ is an edge of G. Now $\left(x_{1}, y_{2}, z\right) \in \mathcal{B}_{s}(G) \backslash \mathcal{B}_{s}(P)$ which is a contradiction.

Lemma 5 Let $P=(V, \leq)$ be a reduced weakly connected poset. If P is not layered, then its Hasse diagram $\mathcal{H}(P)=(V, A)$ contains an induced subdigraph $H^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ such that
(i) H^{\prime} is isomorphic to one of the digraphs in \mathcal{H} and
(ii) H^{\prime} is the Hasse diagram of the subposet P^{\prime} of P induced by V^{\prime}, i.e. $\mathcal{H}(P)\left[V^{\prime}\right]=\mathcal{H}\left(P\left[V^{\prime}\right]\right)$.

Proof: We call an induced subdigraph H^{\prime} of the Hasse diagram $\mathcal{H}(P)$ which satisfies (ii) faithful. For contradiction, we assume that P is a reduced weakly connected poset which is not layered and does not contain an induced subdigraph H^{\prime} as specified in the statement, i.e. it does not contain a faithful induced subdigraph from \mathcal{H}.

For $x \in V$, let height (x) denote the maximum order of a chain in P ending in x. Note that height (x) coincides with the maximum order of a directed path in $\mathcal{H}(P)$ ending in x. Furthermore, note that height $(y) \geq \operatorname{height}(x)+1$ for every arc (x, y) of $\mathcal{H}(P)$.

We consider two different cases.
Case 1 height $(y)>\operatorname{height}(x)+1$ for some arc (x, y) of $\mathcal{H}(P)$.
Since height $(y)>\operatorname{height}(x)+1$, a chain of maximum order ending in y also contains two elements u and v distinct from x such that (v, u) and (u, y) are arcs of $\mathcal{H}(P)$. Since $\mathcal{H}(P)$ is the Hasse diagram of P, x and u are incomparable and $x \not \leq v$. Since height $(y)>\operatorname{height}(x)+1, v \not \leq x$, i.e. x and v are incomparable.

Since P is reduced, there is an element w such that either (w, x) or (y, w) is an arc of $\mathcal{H}(P)$.
If (y, w) is an arc of $\mathcal{H}(P)$, then $\mathcal{H}(P)$ contains H_{3}^{-1} as a faithful induced subdigraph, which is a contradiction. Hence (w, x) is an arc of $\mathcal{H}(P)$. Since $\mathcal{H}(P)$ does not contain H_{1}^{-1} or H_{2}^{-1} as a faithful induced subdigraph, v and w are comparable. Furthermore, since height $(y)>\operatorname{height}(x)+1$, $w \leq v$. Let $w_{0} w_{1} \ldots w_{r}$ be a directed path in $\mathcal{H}(P)$ such that $w=w_{0}$ and $v=w_{r}$. Let the index i with $0 \leq i \leq r$ be maximum such that w_{i} is comparable with x. Clearly, i is well-defined and $i \leq r-1$. Since height $(y)>\operatorname{height}(x)+1, w_{i} \leq x$ and $\mathcal{H}(P)\left[\left\{x, y, u, w_{i}, w_{i+1}, \ldots, w_{r}\right\}\right]$ is isomorphic to $H_{4}(r-i+2)$ with $r-i+2 \geq 3$. This contradiction completes the proof in this case.

Case $2 \operatorname{height}(y)=\operatorname{height}(x)+1$ for every $\operatorname{arc}(x, y)$ of $\mathcal{H}(P)$.
Since P is not layered, there are two elements x and y such that height $(y)=\operatorname{height}(x)+1$ and (x, y) is no arc of $\mathcal{H}(P)$. We assume that x and y are chosen such that the distance between x and y in the underlying undirected graph G of $\mathcal{H}(P)$ is as small as possible. Let $W: x_{1} x_{2} \ldots x_{l}$ be a shortest path in G with $x=x_{1}$ and $y=x_{l}$. Note that $l \geq 4$.

If height $\left(x_{2}\right)=\operatorname{height}\left(x_{1}\right)-1$ and height $\left(x_{l-1}\right)=\operatorname{height}\left(x_{l}\right)+1$, then W contains a vertex x_{i} with $3 \leq i \leq l-3$ such that height $\left(x_{i}\right)=\operatorname{height}\left(x_{1}\right)$ and $\left(x_{i}, y\right)$ is no arc of $\mathcal{H}(P)$. This contradicts the choice of x and y.

If height $\left(x_{2}\right)=\operatorname{height}\left(x_{1}\right)+1$ and $\operatorname{height}\left(x_{l-1}\right)=\operatorname{height}\left(x_{l}\right)+1$, then the choice of x and y implies that $l=4$ and $\left(x_{2}, x_{3}\right)$ is an arc of $\mathcal{H}(P)$. Since P is reduced, there is an element z such that either (z, y) or $\left(x_{3}, z\right)$ is an arc of $\mathcal{H}(P)$. In the first case $\mathcal{H}(P)$ contains either H_{1} or H_{2} as a faithful induced subdigraph and in the second case $\mathcal{H}(P)$ contains H_{3} as a faithful induced subdigraph which is a contradiction. If height $\left(x_{2}\right)=\operatorname{height}\left(x_{1}\right)-1$ and height $\left(x_{l-1}\right)=\operatorname{height}\left(x_{l}\right)-1$, we can argue symmetrically.

Finally, if height $\left(x_{2}\right)=\operatorname{height}\left(x_{1}\right)+1$ and height $\left(x_{l-1}\right)=\operatorname{height}\left(x_{l}\right)-1$, then the choice of x and y implies that $l=4$ and $\left(x_{3}, x_{2}\right)$ is an arc of $\mathcal{H}(P)$. Since P is reduced, there are two not necessarily distinct elements z and z^{\prime} such that either $\left(x_{2}, z\right)$ and $\left(y, z^{\prime}\right)$ are arcs of $\mathcal{H}(P)$ or (z, x) and $\left(z^{\prime}, x_{3}\right)$ are arcs of $\mathcal{H}(P)$. In these cases $\mathcal{H}(P)$ contains one of the digraphs H_{1}, H_{1}^{-1}, H_{2}, and H_{2}^{-1} as an induced subdigraph. This final contradiction completes the proof.

Lemma 6 Let $P=(V, \leq)$ be a reduced weakly connected poset. Let $H^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ be an induced subdigraph of its Hasse diagram $\mathcal{H}(P)=(V, A)$ such that H^{\prime} is the Hasse diagram of the subposet P^{\prime} of P induced by V^{\prime}, i.e. $\mathcal{H}(P)\left[V^{\prime}\right]=\mathcal{H}\left(P\left[V^{\prime}\right]\right)$.

If $G=(V, E)$ is a graph such that $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$, then the subgraph G^{\prime} of G induced by V^{\prime} satisfies $\mathcal{B}_{s}\left(P^{\prime}\right)=\mathcal{B}_{s}\left(G^{\prime}\right)$.

Proof: We prove the two inclusions $\mathcal{B}_{s}\left(P^{\prime}\right) \subseteq \mathcal{B}_{s}\left(G^{\prime}\right)$ and $\mathcal{B}_{s}\left(G^{\prime}\right) \subseteq \mathcal{B}_{s}\left(P^{\prime}\right)$.
Let $(x, y, z) \in \mathcal{B}_{s}\left(P^{\prime}\right)$. By definition, H^{\prime} contains a directed path $v_{0} v_{1} \ldots v_{l}$ such that $\{x, z\}=$ $\left\{v_{0}, v_{l}\right\}$ and $y=v_{i}$ for some $1 \leq i \leq l-1$. Since, for $0 \leq i \leq l-2, v_{i} v_{i+1} v_{i+2}$ is a directed path in H^{\prime} and hence also in $\mathcal{H}(P)$, we have $\left(v_{i}, v_{i+1}, v_{i+2}\right) \in \mathcal{B}_{s}(P)$. This implies that G contains an induced path W_{i} between v_{i} and v_{i+2} with v_{i+1} as an internal vertex. Since $\left(v_{i}, v_{i+1}\right)$ and $\left(v_{i+1}, v_{i+2}\right)$ are arcs of the Hasse diagram $\mathcal{H}(P), W_{i}$ has length exactly 2 , i.e. $W_{i}=v_{i} v_{i+1} v_{i+2}$. For contradiction, we assume that $v_{1} v_{2} \ldots v_{l}$ is not an induced path in $G^{\prime}=G\left[V^{\prime}\right]$. Let $v_{i} v_{j}$ be an edge of G for some $0 \leq i, j \leq l$ with $j-i \geq 2$ such that $j-i$ is as small as possible. By the above observation, $j-i \geq 3$ which implies that $v_{j} v_{i} v_{i+1}$ is an induced path in G. Since $\left(v_{j}, v_{i}, v_{i+1}\right) \in \mathcal{B}_{s}(G)=\mathcal{B}_{s}(P)$ and $v_{i}<v_{i+1}$, this implies the contradiction $v_{j}<v_{i}$. Hence $v_{1} v_{2} \ldots v_{l}$ is an induced path in G^{\prime} and thus $(x, y, z) \in \mathcal{B}_{s}\left(G^{\prime}\right)$.

For the converse, let $(x, y, z) \in \mathcal{B}_{s}\left(G^{\prime}\right)$. By definition, $G^{\prime}=G\left[V^{\prime}\right]$ and hence also G contains an induced path between x and z containing y as an internal vertex. Since $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$, we obtain $(x, y, z) \in \mathcal{B}_{s}(P)$ and hence also $(x, y, z) \in \mathcal{B}_{s}\left(P^{\prime}\right)$.

After these preparations we are now in a position to prove our main result.
Proof of Theorem 2: The "if"-part of the statement follows easily from Lemma 3. We proceed to the proof of the "only if"-part of the statement. Therefore, let $P=(V, \leq)$ be a reduced poset and let $G=(V, E)$ be a reduced graph such that $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$.

Since P is reduced, if (u, v) is an arc or the Hasse diagram $\mathcal{H}(P)$ of P, then u and v both belong to some relation in $\mathcal{B}_{s}(P)$. This implies that u and v belong to the same component of G.

Conversely, let $u v$ be an edge of G. If the edge $u v$ belongs to an induced path of order 3 , then u and v both belong to some relation in $\mathcal{B}_{s}(G)$ and u and v also belong to the same weak component of P. Hence, we may assume $N_{G}[u]=N_{G}[v]$. If u and v have two non-adjacent common neighbours, say x and y, then $(x, u, y),(x, v, y) \in \mathcal{B}_{s}(G)$ and u and v also belong to the same weak component of P. Hence, we may assume that all common neighbours of u and v are adjacent. Since G is reduced, some vertex in $N_{G}[u]$, say x, has a neighbour, say y, which does not belong to $N_{G}[u]$. We obtain $(u, x, y),(v, x, y) \in \mathcal{B}_{s}(G)$ and u and v also belong to the same weak component of P.

These two observations imply (i).
Let U be a weak component of P. Clearly, $\mathcal{B}_{s}(P)=\mathcal{B}_{s}(G)$ implies $\mathcal{B}_{s}(P[U])=\mathcal{B}_{s}(G[U])$.
If $P[U]$ is not layered, then Lemma 5 implies that its Hasse diagram $\mathcal{H}(P[U])$ contains an induced subdigraph $H^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ such that H^{\prime} is isomorphic to one of the digraphs in \mathcal{H} and H^{\prime} is the Hasse diagram of the subposet P^{\prime} of $P[U]$ induced by V^{\prime}. Since the Hasse diagram of P is the disjoint union of the Hasse diagrams of the posets induced by its weak components, $\mathcal{H}(P[U])=\mathcal{H}(P)[U]$. Therefore, H^{\prime} is an induced subdigraph of $\mathcal{H}(P)$ and H^{\prime} is the Hasse diagram of the subposet P^{\prime} of P induced by V^{\prime}. Now Lemma 4 and Lemma 6 imply a contradiction. Hence $P[U]$ is layered.

Finally, Lemma 3 implies (ii) which completes the proof.

References

[1] M. Altwegg, Zur Axiomatik der teilweise geordneten Mengen, Comment. Math. Helv. 24, 149-155 (1950).
[2] G. Birkhoff, Lattice Theory, Rev. ed, American Mathematical Society Colloquium Publications. 25. New York: American Mathematical Society (AMS). VIII, 285 p. (1948).
[3] V. Chvátal, Sylvester-Gallai theorem and metric betweenness, Discrete Comput. Geom. 31, 175195 (2004).
[4] V. Chvátal, Antimatroids, Betweenness, Convexity, in: W.J. Cook, L. Lovász, J. Vygen (Eds.): Research Trends in Combinatorial Optimization (Bonn 2008) Springer, Berlin 2009.
[5] P. Duchet, Convex sets in graphs. II: Minimal path convexity, J. Comb. Theory, Ser. B 44, 307-316 (1988).
[6] I. Düntsch and A. Urquhart, Betweenness and Comparability Obtained from Binary Relations, Lecture Notes in Computer Science 4136, 148-161 (2006).
[7] R. Haas and M. Hoffmann, Chordless paths through three vertices, Theoretical Computer Science 351, 360-371 (2006).
[8] E.V. Huntington and J.R. Kline, Sets of independent postulates for betweenness, American M. S. Trans. 18, 301-325 (1916).
[9] R.E. Jamison-Waldner, A perspective on abstract convexity: classifying alignments by varieties, Lect. Notes Pure Appl. Math. 76, 113-150 (1982).
[10] J. Lihová, Strict order-betweennesses, Acta Univ. M. Belii, Ser. Math. 8, 27-33 (2000).
[11] K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100, 75-163 (1928).
[12] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness, and svelte graphs, Discrete Math. 254, 349-370 (2002).
[13] M. Sholander, Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3, 369-381 (1952).

