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Abstract

For a finite poset P = (V, <), let Bs(P) consist of all triples (x,y,2) € V3 such that
either r < y < z or z < y < x. Similarly, for every finite, simple, and undirected graph
G = (V, E), let Bs(G) consist of all triples (x,%,2) € V3 such that y is an internal vertex
on an induced path in G between x and z. The ternary relations Bs(P) and Bs(G) are
well-known examples of so-called strict betweennesses. We characterize the pairs (P, G) of

posets P and graphs G on the same ground set V' which induce the same strict betweenness
relation Bs(P) = Bs(G).
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1 Introduction

The axiomatic study and formalization of what betweenness should mean as a mathematical term
goes back to Huntington and Kline [8] in 1917. Two prominent examples of such betweennesses are
those induced by metrics studied by Menger [11] in 1928 and those induced by posets studied by
Birkhoff [2] in 1948. While Altwegg [1] provided a complete axiomatic description of the latter kind
of betweennesses which was generalized by Sholander [13] and recently by Diintsch and Urquhart [6],
a similar result is unknown for the former kind (see Chvétal [3] for a detailed discussion).

In the present paper we consider so-called strict betweennesses on a finite ground set V' defined as
a ternary relation B; C V3 on V such that (z,y, z) € Bs implies that z, y, and z are pairwise distinct
and that (z,y,z) € Bs. Two natural examples of strict betweennesses discussed by Chvétal in [4] are
derived from posets and graphs.

For a finite poset P = (V, <), Lihova [10] defines the strict order betweenness as

By(P) = {(z,y,2) eV |z <y<zorz<y<uz}.

Using Altwegg’s result [1], she gives a complete axiomatic description of strict order betweennesses
in [10].

For a finite, simple, and undirected graph G = (V, E), the strict induced path betweenness is defined
as

Bs(G) = {(z,y,2) € V3 | y is an internal vertex on an induced path in G' between z and z}.

Convexity notions based on induced paths were studied by Jamison-Waldner [9] and Duchet [5].

In the present note we consider the situation when these two examples of strict betweennesses
coincide. More specifically, we characterize the pairs (P, G) of posets P and graphs G on the same
ground set V' which induce the same strict betweenness relation Bs(P) = Bs(G). After introducing
some terminology and preliminary results in Section 2 we prove our main result in Section 3.

2 Some Terminology and Preliminaries

In the sequel all posets, graphs, and digraphs will be finite. Furthermore, all graphs and digraphs will
be simple.

Let P = (V,<) be a poset. Let v and v be in V. If u < v and u # v, then we write u < v. If either
u <wvorv < u,then u and v are called comparable. The Hasse diagram H(P) of P is the digraph with
vertex set V' where (u,w) is an arc of H(P) if and only if v < w and there is no element v € V' with
u < v < w. The vertex set of a component of the underlying undirected graph of the Hasse diagram
H(P) is called a weak component of P. A poset is called weakly connected if it has exactly one weak
component. A poset P’ = (V,<') is said to arise by an inversion of a weak component of P if there
is some weak component U of P and <'= (< \(U xU))U{u < v | u,v € UAv < u}. Note that
Bs(P) = Bs(P') in this case. If P = (V,<) is a poset, G = (V, E) is a graph, D = (V, A) is a digraph,
and U is a subset of V, then the subposet P[U] of P induced by U is (U, < NU?), the subgraph G[U]
of GG induced by U is (U, EN (g)) where (g) denotes the set of all 2-element subsets of U, and the
subdigraph D[U] of D induced by U is (U, AN (U x U)).

Clearly, some relations of a poset as well as some edges of a graph may be irrelevant for the induced
betweennesses. Therefore, it suffices to consider suitably reduced posets and graphs. A poset P is
reduced if every arc of its Hasse diagram H(P) is contained in a directed path of order 3. Similarly, a
graph G is reduced if no component of G of order at least two is complete. We summarize some simple
observations concerning reduced posets and graphs.



Proposition 1 (i) For every poset P = (V,<), there is a reduced poset P' = (V,<') with <'C<
and Bs(P) = Bs(P’). Furthermore, a reduced poset is uniquely determined by its strict order
betweenness up to inversions of weak components.

(ii) For every graph G = (V, E), there is a reduced graph G' = (V,E') with E' C E and Bs(G) =
Bs(G"). Furthermore, a reduced graph is uniquely determined by its strict order betweenness.

Proof: (i) Let the digraph H’ arise from the Hasse diagram H(P) of P by deleting all arcs which do
not belong to directed paths of order 3. The poset P’ whose Hasse diagram is H’ has the desired
properties.

Let P = (V,<) be a reduced poset. Let G denote the underlying undirected graph of the Hasse
diagram H(P) = (V, A). By definition, uv is an edge of G if and only if there is no element x € V' with
(u,z,v) € By(P) nd there is some element y € V' with either (u,v,y) € Bs(P) or (y,u,v) € Bs(P).
Therefore, Bs(P) uniquely determines G. Let uv,vw be two distinct incident edges of G. Since

(((u,v), (v,w) € A) V ((v,u), (w,v) € A)) & (u,v,w) € Bs(P),

P is uniquely determined by Bs(P) up to inversions of weak components.

(ii) The graph which arises from G by deleting all edges which belong to complete components has
the desired properties.

In order to prove the uniqueness, let G; = (V, Ey1) and G = (V, E3) be two graphs with Bs(G1) =
Bs(G2). For contradiction, we assume that uv € Ep \ Fs.

If uv belongs to an induced path uwvw in G, then (u,v,w) € Bs(G1). Hence G5 contains an induced
path P between u and w such that v is an internal vertex of P. Since uv € E5, there is a vertex x on
P between u and v and (u,x,v) € Bs(G2) \ Bs(G1) which is a contradiction. Hence, we may assume
that uv does not belong to an induced path of order 3. This implies that Ng, [u] = Ng, [v].

If u and v have two non-adjacent common neighbours, say = and y, then (z,u, y), (z,v,y) € Bs(G1).
This implies that G5 contains two — not necessarily distinct — induced paths between x and y which
contain v and v as internal vertices, respectively. Hence G5 contains a path between v and v. Since
uv & FEs, there is a vertex x € V with (u,z,v) € Bs(G2) \ Bs(G1) which is a contradiction. Hence all
common neighbours of v and v are adjacent.

Since G is reduced, some vertex in Ng, [u], say z, has a neighbour, say y, which does not belong to
Ne¢, [u]. Since uzy and vy are induced paths in G1, we have (u, z,y), (v, z,y) € Bs(G1). This implies
that GGo contains an induced path between v and y and an induced path between v and y. Hence G2
contains a path between u and v. Since uv ¢ FEja, there is a vertex z € V with (u, z,v) € Bs(G2)\Bs(G1)
which is a contradiction. This completes the proof. O

Note that the proof of Proposition 1 (i) immediately yields an efficient algorithm to reconstruct a
poset — up to inversions of weak components — from its strict order betweenness. Since the strict
order betweenness of a poset can be constructed in polynomial time, this also yields an efficient and
constructive algorithm to check whether a given betweenness is a strict order betweenness.

For graphs the situation is different. The proof of Proposition 1 (ii) does not immediately provide
an efficient algorithm to reconstruct a graph from its strict induced path betweenness. Nevertheless,
if G = (V, E) is a graph, E’ denotes the set of edges of G which belong to an induced path of order 3,
and E” = E \ E', then it is easy to see that for u,v € V with u # v we have

e wv € FE' if and only if there is no x € V \ {u,v} with (u,z,v) € Bs(G) and there is some
y € V\ {u,v} with either (u,v,y) € Bs(G) or (y,u,v) € Bs(G) and

e yv € E" if and only if wv € E’, v and v belong to the same component of (V, E’), and there is
no z € V\ {u,v} with (u,z,v) € Bs(Q).



These observations — which also allow an alternative uniqueness proof for the reduced graph in
Proposition 1 — yield an efficient algorithm to reconstruct a graph from its strict induced path
betweenness. Unfortunately, given a graph G and three distinct vertices z, y, and z, it is a NP-
complete problem to decide whether G contains an induced path between x and z which contains y
as an internal vertex [7], i.e. given a graph G, we can most likely not construct its strict induced path
betweenness in polynomial time.

3 Posets P and Graphs G with B,(P) = B,(G)

A weak component U of a reduced poset P = (V, <) is called layered if there is a partition
U = UhuUyu...ul; (1)

of U such that

-1
H(P[U]) = (U,UUixUZ-H). (2)

=1

Similarly, a component of a reduced graph G = (V, E) with vertex set U is called layered if there is a
partition of U as in (1) such that

a) = (UU ( UQUm)) - 3)

=1

Note that, since P or G is reduced, either |U| =1 or [ > 3.
The following is our main result.

Theorem 2 If P = (V,<) is a reduced poset and G = (V, E) is a reduced graph, then Bs(P) = Bs(G)
if and only if

(i) a subset of V' is a weak component of P if and only it is the vertex set of a component of G and

(ii) for every weak component U of P there is a partition of U as in (1) such that (2) and (3) hold
simultaneously.

Before we proceed to the proof of Theorem 2 we establish a series of lemmas.

Lemma 3 IfU is a weak component of a reduced layered poset P = (V,<) and U = Uy UUsU...UU,
is a partition of U such that (2) holds, then the graph G[U] as in (3) is the unique reduced graph with
By(P[U]) = Bs(G[U]).

Proof: Since the result is trivial for |U| = 1, we may assume that [ > 3.

Since it is straightforward to verify that the graph G[U] as in (3) is reduced and satisfies Bs(P[U]) =
Bs(G[U]), we proceed to the proof of the uniqueness of G[U]. Therefore, let G’ = (U, E') be a reduced
graph with Bs(P[U]) = Bs(G').

If1<i<l—-2andv; € Ujforje {i,i+1,i+ 2}, then (v;,viy1,vi42) € Bs(P). Furthermore,
there is no v € V such that either (v;,v,viy1) € Bs(P) or (vit1,v,vi42) € Bs(P). Hence v;vi1vi42
is an induced path in G’. This implies that G’ contains all edges of the form uv with v € U; and
v € Ujyq for some 1 < i <11 —1.

If |U;| > 2 for some 1 < i <1 —1, v;,v] € Uj, and vj1 € Ujp1, then (v;,vi11,v,) & Bs(P). Hence
vV 410, is no induced path in G'. Since v;v;41 and v]viy1 are edges of G, this implies that v;v] is an
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edge of G'. By symmetry, this implies that G’ contains all edges of the form uv with u,v € U; and
u # v for some 1 < i <, i.e. G’ contains the graph G[U] as a subgraph.

If uv € E' for some u € U; and v € U; with j —4 > 2 and v’ € Uj1, then v < ¢/ < v and hence
(u,u',v) € Bs(P). This implies that G’ contains an induced path between u and v which has at least
one internal vertex. Therefore, v and v are not adjacent in G’. By symmetry, this implies that G’
coincides with G[U]. O

We define some specific small digraphs which will play a central role (cf. Figure 1).

Hl - ({$1,$2a91792,2}7{(5517332),(yl,?/Q),(33272)7@272)}),
-H2 - ({$1,$2ayl,?/272}7{(5517502),(yl,?/Q)a(91,$2)7($2a2)a(y2a2)})7
H3 - ({$1,$27x3,$47y}7{($17552)7($27$3)7(1’37$4)7(yax?))})a
Hy(l) = ({wo,21,...,21,y} {(z0, 1), (¥1,22), - - -, (w11, 1), (20, Y), (¥, 21) })
for [ > 3.
€y
Ti—1
T4
z z Yy
3
T2 Y2 T2 Y2 T2 Yy 1
T n x1 Y1 T xo
Hy Hy Hj Hy(1)

Figure 1 The digraphs Hy, Ha, Hs, and Hy(l).

For a digraph H = (V,A), let H~! denote the digraph with the same vertex set V and arc set
A~ ={(v,u) | (u,v) € A}.

Lemma 4 If P is a reduced poset whose Hasse diagram H(P) belongs to
H={H;,H " |1<i<3}U{Hs()|l>3},
then there exists no graph G such that Bs(P) = Bs(G).

Proof: We will only give details for H; and Hy. The remaining cases can be proved similarly and
are left to the reader. Therefore, let P be such that H(P) is either Hy or Hy. For contradiction, we
assume the existence of a graph G with Bs(P) = B,(G).

Since (z1,x2, z) € Bs(P) and there is no element zf, different from x9 such that (z1, 25, 2) € Bs(P),
x122z is an induced path in G. Similarly, y1y22 is an induced path in G. Since (x2, z,y2) & Bs(P),
xay2 is an edge of G. Since (z1,z2,y2) & Bs(P), z1y2 is an edge of G. Now (x1,y2, 2) € Bs(G) \ Bs(P)
which is a contradiction. O



Lemma 5 Let P = (V,<) be a reduced weakly connected poset. If P is not layered, then its Hasse
diagram H(P) = (V, A) contains an induced subdigraph H' = (V', A’) such that

(i) H' is isomorphic to one of the digraphs in H and
(i1) H' is the Hasse diagram of the subposet P’ of P induced by V', i.e. H(P)[V'] = H(P[V]).

Proof: We call an induced subdigraph H' of the Hasse diagram H(P) which satisfies (ii) faithful. For
contradiction, we assume that P is a reduced weakly connected poset which is not layered and does
not contain an induced subdigraph H’ as specified in the statement, i.e. it does not contain a faithful
induced subdigraph from H.

For x € V, let height(x) denote the maximum order of a chain in P ending in x. Note that
height(z) coincides with the maximum order of a directed path in H(P) ending in z. Furthermore,
note that height(y) > height(x) 4+ 1 for every arc (z,y) of H(P).

We consider two different cases.

Case 1 height(y) > height(z) + 1 for some arc (z,y) of H(P).

Since height(y) > height(z) + 1, a chain of maximum order ending in y also contains two elements u
and v distinct from x such that (v,u) and (u,y) are arcs of H(P). Since H(P) is the Hasse diagram
of P, x and u are incomparable and = £ v. Since height(y) > height(z) + 1, v £ z, i.e. x and v are
incomparable.

Since P is reduced, there is an element w such that either (w,z) or (y,w) is an arc of H(P).

If (y,w) is an arc of H(P), then H(P) contains Hy; ' as a faithful induced subdigraph, which is
a contradiction. Hence (w,z) is an arc of H(P). Since H(P) does not contain H; ' or Hy' as a
faithful induced subdigraph, v and w are comparable. Furthermore, since height(y) > height(x) + 1,
w < v. Let wow; ... w, be a directed path in H(P) such that w = wp and v = w,. Let the index
¢ with 0 < ¢ < r be maximum such that w; is comparable with z. Clearly, ¢ is well-defined and
i <r — 1. Since height(y) > height(z) + 1, w; < x and H(P)[{z, y, u, w;, Wit1, ..., w,}] is isomorphic
to Ha(r — i+ 2) with » — i+ 2 > 3. This contradiction completes the proof in this case.

Case 2 height(y) = height(z) + 1 for every arc (z,y) of H(P).

Since P is not layered, there are two elements = and y such that height(y) = height(z) + 1 and (z,y)
is no arc of H(P). We assume that = and y are chosen such that the distance between x and y in the
underlying undirected graph G of H(P) is as small as possible. Let W : z1x9 ... 2; be a shortest path
in G with x = 1 and y = x;. Note that [ > 4.

If height(z2) = height(z1) — 1 and height(z;_1) = height(z;) + 1, then W contains a vertex x; with
3 < i <1 — 3 such that height(z;) = height(z1) and (z;,y) is no arc of H(P). This contradicts the
choice of x and y.

If height(z2) = height(x1) + 1 and height(z;_1) = height(x;) 4+ 1, then the choice of x and y implies
that | = 4 and (x2,x3) is an arc of H(P). Since P is reduced, there is an element z such that either
(z,y) or (x3,2) is an arc of H(P). In the first case H(P) contains either H; or Hy as a faithful
induced subdigraph and in the second case H(P) contains Hj as a faithful induced subdigraph which
is a contradiction. If height(xy) = height(z1) — 1 and height(z;_1) = height(z;) — 1, we can argue
symmetrically.

Finally, if height(z2) = height(x1) 4+ 1 and height(x;_1) = height(x;) — 1, then the choice of = and
y implies that [ = 4 and (x3,x2) is an arc of H(P). Since P is reduced, there are two not necessarily
distinct elements z and 2’ such that either (2, z) and (y, ') are arcs of H(P) or (z,x) and (2, z3) are
arcs of H(P). In these cases H(P) contains one of the digraphs Hy, Hfl, Hs, and H{l as an induced
subdigraph. This final contradiction completes the proof. O



Lemma 6 Let P = (V,<) be a reduced weakly connected poset. Let H = (V' A") be an induced
subdigraph of its Hasse diagram H(P) = (V, A) such that H' is the Hasse diagram of the subposet P’
of P induced by V', i.e. H(P)[V'] = H(P[V']).

If G = (V,E) is a graph such that Bs(P) = Bs(G), then the subgraph G' of G induced by V'
satisfies Bs(P") = Bs(G').

Proof: We prove the two inclusions Bs(P’) C Bs(G') and Bs(G') C Bs(P').

Let (z,y,2z) € Bs(P’). By definition, H' contains a directed path wvgv;...v; such that {z,z} =
{vo, v} and y = v; for some 1 < i <[ — 1. Since, for 0 < i <1 — 2, v;v;41v; 42 is a directed path in
H' and hence also in H(P), we have (v;, viy1,vir2) € Bs(P). This implies that G contains an induced
path W; between v; and v; o with v,y as an internal vertex. Since (v;, vi+1) and (viy1, vi+2) are arcs of
the Hasse diagram H(P), W; has length exactly 2, i.e. W; = v;v;41v;42. For contradiction, we assume
that viva...v; is not an induced path in G’ = G[V’]. Let v;v; be an edge of G for some 0 < i,j <1
with j —¢ > 2 such that j —¢ is as small as possible. By the above observation, j —¢ > 3 which implies
that vjv;viqq is an induced path in G. Since (vj,v;, vip1) € Bs(G) = By(P) and v; < v;11, this implies
the contradiction v; < v;. Hence vjvs...v; is an induced path in G" and thus (z,y, 2) € Bs(G’).

For the converse, let (x,y,z) € Bs(G'). By definition, G’ = G[V’] and hence also G contains an
induced path between = and z containing y as an internal vertex. Since B,(P) = Bs(G), we obtain
(x,y,2) € Bs(P) and hence also (z,y, z) € Bs(P'). O

After these preparations we are now in a position to prove our main result.

Proof of Theorem 2: The “if”-part of the statement follows easily from Lemma 3. We proceed to the
proof of the “only if”-part of the statement. Therefore, let P = (V,<) be a reduced poset and let
G = (V, E) be a reduced graph such that Bs(P) = Bs(G).

Since P is reduced, if (u,v) is an arc or the Hasse diagram H(P) of P, then u and v both belong
to some relation in Bg(P). This implies that u and v belong to the same component of G.

Conversely, let uv be an edge of G. If the edge uv belongs to an induced path of order 3, then
and v both belong to some relation in Bs(G) and u and v also belong to the same weak component
of P. Hence, we may assume Ng[u| = Ng[v]. If u and v have two non-adjacent common neighbours,
say x and y, then (z,u,y), (z,v,y) € Bs(G) and u and v also belong to the same weak component of
P. Hence, we may assume that all common neighbours of u and v are adjacent. Since G is reduced,
some vertex in Nglu|, say x, has a neighbour, say y, which does not belong to Nglu]. We obtain
(u,z,y), (v,x,y) € Bs(G) and u and v also belong to the same weak component of P.

These two observations imply (i).

Let U be a weak component of P. Clearly, Bs(P) = Bs(G) implies Bs(P[U]) = Bs(G[U]).

If P[U] is not layered, then Lemma 5 implies that its Hasse diagram H(P[U]) contains an induced
subdigraph H' = (V’, A") such that H’ is isomorphic to one of the digraphs in H and H’ is the Hasse
diagram of the subposet P’ of P[U] induced by V’. Since the Hasse diagram of P is the disjoint union
of the Hasse diagrams of the posets induced by its weak components, H(P[U]) = H(P)[U]. Therefore,
H' is an induced subdigraph of H(P) and H’ is the Hasse diagram of the subposet P’ of P induced
by V/. Now Lemma 4 and Lemma 6 imply a contradiction. Hence P[U] is layered.

Finally, Lemma 3 implies (ii) which completes the proof. O
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