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Abstract Our first paper introduced block splitting operators on the complete
lattice of partial partitions, studied their algebraic properties and characterized
block splitting openings (kernel operators) in terms of partial connections.

In this second paper we study non-isotone idempotent block splitting op-
erators on partial partitions. In particular we analyse the following two con-
structions:

– the residual combination of block splitting openings, where the (n+ 1)-th
opening is applied to the “residue” of the n-th one;

– a supremum of operators obtained by composition of a block splitting open-
ing followed by a block selection operator guided by a predicate on sets.

These operators belong to two families of idempotent operators generalizing
openings that the author studied previously.

In the same way as the openings analysed in the first paper, these two
types of idempotent operators underlie recent image segmentation approaches
due to Serra and Soille.
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tence · image segmentation
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1 Introduction

This is the second part of a general study of block splitting operators on
partial partitions, and conditions for their idempotence. Our basic motivation
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is the mathematical analysis of the operations involved in some recent image
segmentation approaches [22,23,28].

In the first paper, we have analysed the general lattice-theoretical and
monoid properties of block splitting operators. Then we showed that block
splitting openings coincide with the decomposition of blocks into their con-
nected components according to a partial connection, and that they consti-
tute a complete sublattice of the complete lattice of all openings on partial
partitions. These results underlie the connective model for image segmenta-
tion [23,17,13]: given E the space of points and T the set of image values, a
criterion cr : TE × P(E) → {0, 1} associates to an image F : E → T and
a set A ∈ P(E) the value cr[F,A] = 1 if F is homogeneous on A according
to cr, and cr[F,A] = 0 if not; when for every F : E → T , the set CFcr of all
A ∈ P(E) such that cr[F,A] = 1 is a partial connection, the criterion cr is said
to be partially connective, and then for every A ∈ P(E) the segmentation of

F on A is given by the partial partition PCCF
cr (A) of all CFcr -components of A.

Similarly, omitting images E → T , one can decompose shapes (subsets of E)
by using a partial connection C: every object A ∈ P(E) will be decomposed
into the partial partition of its C-components.

However in many practical situations, the underlying principle that “given
overlapping image regions satisfying the criterion, their union will satisfy that
criterion”, does not give optimal results. We give here three examples (in the
digital plane E = Z2) of shape decomposition that do not follow this approach,
they correspond in fact to the three set splitting methods studied in Section 3.

Let us first consider a set splitting operator σ extracting narrow lines in
subsets of E. A line segment A is indeed narrow, so from A one extracts
A itself; now a square B containing A is not narrow, so from B nothing is
extracted. Formally, σ satisfies σ(A) = 1A = {A} and σ(B) = Ø, but A ⊆ B
and 1A > Ø, thus σ is not isotone. The design of such an operator σ can involve
non-isotone template matching operators devised for processing sets or grey-
level images [2,8,9], followed by a partitioning into connected components, see
Proposition 8 and Figure 4.

Next, we remark that a block splitting opening that extracts from a set
two or more types of objects, cannot separate two objects of distinct types
when they overlap. This is illustrated in Figure 1 for horizontal and vertical
objects. The solution is to apply to a set A a first set splitting operator σ1
extracting the first type of objects, then to apply to the residual A\supp[σ1(A)]
a second set splitting operator σ2, and take the compound partial partition
σ1(A) ∪ σ2

(

A \ supp[σ1(A)]
)

. This operation can be iterated with more set
splitting operators σ3, . . ., and leads to the multi-stage segmentation strategy
introduced by Serra [22,17]. This construction will be analysed in detail in
Subsection 3.2.

Finally, consider the extraction of large objects that can have small pro-
truding parts. In Figure 2, the two sets A and B are each one large object
with four protrusions, so each one will be extracted as a whole, in other words,
σ(A) = 1A and σ(B) = 1B ; now since A and B overlap, for σ isotone we would
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Fig. 1 Here E = Z2. (a) A set A from which horizontal and vertical bars are to be extracted.

(b) The two structuring elements H and V . (c) The partial partition PCC∗
H (A) of A into its

C∗
H
-components of A (connected components of the opening A ◦H), gives the 2 horizontal

bars. (d) The partial partition PCC∗
V (A) of A into its C∗

V
-components (connected components

of A ◦ V ), gives the 3 vertical bars. (e) Their join PCC∗
H (A)∨PCC∗

V (A); since PCC∗
H (A) and

PCC∗
V (A) are invariant under any opening extracting horizontal and vertical objects, so must

be PCC∗
H (A)∨PCC∗

V (A), but then the horizontal and vertical bars are not separated. (f) In

order to extract separately the horizontal and vertical bars, we first take PCC∗
H (A), giving

the 2 horizontal bars (in light grey), then apply PCC∗
V to the residual A \ supp[PCC∗

H (A)] =
A \ (A ◦H), giving 8 remaining vertical bars (in dark grey).

have σ(A∪B) = 1A ∨ 1B = 1A∪B , while in fact σ(A∪B) should contain two
objects separated by a narrow transition.

(a)

A

(b)

B
BA

(c) (d)

C

D

E++

Fig. 2 (a) and (b) The two sets A
and B, where the + indicates the
position of the origin. Since A and
B represent each one object, we
have σ(A) = 1A and σ(B) = 1B .
(c) If σ was isotone, we would have
σ(A ∪ B) = 1A∪B . (d) However
A ∪ B consists of two objects C
and D (in dark grey) separated by
a transition E (in light grey), thus
σ(A ∪B) = 1C ∨ 1D.

A similar problem is the so-called “trend effect” in the segmentation of
grey-level images [28]: an image where the intensity varies slowly from dark to
bright over a wide area will globally look heterogeneous, while locally every
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small region will look homogeneous. In both cases a possible solution is to use
Soille’s segmentation approach [27–30] studied in Subsection 3.3: (a) build a
growing sequence of segmentations π1 ≤ · · · ≤ πn by using growing sequence
of partial connections (e.g., arising from growing criteria); (b) in each partial
partition πi (i = 1, . . . , n), remove all blocks that do not satisfy some con-
straint, leading to a filtered partial partition π′

i; (c) take as final segmentation
the join

∨n
i=1 π

′
i. See Figure 10 for the segmentation of a function, and also

Figures 11 and 12 for the decomposition of a set into two wide parts joined by
a narrow transition.

This second paper will thus investigate non-isotone idempotent block split-
ting operators on partial partitions. Idempotence is required for the stability
of the segmentation process (a non-homogeneous set is split into homogeneous
subsets that are not split further). In fact, all idempotent operators that we
construct belong to two families of operators that we introduced before under
the names of open-condensations [11] and open-overcondensations [12]. For the
sake of brevity, we rename them here C-thinnings and OC-thinnings respec-
tively. They are order-theoretical generalizations of openings, and have several
similarities with them, notably they constitute Moore families.

We give a few methods for constructing such idempotent block splitting op-
erators from elementary operations on blocks. They are based on the opening
CSC decomposing each block into its C-components (for a partial connection
C). First, CSC can either be preceded by a feature extraction operator [2,8,
9], see Proposition 8, or it can be followed by a block selection operator as
in Soille’s approach to segmentation [28], see Subsection 3.3; both operations
produce OC-thinnings. Next, we propose an associative binary operation on
set splitting operators, the residual combination, where the second operator is
applied to the “residue” of the first one; this operation was introduced in [22]
in the specific case of the decomposition into C-components, and we show that
the resulting operation on block splitting operators preserves the family of
C-thinnings, see Subsection 3.2. Finally, the lattice-theoretical join preserves
both families of C-thinnings and OC-thinnings; this is in particular relevant
to Soille’s approach [28].

In Section 4, we will indicate the relevance for image segmentation (or
shape decomposition) of various order-theoretical properties of block splitting
operators.

1.1 Paper organization

We adopt the general terminology (inherited from [15]) of the first paper, which
follows that of mathematical morphology [19,5,26], except when it contradicts
classical lattice-theoretical usage.

Section 2 gives the mathematical background: we first recall the main nota-
tion (Table 1), results and formulas from the first paper that we will use here;
Table 2 lists the notation introduced in this paper (in the order of first ap-
pearance); then we describe C-thinnings (open-condensations), OC-thinnings
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(open-overcondensations) and trivial operators, and give their main properties.
Section 3 considers idempotent non-isotone block splitting operators, in par-
ticular the residual combination of block splitting openings introduced by [22]
and the operators underlying Soille’s approach to segmentation [28]. Finally
Section 4 discusses the significance of our results, concludes and proposes new
tracks for research.

Although the operators described in Section 3 are based on existing image
segmentation algorithms, all properties proved about them are new.

2 Background

Table 1 summarizes the main notation introduced in the first paper. We now
briefly recall the main results and formulas from it that will be needed in
this second work. Then Subsection 2.1 will describe some families of lattice-
theoretical operators, in particular those introduced by the author [11,12].

We first give a small simplification of notation: for an operator ψ on P(E)
and a point p ∈ E, write ψ(p) for ψ({p}).

Recall now the basic morphological operators on subsets of E = Rm or
E = Zm; for any B ∈ P(E), we have the following four operators on P(E):
the dilation by B, δB : X 7→ X ⊕ B; the erosion by B, εB : X 7→ X ⊖ B; the
opening by B, γB = δBεB : X 7→ X ◦ B = (X ⊖ B) ⊕ B; the closing by B,
ϕB = εBδB : X 7→ X •B = (X ⊕B)⊖B. We write Bp for the translate of B
by a point p ∈ E; we have Bp = δB(p).

Given a a non-empty family πi ∈ Π∗(E), i ∈ I 6= ∅, such that for every
p ∈ E, the set of Clπi

(p) for i ∈ I is directed (i.e., ∀ i, j ∈ I, ∃ k ∈ I, Clπi
(p) ∪

Clπj
(p) ⊆ Clπk

(p)), we have [15]

∀ p ∈ E, Cl∨
i∈I

πi
(p) =

⋃

i∈I

Clπi
(p) , (1)

and for any π ∈ Π∗(E), π ∧
(
∨

i∈I πi
)

=
∨

i∈I(π ∧ πi). An elementary conse-
quence of this is:

∀π, π′ ∈ Π∗(E), π ∧ π′ =
∨

B∈π

(1B ∧ π′) . (2)

Given a fixed π∗ ∈ Π∗(E) and B ∈ π∗, for any π ∈ Π∗(E) such that
π ≤ π∗, the restriction of π to B is the set [π]B of blocks of π that are
included in B; we have

∀π ≤ π∗ : π =
⋃

B∈π∗

[π]B =
∨

B∈π∗

[π]B . (3)

This restriction is compatible with refinement order and with the supremum
and infimum operations.
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Table 1 Main notation from the first paper

E space of points
T set of image values (grey-levels or colours)

cr a criterion TE × P(E) → {0, 1}

CFcr {A ∈ P(E) | cr[F,A] = 1} (F ∈ TE)
(α, β) : A ⇀↽ B α : A→ B and β : B → A

Inv(ψ) invariance domain of the operator ψ
supp(B) support of the family B of subsets of E
π a partial partition
Clπ(p) class of point p in the partial partition π

Π(E) set of all partitions of E
Π∗(E) set of all partial partitions of E
Ø empty partial partition
0A identity partition of A into its singletons

1A universal partition of A into a single block
1• A 7→ 1A
0• A 7→ 0A
S(E) family of all singletons in E
C a partial connection on P(E)
γp partial connection opening on P(E)
(γp, p ∈ E) system of partial connection openings on P(E)

PCC(X) partial partition of all C-components of X
Cstd a “standard” connection on P(E)

(e.g., arc, topological, or graph connectivity)

C∗
B

partial connection {Z ∈ Cstd | Z ◦B = Z} (B ∈ Cstd, B 6= ∅)
AE(L) set of all anti-extensive operators on L
[π]B π ∩ P(B), for B ∈ π∗, π ≤ π∗

σ set splitting operator X 7→ σ(X) ∈ Π∗(X)

β(σ) block splitting operator on Π∗(E) derived from σ
1ψ set shrinking operator X 7→ 1ψ(X)

B(ψ) π 7→
∨

B∈π
1ψ(B)

Π∗(E, C) set of all partial partitions of E with blocks in C \ {∅}

CSC opening on Π∗(E) splitting blocks into C-components
F(σ) {X ∈ P(E) | σ(X) = 1X}, fixed set of σ

Table 2 Notation introduced in this paper

p a predicate L \ {0} → {0, 1}
τp trivial operator corresponding to p

rc[σ, θ] residual combination of σ followed by θ
rc[σ1, . . . , σn] residual combination of the succession of σ1, . . . , σn
π1 − π2 {B \ supp([π2]B) | B ∈ π1, B \ supp([π2]B) 6= ∅}, for π1 ≥ π2

π1 + π2 π1 ∪ π2, for supp(π1) ∩ supp(π2) = ∅

Given a set splitting operator σ : P(E) → Π∗(E) : X 7→ σ(X) ∈ Π∗(X),
the block splitting operator derived from σ is β(σ) : Π∗(E) → Π∗(E) given by

∀π ∈ Π∗(E), β(σ)(π) =
⋃

B∈π

σ(B) =
∨

B∈π

σ(B) ; (4)
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then for all B ∈ π we have
[

β(σ)(π)
]

B
= σ(B). For any π ∈ Π∗(E) and

p ∈ E, we have Clβ(σ)(π)(p) = Clσ(Clπ(p))(p). Note that for any A ∈ P(E),
β(σ)(1A) = σ(A).

Given an anti-extensive operator ψ on P(E), the set shrinking operator
1ψ : X 7→ 1ψ(X) is a special case of set splitting operator; it gives rise to
the block shrinking operator β(1ψ), which coincides with B(ψ), the blockwise
extension of ψ. For any π ∈ Π∗(E),

B(ψ)(π) =
∨

B∈π

1ψ(B) = {ψ(B) | B ∈ π, ψ(B) 6= ∅} . (5)

For any π ∈ Π∗(E) and p ∈ E, we have

ClB(ψ)(π)(p) =

{

ψ(Clπ(p)) if p ∈ ψ(Clπ(p)) ,
∅ otherwise ;

(6)

Note that a supremum, infimum or composition of block splitting operators
is block splitting. The same can be said for an infimum or composition of block
shrinking operators.

For any set splitting operator σ on P(E), the invariance domain of β(σ),
that is, the set of π ∈ Π∗(E) such that β(σ)(π) = π, is

Inv(β(σ)) = Π∗(E,F(σ)) , where F(σ) = {X ∈ P(E) | σ(X) = 1X} , (7)

and we have ∅ ∈ F(σ).

A typical set splitting operator is, given a partial connection C, the map
PCC associating to a set A the partial partition PCC(A) of its C-components.
Then β(PCC) = CSC , the operator on Π∗(E) that splits each block of a partial
partition into its C-components:

∀π ∈ Π∗(E), CSC(π) =
⋃

C∈π

PCC(C)

=
{

γp(C) | C ∈ π, p ∈ C, γp(C) 6= ∅
}

.
(8)

Given (γp, p ∈ E) the system of partial connection openings of C, we have:

∀π ∈ Π∗(E), ∀ p ∈ E, ClCSC(π)(p) = ClPCC(Clπ(p))(p) = γp(Clπ(p)) . (9)

Now CSC is an opening on Π∗(E), whose invariance domain is Π∗(E, C).

For E = Rm or Zm, given a “standard” connection Cstd on P(E), taking a
non-void B ∈ Cstd, the set C∗

B of all Z ∈ Cstd such that Z ◦B = Z is a partial
connection; for X /∈ C∗

B , the C∗
B-components of X are the Cstd-components of

the opening X ◦B, see Figure 6 (b).
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2.1 Some special types of operators

We analyse here some families of operators having specialized properties:
first C-thinnings (open-condensations [11]) and OC-thinnings (open-overcon-
densations [12]), then trivial operators. They have been considered in older
papers, but we will find them again throughout Section 3, when studying
some block splitting operators on partial partitions that are relevant to image
segmentation.

We will see that C-thinnings and OC-thinnings are in some way two gen-
eralizations of openings, sharing some features with them.

Definition 1 Let L and M be two posets (equal or distinct).

1. An operator η : L→M is
– condensing [11] if for any x, y, z ∈ L such that x ≤ y ≤ z and η(x) =
η(z), we have η(x) = η(y);

– overcondensing [12] if for any x, y, z ∈ L such that x ≤ y ≤ z and
η(x) = η(z), we have η(x) ≤ η(y).

2. An operator on L is
– a thinning if it is anti-extensive and idempotent (J. Serra);
– a C-thinning (in [11]: an open-condensation) if it is condensing, anti-

extensive and idempotent;
– an OC-thinning (in [12]: an open-overcondensation) if it is overcondens-

ing, anti-extensive and idempotent.

An isotone operator is condensing, and a condensing operator is over-
condensing; every opening is a C-thinning, and every C-thinning is an OC-
thinning. We have the following practical characterization:

Lemma 2 [11,12] Let κ be an operator on the poset L. Then:

– κ is a C-thinning if and only if it is anti-extensive and satisfies the following
condition:
(⋄) For x, y ∈ L, κ(x) ≤ y ≤ x ⇒ κ(x) = κ(y).

– κ is an OC-thinning if and only if it is anti-extensive and satisfies the
following condition:
(⋆) For x, y ∈ L, κ(x) ≤ y ≤ x ⇒ κ(x) ≤ κ(y).

Let us now extend to C-thinnings and OC-thinnings two methods that
have been used for constructing openings:

Proposition 3 Let L and M be two posets (equal or distinct). Then consider
the following two constructions of an operator κ′ on L:

1. Given an opening γ on L and an operator κ on L, such that γκγ = κγ, let
κ′ = κγ.

2. Given an adjunction (ε, δ) : L ⇀↽M and an operator κ on M , let κ′ = δκε.

In both cases, if κ is a C-thinning (resp., an OC-thinning), then κ′ is a C-
thinning (resp., an OC-thinning).
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Proof We show the result for an OC-thinning. For a C-thinning, the proof is
the same, replacing (⋆) by (⋄).

1. As γ and κ are anti-extensive, for x ∈ L we have κγ(x) ≤ γ(x) ≤ x,
thus κγ is anti-extensive. Let x, y ∈ L such that κγ(x) ≤ y ≤ x. As γ is
isotone, γκγ(x) ≤ γ(y) ≤ γ(x), and as γκγ = κγ, κγ(x) ≤ γ(y) ≤ γ(x).
Applying (⋆) with γ(x) and γ(y) instead of x and y, we get κγ(y) ≥ κγ(x).
Hence κγ satisfies (⋆), so it is an OC-thinning.

2. As κ is anti-extensive, for x ∈ L we have κε(x) ≤ ε(x); then the
adjunction (ε, δ) gives δκε(x) ≤ x, thus δκε is anti-extensive. Let x, y ∈ L
such that δκε(x) ≤ y ≤ x. By the adjunction (ε, δ), κε(x) ≤ ε(y), and as ε is
isotone, ε(y) ≤ ε(x). So κε(x) ≤ ε(y) ≤ ε(x), and applying (⋆) with ε(x) and
ε(y) instead of x and y, we get κε(y) ≥ κε(x). As δ is isotone, δκε(y) ≥ δκε(x).
Hence δκε satisfies (⋆), so it is an OC-thinning. ⊓⊔

It is indeed well-known that for an opening κ, both constructions for κ′

give an opening. The analogy with openings is reinforced by the fact that a
supremum of C-thinnings is a C-thinning, and similarly for OC-thinnings; in
other words, in a complete lattice, C-thinnings and OC-thinnings both consti-
tute dual Moore families [11,12].

A classical example of OC-thinning on sets is the so-called generalized
foreground opening introduced by [2]. Let E = Rm or E = Zm, given two
disjoint A,B ∈ P(E), the hit-or-miss transform by (A,B) is the map

X 7→ (X ⊖A) ∩ (Xc ⊖B) = {p ∈ E | Ap ∈ X, Bp ∈ Xc} ;

here A and B are respectively the foreground and background structuring
elements. Now consider the following operator on P(E):

X 7→
[

(X ⊖A)∩ (Xc⊖B)
]

⊕A =
⋃

{Ap | p ∈ E, Ap ∈ X, Bp ∈ Xc} , (10)

namely the composition of the hit-or-miss transform by (A,B) followed by
the dilation by A; it is an OC-thinning [12], and it is used to extract shapes
from a binary image. It has been called generalized foreground opening [2] or
hit-or-miss opening [26], by analogy with the opening by A, X 7→ (X⊖A)⊕A.

As a generalization, assuming M to be a meet semilattice: given an ad-
junction (ε, δ) : L ⇀↽ M and an antitone operator θ : L → M , δ(ε ∧ θ) is
an OC-thinning on L; furthermore, if L is a complete lattice, then every OC-
thinning on L takes this form for some complete lattice M [12]. Generalizing
further, we deduce that given an adjunction (ε, δ) : L ⇀↽ M , an opening γ on
M and an antitone operator θ : L→M , δγ(ε ∧ θ) is an OC-thinning on L.

All this justifies thus the idea proposed in [12] that OC-thinnings can be
considered as a kind of non-isotone generalization of openings.

Quasi-openings can be built with the techniques of [11]. The first one is
the toggle of openings, for example in P(E), given several openings γi (i ∈ I),
for every X ∈ P(E), choose the γi(X) having the largest size. The second
originates from [10], we called it the Pitas decomposition: given two openings γ
and γ′ on P(E), take the operatorX 7→ γ(X)∪γ′

(

X\γ(X)
)

. This construction
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was generalized in [11] as follows: let (G,+,≤) be an abelian partially ordered
group with neutral element 0, and let P be the poset of all positive elements
of G (x ∈ G such that x ≥ 0), then given two C-thinnings γ, γ′ on P , the
map κ : x 7→ γ(x) + γ′

(

x − γ(x)
)

is defined on P , and is a C-thinning. In
Subsection 3.2, we will define a similar construction for partial partitions, so
we need a further generalization:

Proposition 4 Let P be a poset and let + and − be two partially defined
binary operations on P such that for w, x, y, z ∈ P we have:

for y ≤ x, (a) x− y is defined, and (b) if y ≤ x ≤ w, then x− y ≤ w − y;
for y ≤ x and z ≤ x− y, (c) y + z is defined, (d) y + z ≤ x, (e) y ≤ y + z
and (f) (y + z)− y = z.

Given two anti-extensive operators η, ζ on P , for every x ∈ P the expression
η(x) + ζ(x − η(x)) is defined, and the operator κ : x 7→ η(x) + ζ(x − η(x))
on P is anti-extensive. Furthermore, if η and ζ are C-thinnings, then κ is
a C-thinning; more precisely, for κ(x) ≤ y ≤ x, we have η(y) = η(x) and
ζ(y − η(y)) = ζ(x− η(x)).

Proof Let x ∈ P . Since η is anti-extensive, we have η(x) ≤ x, so x − η(x)
is defined by (a). As ζ is anti-extensive, ζ(x − η(x)) ≤ x − η(x), so κ(x) =
η(x) + ζ(x− η(x)) is defined by (c) with y = η(x) and z = ζ(x− η(x)). Thus
κ is well-defined. Then by (d) we have κ(x) ≤ x, so κ is anti-extensive.

Now (e) gives η(x) ≤ κ(x), and by (f) we get κ(x) − η(x) = ζ(x − η(x)).
Suppose that η and ζ are C-thinnings, and let y ∈ P such that that κ(x) ≤
y ≤ x. As η(x) ≤ κ(x), we have η(x) ≤ y ≤ x, and since η is a C-thinning, we
obtain η(y) = η(x). Since η(x) ≤ κ(x) ≤ y ≤ x, by (b) we have κ(x)− η(x) ≤
y−η(x) ≤ x−η(x); but κ(x)−η(x) = ζ(x−η(x)), so ζ(x−η(x)) ≤ y−η(x) ≤
x− η(x). As ζ is a C-thinning, we obtain ζ(y− η(x)) = ζ(x− η(x)), and since
η(y) = η(x), this gives ζ(y − η(y)) = ζ(x− η(x)). Hence κ(y) = η(y) + ζ(y −
η(y)) = η(x)+ ζ(x− η(x)) = κ(x). We have thus shown that κ satisfies (⋄), so
it is a C-thinning. ⊓⊔

The first case where this result applies is the situation of [11], where P is the
set of positive (≥ 0) elements in an abelian p.o. group (G,+,≤), with + and
− denoting the addition and subtraction operations; since + and − are always
defined in G, here “x−y is defined” should be interpreted as “x−y ∈ P”, i.e.,
x − y ≥ 0, while for positive y, z, we always have y + z ≥ 0, i.e., y + z ∈ P ;
then conditions (a–f) are straightforward consequences of the compatibility of
the addition with the order ≤, and of the fact that we take positive elements.
An example is when G is the set of functions E → R (where R is the set of
real numbers) and P is the subset of functions E → R+ (where R+ is the set
of non-negative reals). Next, conditions (a–f) are also satisfied by the poset
of functions E → {0, 1}, hence by the isomorphism

(

P(E),⊆
)

↔
(

2E ,≤
)

, we
can apply the proposition to P(E), with X+Y being the union of two disjoint
sets X and Y , and X − Y being the subtraction of a subset Y from a set
X: this gives the original Pitas decomposition of [10]. This case gives a new
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intuitive meaning for + and −: x− y is the “residue” obtained by “removing”
the part y from the object x, and x + y is the “join” of two non-overlapping
objects x and y. In Subsection 3.2 we will define + and − for partial partitions
according to that meaning, cf. Proposition 11.

In mathematical morphology, one has considered [4,6] operators that re-
move from a set all connected components that do not satisfy some property;
in Subsection 3.3, we will discuss them in the framework of operators removing
some blocks in a partial partition. Although they were usually considered in
the lattice P(E), we can extend them to an arbitrary poset with least element:

Definition 5 Let L be a poset with least element 0.

1. A predicate on L \ {0} is a map p : L \ {0} → {0, 1}; for x ∈ L \ {0}, we
have p(x) = 1 if x satisfies p, and p(x) = 0 if x does not satisfy p.

2. A trivial operator on L [25] is some τ : L→ L such that for any x ∈ L we
have τ(x) = x or τ(x) = 0.

3. Given a predicate p on L \ {0}, the trivial operator on L corresponding to
p is τp given by:

∀x ∈ L \ {0}, τp(x) =

{

x if p(x) = 1 ,
0 if p(x) = 0 ;

τp(0) = 0 .
(11)

Note that a trivial operator gives always τ(0) = 0; hence the predicate p

needs not to be defined on 0, because τp(0) = 0 whatever the value of p(0).

Proposition 6 Let L be a poset with least element 0. The map p 7→ τp given
in (11) is a bijection between predicates on L \ {0} and trivial operators on L,
the inverse bijection is τ 7→ pτ , where

∀x ∈ L \ {0}, pτ (x) =

{

1 if τ(x) = x ,
0 if τ(x) = 0 .

This map p 7→ τp is an order-embedding, i.e., p ≤ q ⇔ τp ≤ τq; when
L is a complete lattice, this map is a complete embedding (i.e., an injective
complete morphism) from the complete lattice of predicates to AE(L), the one
of anti-extensive operators on L.

Furthermore, for any predicate p on L \ {0}:

1. τp is an OC-thinning.
2. [25] τp is an opening iff it is isotone, i.e., iff p is isotone on L \ {0}.
3. τp is a C-thinning iff it is an opening.

Proof Indeed, we check that pτp = p and τpτ = τ , hence we have a bijection
and its inverse. Clearly p ≤ q ⇔ τp ≤ τq. When L is a complete lattice, we
check that for a non-void family pi (i ∈ I 6= ∅), we have

τ∨
i∈I

pi
=

∨

i∈I

τpi and τ∧
i∈I

pi
=

∧

i∈I

τpi .



12

Finally the least and greatest predicates, which are constant 0 and constant
1, lead to the following trivial operators: the constant 0 operator and the
identity; these are indeed the least and greatest anti-extensive operators.

We consider now the three other properties:
1. Clearly a trivial operator is anti-extensive. Let x, y ∈ L such that

τp(x) ≤ y ≤ x. If τp(x) = x, then y = x, so τp(y) = τp(x) = x = y. If
τp(x) = 0, then τp(y) ≥ 0 = τp(x). Thus the condition (⋆) of Lemma 2 is
satisfied, and τp is an OC-thinning.

2. The first equivalence follows from item 1, the second one is well-known
[25].

3. If τp is an opening, then it is a C-thinning. Suppose now that τp is a
C-thinning. Let x, y ∈ L \ {0} such that y ≤ x and p(x) = 0; then τp(x) = 0,
so τp(x) ≤ y ≤ x, and (⋄) gives τp(y) = τp(x) = 0, hence p(y) = 0; therefore p

is isotone on L \ {0}, so τp is an opening by item 2. ⊓⊔

The trivial opening τp corresponding to an isotone predicate p on L\{0} has
the invariance domain Inv(τp) = {0} ∪ U , where U =

{

x ∈ L \ {0} | p(x) = 1
}

is an upper set. Conversely, every opening whose invariance domain is of the
form {0} ∪ U for an upper set U , is τp for the isotone predicate p on L \ {0}
defined by p(x) = 1 for x ∈ U and p(x) = 0 for x /∈ {0}∪U . Note that {0}∪U
is a dual Moore family, hence a partial connection [13].

3 Non-isotone block splitting

In the first paper we have considered block splitting openings, namely the
splitting of blocks into C-components according to a partial connection C. We
will now study several types of non-isotone idempotent block splitting oper-
ators; they use block splitting openings as the main building block. Subsec-
tion 3.1 considers, in the case of block splitting operators, the properties of
condensation and overcondensation; it gives also a construction for block split-
ting OC-thinnings. Subsection 3.2 analyses the residual combination of block
splitting openings introduced by [22] and used in multi-stage segmentation
approaches [17]; they are block splitting C-thinnings. Subsection 3.3 studies
the combination of block splitting openings with trivial operators acting on
blocks, following Soille’s segmentation approach [27–30]; they are block split-
ting OC-thinnings. This leads also to a new interpretation of some operators
on sets, namely the attribute thinnings or anti-extensive grain operators [4,6].

3.1 Overcondensation

Let us first compare the properties of condensation and overcondensation for
set and block splitting operators. Then we will construct block splitting OC-
thinnings by composing blockwise a union of generalized foreground openings
(10) with the decomposition into C-components.
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Proposition 7 Let σ be a set splitting operator.

1. If β(σ) is overcondensing, then σ is overcondensing.
2. If β(σ) is condensing, then σ is condensing.

Let ψ be an anti-extensive set operator.

3. B(ψ) is overcondensing iff ψ is overcondensing.
4. If B(ψ) is condensing, then ψ is condensing.

Proof 1. Suppose that β(σ) is overcondensing. Let X,Y, Z ∈ P(E) such that
X ⊆ Y ⊆ Z and σ(X) = σ(Z). Then 1X ≤ 1Y ≤ 1Z , so β(σ)(1X) = σ(X) =
σ(Z) = β(σ)(1Z). As β(σ) is overcondensing, β(σ)(1X) ≤ β(σ)(1Y ), that is,
σ(X) ≤ σ(Y ). Therefore σ is overcondensing.

2. The proof is the same in the condensing case.
3. If B(ψ) = β(1ψ) is overcondensing, then 1ψ is overcondensing by

item 1. Let X,Y, Z ∈ P(E) such that X ⊆ Y ⊆ Z and ψ(X) = ψ(Z); then
1ψ(X) = 1ψ(Z), and as 1ψ is overcondensing, we get 1ψ(X) ≤ 1ψ(Y ), hence
ψ(X) ⊆ ψ(Y ). Therefore ψ is overcondensing.

Suppose now that ψ is overcondensing. Let π0, π1, π2 ∈ Π∗(E) such that
π0 ≤ π1 ≤ π2 and B(ψ)(π0) = B(ψ)(π2). Thus for any p ∈ E, Clπ0(p) ⊆
Clπ1(p) ⊆ Clπ2(p) and ClB(ψ)(π0)(p) = ClB(ψ)(π2)(p).

– If ClB(ψ)(π0)(p) = ∅, then obviously ClB(ψ)(π0)(p) ⊆ ClB(ψ)(π1)(p).
– If ClB(ψ)(π0)(p) 6= ∅, then by (6) we have p ∈ ψ(Clπ0(p)) and ClB(ψ)(π0)(p) =
ψ(Clπ0(p)); we have also p ∈ ψ(Clπ2(p)) and ClB(ψ)(π2)(p) = ψ(Clπ2(p)).
Thus ψ(Clπ0(p)) = ψ(Clπ2(p)), and as ψ is overcondensing, we obtain
ψ(Clπ0(p)) ⊆ ψ(Clπ1(p)). We have then p ∈ ψ(Clπ1(p)), and by (6) again,
ClB(ψ)(π1)(p) = ψ(Clπ1(p)), hence ClB(ψ)(π0)(p) ⊆ ClB(ψ)(π1)(p).

We have thus shown that in any case, ClB(ψ)(π0)(p) ⊆ ClB(ψ)(π1)(p). As this
holds for any p ∈ E, we get B(ψ)(π0) ≤ B(ψ)(π1). Therefore B(ψ) is overcon-
densing.

4. We use the same proof as in the first paragraph of item 3. ⊓⊔

Comparing items 3 and 4, the reciprocal of item 4 does not hold: we give an
example of C-thinning ψ such that B(ψ) is not condensing. Take two disjoint
non-void subsets A,B of E, where B has size at least 2. Define the operator
ψ on P(E) by

ψ(X) =

{

A if A ⊆ X ,
B if A 6⊆ X and B ⊆ X ,
∅ if A 6⊆ X and B 6⊆ X ;

then it is easily seen that ψ is a C-thinning. Let {C,D} be a partition of B (i.e.,
∅ ⊂ C ⊂ B and D = B \ C). Then in Π∗(E) we have {A,C,D} < {A,B} <
{A ∪ B}, B(ψ)

(

{A,C,D}
)

= B(ψ)
(

{A ∪ B}
)

= {A}, but B(ψ)
(

{A,B}
)

=
{A,B}, so B(ψ) is not a C-thinning.

In fact, it can be shown (elaborating on the proof of item 3) that for a
condensing anti-extensive operator ψ, the condition

∀X,Y ∈ P(E), Y ⊆ X \ ψ(X) =⇒ ψ(Y ) = ∅
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is sufficient for having B(ψ) condensing; when ψ is idempotent (i.e., a C-
thinning), this condition is also necessary.

Now comparing items 1 and 3, the reciprocal of item 1 does not hold: for
a set splitting operator σ that is not a set shrinking operator (i.e., is not of
the form 1ψ for a set operator ψ), σ can be overcondensing while β(σ) is not.
Indeed, if σ is support-preserving, for anyX ∈ P(E) we have supp(σ(X)) = X,
so σ is injective, thus it is trivially condensing (hence overcondensing); but then
β(σ) is not necessarily overcondensing, as shows the example in Figure 3.

π π

β(σ)(π  )

π 1 20

β(σ)(π  ) β(σ)(π  )10 2

Fig. 3 Here E = Z2 and σ splits a
set X ∈ P(E) into its vertical cross-
sections if width(X) < height(X) <
∞, and into its horizontal cross-
sections otherwise. As σ is support-
preserving, it is condensing. We have
π0 ≤ π1 ≤ π2, β(σ)(π0) = β(σ)(π2),
but β(σ)(π0) 6≤ β(σ)(π1); hence β(σ)
is not overcondensing.

In any space E provided with a partial connection C, let (εi, δi) (i ∈ I)
be a family of adjunctions on P(E) such that for every i ∈ I and p ∈ E we
have δi(p) ∈ C. Now take the opening γ =

∨

i∈I δiεi. For any X ∈ P(E),
γ(X) =

⋃

{δi(p) | i ∈ I, p ∈ E, δi(p) ⊆ X}; since δi(p) ∈ C , δi(p) ⊆ X means
that δi(p) ⊆ A for some C-component A of X. Thus γ(X) =

⋃

A∈PCC(X) γ(A),

in particular X ∈ Inv(γ) iff for every A ∈ PCC(X) we have A ∈ Inv(γ). Since
γ(X) ∈ Inv(γ), for every A ∈ PCC(γ(X)), we have both A ∈ Inv(γ) and A ∈ C;

it is then easily deduced that PCC∩Inv(γ)(X) = PCC(γ(X)), see Subsection 3.1

of [13] for a more detailed discussion. Hence CSC∩Inv(γ) = CSCB(γ), in partic-
ular CSCB(γ) is an opening on on Π∗(E).

This generalizes what we said previously about the partial connection C∗
B

defined for E = Rm or Zm, with connection Cstd, and B ∈ Cstd \ {∅}: the C∗
B-

components of X ∈ P(E) are the Cstd-components of γB(X) = X ◦B. Indeed,
here C∗

B = Cstd ∩ Inv(γB) and for any p ∈ E we have δB(p) = Bp ∈ Cstd.

We will now obtain an analogue for OC-thinnings of the opening CSCB(γ).
Recall from Subsection 2.1 that for an adjunction (ε, δ) and an antitone oper-
ator θ, δ(ε ∧ θ) is an OC-thinning, and that the family of OC-thinnings is a
dual Moore family.

Proposition 8 Let C be a partial connection on P(E), and consider a family
{δi, εi, θi | i ∈ I} of operators on P(E), such that for every i ∈ I, θi is antitone,
(εi, δi) is an adjunction on P(E), and for all p ∈ E we have δi(p) ∈ C. Let
κ =

∨

i∈I δi(εi ∧ θi). Then CSCB(κ) is an OC-thinning on Π∗(E).
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Proof Let π ∈ Π∗(E), and let π0 = CSCB(κ)(π). By (5,8),

π0 =
⋃

C∈B(κ)(π)

PCC(C) =
⋃

{PCC(κ(B)) | B ∈ π, κ(B) 6= ∅} .

Thus the blocks of π0 are the C-components of κ(B) 6= ∅ for blocks B of π. Now
let π1 ∈ Π∗(E) such that π0 ≤ π1 ≤ π. We will show that π0 ≤ CSCB(κ)(π1).
For this, we prove that for any B ∈ π, [π0]B ≤ B(κ)([π1]B).

Take any B ∈ π. If κ(B) = ∅, then [π0]B = Ø ≤ B(κ)([π1]B); we can
thus assume that κ(B) 6= ∅, and then [π0]B = PCC(κ(B)). Take i ∈ I. For
p ∈ εiκ(B) we have δi(p) ⊆ κ(B), and as δi(p) ∈ C, it must be included in one
C-component C of κ(B), and p ∈ εi(C); thus

εiκ(B) =
⋃

{εi(C) | C ∈ PCC(κ(B))} .

Since PCC(κ(B)) = [π0]B ≤ [π1]B , every C ∈ PCC(κ(B)) is included in some
D ∈ [π1]B , and as εi is isotone, εi(C) ⊆ εi(D), so we have

⋃

{εi(C) | C ∈ PCC(κ(B))} ⊆
⋃

{εi(D) | D ∈ [π1]B} .

Now κ =
∨

j∈I δj(εj∧θj) ≥ δi(εi∧θi), and as εi is isotone and εiδi is extensive,
εiκ ≥ εiδi(εi ∧ θi) ≥ εi ∧ θi. Summarizing these inequalities,

⋃

{εi(D) | D ∈ [π1]B} ⊇ εiκ(B) ⊇ (εi ∧ θi)(B) .

As [π1]B ≤ [π]B = 1B , for every D ∈ [π1]B we have D ⊆ B, and as θi is
antitone, θi(D) ⊇ θi(B). Hence

⋃

{

(εi ∧ θi)(D) | D ∈ [π1]B
}

=
⋃

{

εi(D) ∩ θi(D) | D ∈ [π1]B
}

⊇
⋃

{

εi(D) ∩ θi(B) | D ∈ [π1]B
}

=
(

⋃

{

εi(D) | D ∈ [π1]B
}

)

∩ θi(B)

⊇ (εi ∧ θi)(B) ∩ θi(B) = (εi ∧ θi ∧ θi)(B) = (εi ∧ θi)(B) .

Since δi is a dilation, we get
⋃

{

δi(εi ∧ θi)(D) | D ∈ [π1]B
}

= δi

(

⋃

{

(εi ∧ θi)(D) | D ∈ [π1]B
}

)

⊇ δi(εi ∧ θi)(B) .

Joining these inequalities for all i ∈ I, we obtain

⋃

{

κ(D) | D ∈ [π1]B
}

=
⋃

{

⋃

i∈I

δi(εi ∧ θi)(D) | D ∈ [π1]B

}

=
⋃

i∈I

⋃

{

δi(εi ∧ θi)(D) | D ∈ [π1]B
}

⊇
⋃

i∈I

δi(εi ∧ θi)(B) = κ(B) .

It follows then that for any C ∈ [π0]B = PCC(κ(B)), C ⊆
⋃
{

κ(D) | D ∈

[π1]B
}

. But as [π0]B ≤ [π1]B , there is a unique DC ∈ [π1]B such that C ⊆ DC ,
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and for any other D ∈ [π1]B , we have C ∩ D = ∅; since κ is anti-extensive,
we obtain C ∩ κ(D) = ∅, and as C ⊆

⋃
{

κ(D) | D ∈ [π1]B
}

, we deduce that
C ⊆ κ(DC), in particular κ(DC) 6= ∅. This means that

[π0]B ≤ {κ(D) | D ∈ [π1]B , κ(D) 6= ∅} = B(κ)([π1]B) .

As this inequality holds for all B ∈ π, by (3,5) we obtain:

CSCB(κ)(π) = π0 =
∨

B∈π

[π0]B ≤
∨

B∈π

B(κ)([π1]B)

=
∨

B∈π

∨

C∈[π1]B

1κ(C) =
∨

C∈
⋃

B∈π
[π1]B

1κ(C) =
∨

C∈π1

1κ(C) = B(κ)(π1) .

But CSC is an opening, hence π0 = CSCB(κ)(π) ≤ CSCB(κ)(π1). Thus CS
CB(κ)

satisfies condition (⋆) of Lemma 2, hence is an OC-thinning. ⊓⊔

For example let E = Rm or Zm, and let C be a translation-invariant partial
connection: ∀A ∈ C, ∀ p ∈ E, we have Ap ∈ C; this holds for instance when C is
the usual connection Cstd (topological or arcwise connectivity for Rm, connec-
tivity based on a digital adjacency for Zm). Here the translation-invariant di-
lation δA by a structuring element A satisfies the condition ∀ p ∈ E, δA(p) ∈ C,
iff A ∈ C. By Matheron’s decomposition theorem [7,18], a translation-invariant
antitone operator on P(E) takes the form X 7→

⋃

B∈B(X
c ⊖ B) for a family

B of structuring elements. Hence a translation-invariant operator κ according
to Proposition 8 takes the form

κ(X) =
⋃

(A,B)∈V

(

[

(X ⊖A) ∩ (Xc ⊖B)
]

⊕A
)

, (12)

where V ⊆ C ×P(E); in other words, cf. (10), it is a union of generalized fore-
ground openings with connected foreground structuring elements. In Figure 4
we illustrate Proposition 8 with κ according to (12), for the extraction of block
components whose width lies in a given interval.

B A B1 1 1

2

2

2B

A

B

Fig. 4 E = Z2. Top left: the fore-
ground structuring elements A1, A2

and their corresponding background
structuring elements B1, B2. Top
middle: a partial partition with two
blocks (in grey and black). Top
right: apply the generalized fore-
ground opening (10) by (A1, B1) to
each block separately. Bottom middle:
the same with (A2, B2). Bottom right:
in each block, decompose the union of
the two generalized foreground open-
ings into their connected components
(two in the grey block, one in the
black one).
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Generalized foreground openings (10) have been extended to grey-level
images (i.e., numerical functions) [12,8]. In [9] they have been applied to the
extraction of blood vessels in three-dimensional grey-level medical images. Ves-
sels are modelled as narrow tubular objects in E = Z3, and one extracts them
by a grey-level extension of (12), where for each (A,B) ∈ V, A is a sphere
of varying radius and B is a ring around A (or a sampling of that ring), of
varying orientation (say, normal to the 13 directions of the cube {−1, 0,+1}3);
we illustrate in Figure 5 such a set V of pairs (A,B).

Fig. 5 (From [9].) Top
left: a sphere A sur-
rounded by a ring B in
R3. Bottom left: their
discrete version in Z3.
Right: a series of pairs
(A,B) (A in grey, B in
white) of various sizes
and orientations.

On the other hand, here we start from a binary image (not a grey-level
one), apply κ (12) to extract tubular objects, then decompose the resulting
set into its connected components; by Proposition 8, the underlying operator
on partial partitions is an OC-thinning, in particular it is idempotent.

We have described OC-thinnings on Π∗(E) of the form CSCB(κ) for a
partial connection C and an OC-thinning κ on P(E). In Subsection 3.3, we
will obtain OC-thinnings taking the form B(τ)CSC for a trivial operator τ on
P(E) (which is an OC-thinning, cf. Subsection 2.1).

3.2 Residual combination of block splitting operators

Serra [22] proposed to partition a set by combining a partial connection C1 and
a connection C2. For everyX ∈ P(E) one obtains the partial partition of its C1-
components, and it is completed into a partition by adding to it the partition
of C2-components of the residual of C1, that is, of the set of points of X not
covered by the C1-components of X. Thus we obtain the partition PCC1(X) ∪
PCC2

(

X \ supp
[

PCC1(X)
])

. This construction can be extended [13] by taking
n partial connections C1, . . . , Cn and iteratively constructing partial partitions
π1, . . . , πn of X as follows: π1 = PCC1(X), and for i = 2, . . . , n set πi = πi−1 ∪
PCCi

(

X \ supp[πi−1]
)

. Such a construction is involved in some segmentation
algorithms, such as themulti-jump segmentation [23,17,13]. It can also be used
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in a multi-stage segmentation strategy [17], where a first partial segmentation
of the image by a partially connective criterion extracts some objects, then
a second segmentation of the remaining unsegmented background extracts
further objects, etc.; for instance in a person’s photograph, one first extracts
the head, then the shoulders, etc. (see Figure 2.6 of [17]).

For example let E = Zm, take the connection C2 = Cstd (the usual connec-
tivity), and the partial connection C1 = C∗

B for a non-void B ∈ Cstd. Then for

a set X, PCC1(X) ∪ PCC2

(

X \ supp
[

PCC1(X)
])

is the partition of X into all
Cstd-components of X ◦B and of X \ (X ◦B). This is illustrated (for m = 2)
in Figure 6 for a disk B (a) and a bowtie-shaped set X (b). Then by grouping
these blocks into influence zones of the C∗

B-components of X (c), we obtain a
segmentation of X into its significant parts (d). Such a grouping of blocks into
influence zones of the blocks of the first partial partition PCC1(X) can also be
applied in multi-stage image segmentation algorithms, such as the multi-jump.

(a) (b) (c) (d)

B
X

A2A1

A3

4A

A5

A6

A7

Fig. 6 Here E = Z2. (a) The structuring element B ∈ Cstd is a disk. (b) The C∗
B
-components

of the bowtieX are the two Cstd-components A1, A2 of its openingX◦B (shown in grey). The

residual X \ (X ◦B) (shown in black) has 5 Cstd-components A3, . . . , A7. Thus PCC∗
B (X)∪

PCCstd

(

X \ supp
[

PCC∗
B (X)

])

is the partition of X with the 7 blocks A1, . . . , A7. (c) We

build the adjacency graph of this partition, whose vertices are the 7 blocks Ai, and whose
edges link vertices corresponding to adjacent blocks. The two ellipes represent the influence

zones of the two vertices A1, A2 in the graph of PCC∗
B (X), namely the sets of vertices closer

to one than to the other (according to the graph distance); note that A5 is equidistant
from both A1 and A2. (d) Fusing the blocks in the respective influence zones gives a final
segmentation of X into 3 blocks.

This multi-stage partitioning is similar to a method given in [10] for decom-
posing shapes in E = Zm (or Rm). Take n structuring elements B1, . . . , Bn ∈
P(E). Then for any X ∈ P(E) we construct the sequence of approxima-
tions Y1, . . . , Yn ∈ P(E) by setting Y1 = X ◦ B1, and for i = 2, . . . , n,
Yi = Yi−1 ∪ (X \ Yi−1) ◦ Bi. In [11] we showed (in the way of Proposition 4)
that this construction yields a C-thinning.

We will similarly show that Serra’s multi-stage partitioning leads to a block
splitting C-thinning on Π∗(E). This construction involves a binary operation
on set splitting operators, that we call the residual combination; we will study
it in detail.
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Definition 9 Let σ, θ be set splitting operators. The residual combination of
σ followed by θ is the set splitting operator rc[σ, θ] defined by:

∀X ∈ P(E), rc[σ, θ](X) = σ(X) ∪ θ
(

X \ supp[σ(X)]
)

. (13)

(NB. It is indeed the union of the two partial partitions σ(X) and θ
(

X \

supp[σ(X)]
)

, because they have disjoint supports.) We define the residual
combination of the succession of n set splitting operators σ1, . . . , σn (n ≥ 1)
recursively by

rc[σ1] = σ1 and rc[σ1, . . . , σn] = rc
[

rc[σ1, . . . , σn−1], σn
]

(n > 1) . (14)

Thus Serra’s construction is rc[PCC1 ,PCC2 ]. We illustrate in Figure 7 the
residual combination of set shrinking operators derived from erosions by balls
of varying size, then by squares of varying size, and finally from the openings
by these squares.

Z

Z A

AZ[ ]Z \( ) B

A

B

Y C

)(Y \ [Y C] D ](Y \ [ C ) DY

CY

Y
C

D

Fig. 7 Here E = Z2. Top left: a set Z and two structuring elements A and B. Top right: let
eA and eB be the set shrinking operators derived from the erosions by A and B respectively,

eA : X 7→ 1X⊖A and eB : X 7→ 1X⊖B ; we show rc[eA, eB ](Z) =
{

Z⊖A, (Z \ [Z⊖A])⊖B
}

.

Bottom left: a set Y and two structuring elements C and D. Bottom middle: let eC and
eD be the set shrinking operators derived from the erosions by C and D respectively, eC :

X 7→ 1X⊖C and eD : X 7→ 1X⊖D; we show rc[eC , eD](Y ) =
{

Y ⊖ C, (Y \ [Y ⊖ C]) ⊖D
}

.

Bottom right: let gC and gD be the set shrinking operators derived from the openings by
C and D respectively, gC : X 7→ 1X◦C and gD : X 7→ 1X◦D; we show rc[gC , gD](Y ) =
{

Y ◦ C, (Y \ [Y ◦ C]) ◦D
}

.
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Proposition 10 Consider n set splitting operators σ1, . . . , σn (n ≥ 2). For
any X ∈ P(E), set

X1 = X , Y1 = supp
[

σ1(X)
]

,

Xi = X \
i−1
⋃

j=1

Yj , Yi = supp
[

σi(Xi)
]

(i = 2, . . . , n) ;
(15)

then we have

rc[σ1, . . . , σn](X) =

n
⋃

i=1

σi(Xi) and supp
[

rc[σ1, . . . , σn](X)
]

=

n
⋃

i=1

Yi . (16)

Furthermore, the residual combination is associative, for 1 ≤ k < n we have:

rc
[

rc[σ1, . . . , σk], rc[σk+1, . . . , σn]
]

= rc[σ1, . . . , σn] ,

in particular rc
[

rc[σ1, σ2], σ3
]

= rc
[

σ1, rc[σ2, σ3]
]

.

Proof We prove (16) by induction on n. For n = 1 we have rc[σ1](X) =
σ1(X) = σ1(X1) and supp

[

rc[σ1](X)
]

= supp[σ1(X1)] = Y1. Now for n > 1,
assuming (16) for n− 1, we have:

rc[σ1, . . . , σn](X) = rc
[

rc[σ1, . . . , σn−1], σn
]

(X)

= rc[σ1, . . . , σn−1](X) ∪ σn
(

X \ supp
[

rc[σ1, . . . , σn−1](X)]
])

=
(

n−1
⋃

i=1

σi(Xi)
)

∪ σn
(

X \
n−1
⋃

i=1

Yi

)

=
(

n−1
⋃

i=1

σi(Xi)
)

∪ σn(Xn) =

n
⋃

i=1

σi(Xi) .

We get then

supp
[

rc[σ1, . . . , σn](X)
]

= supp
[

n
⋃

i=1

σi(Xi)
]

=

n
⋃

i=1

supp
[

σi(Xi)
]

=

n
⋃

i=1

Yi .

Now the associativity. We have

rc[σ1, . . . , σk](X) =

k
⋃

i=1

σi(Xi) and supp
[

rc[σ1, . . . , σk](X)
]

=

k
⋃

i=1

Yi .

Hence

rc
[

rc[σ1, . . . , σk], rc[σk+1, . . . , σn]
]

(X)

=
k
⋃

i=1

σi(Xi) ∪ rc[σk+1, . . . , σn]
(

X \
k
⋃

i=1

Yi

)

=
k
⋃

i=1

σi(Xi) ∪ rc[σk+1, . . . , σn](Xk+1) =
k
⋃

i=1

σi(Xi) ∪
n
⋃

i=k+1

σi(Xi) ,
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where X = Xk+1 and the Xi are obtained by (15) with the initial set X
instead of X, and the sequence k + 1, . . . , n instead of 1, . . . , n. Thus we have

Xk+1 = X , Y k+1 = supp
[

σk+1(X)
]

,

Xi = X \
i−1
⋃

j=k+1

Y j , Y i = supp
[

σi(Xi)
]

(i = k + 2, . . . , n) .

We show by induction that Xi = Xi and Y i = Yi. Since X = Xk+1, this is
true for i = k + 1. Now for i > k + 1, assuming that the result is true for all
j = k + 1, . . . , i− 1, we have

Xi = X \
i−1
⋃

j=k+1

Y j = Xk+1 \
i−1
⋃

j=k+1

Yj

=
(

X \
k
⋃

j=1

Yj

)

\
i−1
⋃

j=k+1

Yj = X \
i−1
⋃

j=1

Yj = Xi ,

and Y i = supp
[

σi(Xi)
]

= supp
[

σi(Xi)
]

= Yi. Therefore

rc
[

rc[σ1, . . . , σk], rc[σk+1, . . . , σn]
]

(X)

=
k
⋃

i=1

σi(Xi) ∪
n
⋃

i=k+1

σi(Xi) =
n
⋃

i=1

σi(Xi) = rc[σ1, . . . , σn](X) .

In particular for n = 3, setting k = 1, we get

rc
[

σ1, rc[σ2, σ3]
]

= rc[σ1, σ2, σ3] = rc
[

rc[σ1, σ2], σ3
]

.

⊓⊔

We illustrate in Figure 8 the construction (15) for i = 1, 2, 3.

π1 π1

π2

π1

π2

3π

X1 X2 X3 X4

Fig. 8 From left to right:
X1 = X; π1 = σ1(X1)
and X2 = X1 \ supp[π1];
π2 = σ2(X2) and X3 = X2 \
supp[π2] = X1\supp[π1∪π2];
π3 = σ3(X3) and X4 = X3 \
supp[π3] = X1\supp[π1∪π2∪
π3].

Proposition 11 Let the binary operations + and − on Π∗(E) be partially
defined as follows for π1, π2 ∈ Π∗(E):
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– If π1 ≥ π2, then π1 − π2 is defined by

π1 − π2 =
{

B \ supp
(

[π2]B
)

| B ∈ π1, B \ supp
(

[π2]B
)

6= ∅
}

.

In other words, we remove from every block of π1 all blocks of π2 that it
contains, and keep non-empty resulting blocks.

– If supp(π1) ∩ supp(π2) = ∅, then π1 + π2 is defined by

π1 + π2 = π1 ∨ π2 = π1 ∪ π2 .

See Figure 9. Then:

1. For π1, π2 ∈ Π∗(E) with π1 ≥ π2,

π1 − π2 = π1 ∧ 1E\supp(π2) = {B \ supp(π2) | B ∈ π1, B \ supp(π2) 6= ∅}

and

supp(π1 − π2) = supp(π1) \ supp(π2) .

2. The operations + and − satisfy the conditions (a,b,c,d,e,f) of Proposi-
tion 4.

3. Given set splitting operators σ, θ, for any π ∈ Π∗(E) we have

β(rc[σ, θ])(π) = β(σ)(π) + β(θ)
(

π − β(σ)(π)
)

.
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Fig. 9 Here E = Z2. In all partial partitions, each block is identified by a distinctive grey-
level or hatching. Top left: π1 ∈ Π∗(E). Top center: π2 ≤ π1. Top right: π1 − π2. Bottom
left: π3 ≤ π1 − π2. Bottom center: π2 + π3. Bottom right (π1 − π2) + π2 ≤ π1.
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Proof 1. Let B ∈ π1. For any other C ∈ π1, we have supp
(

[π2]C
)

⊆ C

and B ∩ C = ∅, so B is disjoint from supp
(

[π2]C
)

. By (3), supp(π2) =
⋃

C∈π1 supp
(

[π2]C
)

. Hence

B \ supp(π2) = B \
[

⋃

C∈π1

supp
(

[π2]C
)

]

= B \ supp
(

[π2]B
)

.

Thus π1 − π2 = {B \ supp(π2) | B ∈ π1, B \ supp(π2) 6= ∅}. Now

1B ∧ 1E\supp(π2) = 1B∩(E\supp(π2)) = 1B\supp(π2) ,

which is {B \ supp(π2)} if B \ supp(π2) 6= ∅ , and Ø otherwise. Hence

π1 − π2 =
⋃

B∈π1

(1B ∧ 1E\supp(π2)) =
∨

B∈π1

(1B ∧ 1E\supp(π2)) .

By (2), we get thus

π1 − π2 =
(

∨

B∈π1

1B

)

∧ 1E\supp(π2) = π1 ∧ 1E\supp(π2) .

Then

supp(π1 − π2) = supp(π1 ∧ 1E\supp(π2)) = supp(π1) ∩ supp(1E\supp(π2))

= supp(π1) ∩ (E \ supp(π2)) = supp(π1) \ supp(π2) .

2. Let us check each condition of Proposition 4. Let πw, πx, πy, πz ∈
Π∗(E) taking the role of w, x, y, z in the statement of Proposition 4.

(a) For πy ≤ πx, πx − πy is defined.
(b) If πy ≤ πx ≤ πw, then we have

πx − πy = πx ∧ 1E\supp(πy) ≤ πw ∧ 1E\supp(πy) = πw − πy .

(c) For πy ≤ πx and πz ≤ πx − πy, we have supp(πz) ⊆ supp(πx − πy) =
supp(πx) \ supp(πy), hence supp(πz) ∩ supp(πy) = ∅, so πy + πz is defined.

(d) Since πy ≤ πx and

πz ≤ πx − πy = πx ∧ 1E\supp(πy) ≤ πx ,

we have πy + πz = πy ∨ πz ≤ πx.
(e) Obviously πy ≤ πy ∨ πz = πy + πz.
(f) For B ∈ πy we have B ⊆ supp(πy), so B \ supp(πy) = ∅, while for B ∈ πz,

we have B ∩ supp(πy) = ∅, so B \ supp(πy) = B. Hence

(πy + πz)− πy = (πy ∪ πz)− πy

= {B \ supp(πy) | B ∈ πy ∪ πz, B \ supp(πy) 6= ∅}

= {B \ supp(πy) | B ∈ πy, B \ supp(πy) 6= ∅}

∪ {B \ supp(πy) | B ∈ πz, B \ supp(πy) 6= ∅}

= Ø ∪ {B | B ∈ πz} = πz .
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3. Let π ∈ Π∗(E). Combining (13) with (4), we get

β(rc[σ, θ])(π) =
⋃

B∈π

rc[σ, θ](B) =
⋃

B∈π

[

σ(B) ∪ θ
(

B \ supp[σ(B)]
)]

=
(

⋃

B∈π

σ(B)
)

∪
(

⋃

B∈π

θ
(

B \ supp[σ(B)]
)

)

= β(σ)(π) ∪
(

⋃

B∈π

θ
(

B \ supp[σ(B)]
)

)

.

Now σ(B) =
[

β(σ)(π)
]

B
, and θ(∅) = Ø is redundant in this union, so we get:

β(rc[σ, θ])(π) = β(σ)(π) ∪
⋃

B∈π

θ
(

B \ supp
(

[β(σ)(π)]B
))

=

β(σ)(π) ∪
⋃

{

θ
(

B \ supp
(

[β(σ)(π)]B
))

| B ∈ π, B \ supp
(

[β(σ)(π)]B
)

6= ∅
}

= β(σ)(π) ∪
⋃

{θ(C) | C ∈ π − β(σ)(π)} = β(σ)(π) ∪ β(θ)
(

π − β(σ)(π)
)

.

Clearly β(σ)(π) and β(θ)
(

π−β(σ)(π)
)

have disjoint supports, thus the above
union is a +, and the result follows. ⊓⊔

Corollary 12 1. Given two set splitting operators σ, θ such that β(σ) and
β(θ) are C-thinnings, β(rc[σ, θ]) is a C-thinning. More precisely, given
π, π′ ∈ Π∗(E) such that β(rc[σ, θ])(π) ≤ π′ ≤ π, we have β(σ)(π′) =
β(σ)(π) and β(θ)

(

π′ − β(σ)(π′)
)

= β(θ)
(

π − β(σ)(π)
)

.

2. Given n partial connections C1, . . . , Cn (n ≥ 1), β
(

rc[PCC1 , . . . ,PCCn ]
)

is a
C-thinning. More precisely, given π, π′ ∈ Π∗(E) such that

β
(

rc[PCC1 , . . . ,PCCn ]
)

(π) ≤ π′ ≤ π ,

for m = 1, . . . , n we have

β
(

rc[PCC1 , . . . ,PCCm ]
)

(π′) = β
(

rc[PCC1 , . . . ,PCCm ]
)

(π) .

Proof Item 1 follows by combining Proposition 11 (items 2 and 3) with Propo-
sition 4 (taking x = π, y = π′, η = β(σ) and ζ = β(θ)). Now each CSCi =
β(PCCi) is an opening (hence a C-thinning) onΠ∗(E), so following (14), item 2
is obtained from item 1 by induction on n. ⊓⊔

Remark 13 Given a set U of labels, a labelled partial partition is a pair (π, F ),
where π ∈ Π∗(E) and F is a map π → U ; alternately, it is a subset λ of
(P(E) \ {∅}) × U such that for any two distinct (B, u), (C, v) ∈ λ, we have
B∩C = ∅. They appear in image classification, where from a grey-level image
one extracts different objects together with a description or set of attributes
for each object. The labels can be semantic descriptions (for instance in remote
sensing: “water”, “forest”, “urban area”, “agricultural land”, etc.), numerical
values (measuring some physical features) or vectors (corresponding to several
measurements).
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Let Π∗
U (E) be the set of labelled partial partitions. When U is a poset,

Π∗
U (E) is partially ordered by (π1, F1) ≤ (π2, F2) iff π1 ≤ π2 and ∀ p ∈

supp(π1), F1(Clπ1
(p)) ≤ F2(Clπ2

(p)); in other words, for any B ∈ π1, there
is some C ∈ π2 such that B ⊆ C and F1(B) ≤ F2(C). When U is a com-
plete lattice, Π∗

U (E) is also a complete lattice. It is then easy to extend the
operations + and − to Π∗

U (E), and items 1 and 2 of Proposition 11 will hold.
We can also extend block splitting operators to Π∗

U (E), and then item 3 of
Proposition 11 and item 1 of Corollary 12 will hold.

3.3 Block selection and constrained connectivity

We will now consider operators of the form B(τ)CSC for a trivial operator τ (cf.
Subsection 2.1) and a partial connection C, then suprema of such operators;
they will be OC-thinnings. Our results constitute a mathematical basis for
Soille’s approach to image segmentation [27–30], see Figure 10. We give an
example of their possible use in shape decomposition. We end this subsection
by a brief discussion of operators on sets called attribute thinnings [4] (or
anti-extensive grain operators [6]), which also enter into our framework.

Theorem 14 Let p be a predicate on P(E) \ {∅}, and let τp be the trivial
operator on P(E) corresponding to p. Then:

1. for any π ∈ Π∗(E),

B(τp)(π) = {B ∈ π | p(B) = 1} , (17)

and for any p ∈ E,

ClB(τp)(π)(p) = τp(Clπ(p)) ; (18)

2. B(τp) is an OC-thinning;
3. for any idempotent block splitting operator β(σ), we have β(σ)B(τp)β(σ)

= B(τp)β(σ), and B(τp)β(σ) is block splitting and idempotent;

4. given a partial connection C, B(τp)CS
C is a block splitting OC-thinning.

Proof 1. By (5), B(τp)(π) = {τp(B) | B ∈ π, τp(B) 6= ∅}. But τp(B) =
∅ for p(B) = 0, while τp(B) = B for p(B) = 1. This gives (17). By (6),
either p ∈ τp(Clπ(p)) and ClB(τp)(π)(p) = τp(Clπ(p)), or p /∈ τp(Clπ(p)) and
ClB(τp)(π)(p) = ∅. But p /∈ τp(Clπ(p)) means that either Clπ(p) = ∅, or Clπ(p) 6=
∅ and p(Clπ(p)) = 0, both cases giving τp(Clπ(p)) = ∅. Thus (18) holds in any
case.

2. By Proposition 6, τp is an OC-thinning. Hence B(τp) is overcondens-
ing by Proposition 7. By (17), B(τp) is idempotent. Obviously B(τp) is anti-
extensive.

3. As β(σ) is idempotent, for any π ∈ Π∗(E), β(σ)(π) ∈ Inv(β(σ)). By
(7), this means that β(σ)(π) ∈ Π∗(E,F(σ)), in other words every block of
β(σ)(π) belongs to F(σ). By (17), the blocks of B(τp)β(σ)(π) are some of
the blocks of β(σ)(π), in F(σ), so B(τp)β(σ)(π) ∈ Π∗(E,F(σ)) = Inv(β(σ)).
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This implies that β(σ)B(τp)β(σ)(π) = B(τp)β(σ)(π). Thus β(σ)B(τp)β(σ) =
B(τp)β(σ), and we deduce that

(

B(τp)β(σ)
)2

= B(τp)β(σ)B(τp)β(σ) = B(τp)B(τp)β(σ) = B(τp)β(σ) ,

because B(τp) is idempotent (as OC-thinning). Therefore B(τp)β(σ) is idem-
potent. Being a composition of block splitting operators, it is block splitting.

4. CSC is an opening; then item 3 gives CSCB(τp)CS
C = B(τp)CS

C ; by

item 2, B(τp) is an OC-thinning. Then by item 1 of Proposition 3, B(τp)CS
C

is an OC-thinning. It is block splitting by item 3. ⊓⊔

Corollary 15 Associate to each i ∈ I 6= ∅ a trivial operator τ i and a partial

connection Ci. Let κ =
∨

i∈I B(τ
i)CSC

i

; then κ is a block splitting OC-thinning.

Furthermore, if I is totally ordered (a chain), and Ci increases with i (i <
j ⇒ Ci ⊆ Cj), given the system of partial connection openings (γip, p ∈ E) of

Ci, we have:

∀π ∈ Π∗(E), ∀ p ∈ E, Clκ(π)(p) =
⋃

i∈I

τ iγip(Clπ(p)) . (19)

If in addition I is finite, Clκ(π)(p) is the greatest among the τ iγip(Clπ(p)), i ∈ I.

Proof By item 4 of Theorem 14, κ is a supremum of OC-thinnings, hence it is
an OC-thinning. Still by item 4, κ is a supremum of block splitting operators,
it is thus block splitting.

Now let I be a chain with i < j ⇒ Ci ⊆ Cj . Combining (9) with (18), we
obtain for every i ∈ I, π ∈ Π∗(E) and p ∈ E:

Cl
B(τ i)CSCi

(π)
(p) = τ i

(

Cl
CSCi (π)(p)

)

= τ iγip(Clπ(p)) .

Let i, j ∈ I, where i 6= j. If one of τ iγip(Clπ(p)) or τ
jγjp(Clπ(p)) is empty, it is

included in the other. Suppose now that τ iγip(Clπ(p)) 6= ∅ 6= τ jγjp(Clπ(p)); we

have i < j or j < i. For i < j, as Ci ⊆ Cj , we have γip(Clπ(p)) ⊆ γjp(Clπ(p)),

hence τ iγip(Clπ(p)) = γip(Clπ(p)) ⊆ γjp(Clπ(p)) = τ jγjp(Clπ(p)). For j < i we
have the reverse inclusion. Thus the set

{τ iγip(Clπ(p)) | i ∈ I} = {Cl
B(τ i)CSCi

(π)
(p) | i ∈ I}

is totally ordered, hence it is directed, and by (1):

Clκ(π)(p) = Cl∨
i∈I

B(τ i)CSCi
(π)

(p) =
⋃

i∈I

Cl
B(τ i)CSCi

(π)
(p) =

⋃

i∈I

τ iγip(Clπ(p)) ,

that is (19). When I is finite, the union of the finite chain of all τ iγip(Clπ(p)),
i ∈ I, is the greatest one among them. ⊓⊔
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Note that although (1) requires only a directed family of point classes, the
above argument does not extend to the case where the set of partial connec-
tions Ci (i ∈ I) is directed instead of totally ordered. Indeed, if Ci, Cj ⊆ Ck,
we may have τ iγip(Clπ(p)) = γip(Clπ(p)) and τ jγjp(Clπ(p)) = γjp(Clπ(p)), but

τkγkp (Clπ(p)) = ∅, so the set of τ iγip(Clπ(p)) for i ∈ I is not necessarily di-
rected.

We can easily deal with the case of an isotone predicate:

Proposition 16 Let p be an isotone predicate on P(E) \ {∅}, and let Cp =
{∅} ∪

{

X ∈ P(E) \ {∅} | p(X) = 1
}

. Then:

1. Cp is a partial connection, and B(τp) = CSCp ;

2. for any partial connection C, B(τp)CS
C = CSCp∩C.

Proof 1. As explained at the end of Subsection 2.1, Cp = Inv(τp), and it is
a dual Moore family, hence a partial connection. For any X ∈ P(E) \ {∅},
either p(X) = 1 and X ∈ Cp, in other words X is its unique Cp-component, or
p(X) = 0 and then, as p is isotone, for any Y ∈ P(X) such that Y 6= ∅ we have
Y /∈ Cp, in other words X has no Cp-component. Thus PCCp(X) = 1τp(X) (and

this remains true for X = ∅: PCCp(∅) = Ø = 1∅ = 1τp(∅)). Hence PCCp = 1τp ,

from which we deduce that CSCp = β(PCCp) = β(1τp) = B(τp).

2. Let us first show that for X ∈ P(E), the Cp ∩ C-components of X are
exactly the C-components C of X for which p(C) = 1. Let C be a Cp ∩ C-
component of X; then C 6= ∅ and C ∈ Cp ∩ C, so p(C) = 1; if C was not a
C-component of X, there would be C ′ ∈ C with C ⊂ C ′ ⊆ X, and as p is
isotone, we would have p(C ′) = 1, hence C ′ ∈ Cp ∩ C, contradicting the fact
that C is a Cp ∩ C-component of X; therefore C is a C-component of X and
p(C) = 1. Conversely, let C be a C-component of X such that p(C) = 1; then
C ∈ Cp, so C ∈ Cp ∩ C; if C was not a Cp ∩ C-component of X, there would be
C ′ ∈ Cp ∩ C with C ⊂ C ′ ⊆ X, so C ′ ∈ C, contradicting the fact that C is a
C-component of X; therefore C is a Cp ∩ C-component of X.

For any π ∈ Π∗(E), the blocks of CSC(π) are all C-components of blocks of
π; then the blocks of B(τp)CS

C(π) are all C-components C of blocks of π such
that p(C) = 1; in other words, they are all Cp ∩ C-components of blocks of π,

that is, the blocks of CSCp∩C(π). Hence B(τp)CS
C(π) = CSCp∩C(π). ⊓⊔

For a shorter but more abstract proof of item 2, we remark that B(τp)CS
C =

CSCpCSC is an opening, hence it must be the infimum of CSCp and CSC in the
complete lattice of openings; by the isomorphism between the two complete
lattices of partial connections and of block splitting openings, it must corre-
spond to the infimum of Cp and C in the complete lattice of partial connections,

that is Cp ∩ C, so B(τp)CS
C = CSCp∩C .

Since B(τp) acts on a partial partition by selecting all blocks B with p(B) =
1, cf. (17), it is easy to decompose it when p is a combination of predicates.
The following result is straigtforward, we leave its proof to the reader:
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Proposition 17 Consider a non-void family pi, i ∈ I 6= ∅, of predicates on
P(E) \ {∅}. Then for any π ∈ Π∗(E),

B
(

τ∨
i∈I

pi

)

(π) =
⋃

i∈I

B(τpi)(π) =
∨

i∈I

B(τpi)(π)

and

B
(

τ∧
i∈I

pi

)

(π) =
⋂

i∈I

B(τpi)(π) =
∧

i∈I

B(τpi)(π) .

When I is finite, I = {1, . . . , n},

B
(

τ∧n

i=1
pi

)

=

n
∏

i=1

B(τpi) .

Soille’s approach to image segmentation [27–30] follows the model of Corol-
lary 15. Here I = {0, . . . , n}, and given a numerical function F : E → T and
connective criteria cri (i = 0, . . . , n), we take the connections Ci = CFcri = {A ∈
P(E) | cri[F,A] = 1}; we suppose that the cri increase with i, so do the Ci.
Now each τ i is guided by a “constraining” criterion (i.e., τ i(B) = 1 iff [F,B]

satisfies that criterion). In fact, τ0 preserves C0, so κ(π) ≥ CSC
0

(π), hence
for π ∈ Π(E) we have κ(π) ∈ Π(E). The segmentation of the function F
is then given by the partition κ(1E). We illustrate it in Figure 10 for a one-
dimensional image, with the “connected Lipschitz” segmentation criterion and
the “bounded total variation” constraining predicate.

A similar approach can be adopted for the decomposition of a shape into its
significant parts. Here we asssume that a growing sequence C1, . . . , Cn of (par-
tial) connections and a predicate p are given independently of any numerical
function. Let us illustrate this with an example.

Let E = Zm, with a “standard” connection Cstd. For any radius r > 0,
let Br be the closed ball or radius r centered about the origin. Let Cr be the
set of all X ∈ Cstd such that X ◦ Br = X (i.e., all Cstd-connected unions of
translates of Br). Then Cr = C∗

Br
according to our notation, it is a partial

connection, and for any X ∈ P(E), the Cr-components of X are the Cstd-
components of X ◦ Br (see Figure 6). For r > s > 0, as Br is a union of
translates of Bs, for every X ∈ P(E) we have X ◦Br ⊆ X ◦Bs, hence Cr ⊆ Cs.
We take thus a strictly decreasing sequence of radii r1 > · · · > rn > 0 (for
example ri = 2n−ir for some r > 0), and set Ci = Cri ; thus C1 ⊆ . . . ⊆ Cn.
We define the predicate p by p(X) = 1 iff for each i = 1, . . . , n, X has at
most one Ci-component, that is, X ◦Bri is either empty or Cstd-connected. We
can interpret p by saying that p(X) = 1 iff X “consists of one piece”. This is
illustrated (form = 2) in Figure 11, where the set appearing to have two pieces
does not satisfy predicate p. We see then in Figure 12 that by applying the

segmentation operator κ =
∨n
i=1 B(τp)CS

Ci

to 1X , the shape with two pieces is
segmented into two blocks corresponding to them, while the shapes appearing
in one piece have a segmentation with one block. Of course, the segmentation
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2

1

0.5

0

slopes:

T

E

F

singletons (p = 1)blocks: p = 1 p = 0

final segmentation:

segmentations:

Fig. 10 Here E = T = Z. For each s ≥ 0, let lips be the criterion given by lips[F,A] = 1
if A is connected and F is is Lipschitz with slope s on A; this criterion is connective. Top:
a function F : E → T ; it leads to the connections CF

lips
. Next row: we choose a height

u > 0, and define the constraining predicate p by p(A) = 1 iff supx,y∈A |F (x)− F (y)| ≤ u.
Non-singletons blocks B are shown in light grey when p(B) = 1 and in dark grey when
p(B) = 0; hatchings denote rows of singleton blocks (they always satify p(B) = 1). Next

rows in descending order: the segmentations PC
CF
lips (E) for s = 0, 0.5, 1, 2. Bottom: the final

segmentation is the partition spanned by all blocks B from the 4 segmentations having
p(B) = 1.

2

4

3

1 0

X1

X2

X

1 2 3 4
0
1
2

1 2 3 4
0
1
2

1 2 3 4
0
1
2

+

+

+

Fig. 11 Here E = Z2. Left: the 4
balls Br1 , . . . , Br4 , with radii ri form-
ing a geometric sequence of ratio 1/2.
Center: the three sets X0, X1 and
X2 (X2 = X0 ∪ X1), where the +
indicates the position of the origin.
Right: the graph of the function i 7→

|PCCi
(Xj)| = |PCCstd (Xj ◦ Bri )| for

j = 0, 1, 2. Thus p(X0) = p(X1) = 1
but p(X2) = 0.

X2X0 X1 X3 X4

2 24 4 4 4

Fig. 12 Left to center: over the three sets Xj (j = 0, 1, 2) in grey, we show in black the

segmentation partial partition κ(1Xj
) =

∨4

i=1
B(τp)CS

Ci
(1Xj

) =
∨4

i=1
B(τp)

(

PCCi
(Xj)

)

;

each block is a Ci-component of Xj , we indicate that value i on it (in white). Now p(X0) =
p(X1) = 1 and the segmentation of X0 and X1 has a unique block, while p(X2) = 0 and
the segmentation of X2 has two blocks. Right: a partial partition {X3, X4} of X2, here
p(X3) = p(X4) = 1 and κ({X3, X4}) > κ(1X2

).
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does not cover the whole shape, in particular the corners are rounded, but it
is possible to recover these corners by the method illustrated in Figure 6.

It should be noted that the result shown in Figure 12 cannot be obtained
by partitioning the shape into its connected components according to some
partial connection. Indeed, we have here X2 = X0 ∪X1, and the unique block
Y0 in the segmentation of X0 intersects Y1, the one of X1, so if they were
connected components, Y0 and Y1 would both join inside a same connected
component of X2, which is not the case. Also, at the right of Figure 12 we
have κ({X2}) < {X3, X4} < {X2} but κ({X3, X4}) > κ({X2}), so κ is not a
C-thinning.

Let us end this section with two general remarks on possible extensions of
the scope of our results.

Remark 18 We have studied block splitting openings, C-thinnings and OC-
thinnings on Π∗(E). We can extend them to Π(E), thanks to a method in-
troduced in [15]. There we defined the inclusion map

IN : Π(E) → Π∗(E) : π 7→ π ,

and the map that fills a partial partition by singleton blocks outside its sup-
port:

FS : Π∗(E) → Π(E) : π 7→ π ∪ 0E\supp(π) = π ∨ 0E .

Then we showed that (IN, FS) is an adjunction Π(E) ⇀↽ Π∗(E). Given κ :
Π∗(E) → Π∗(E), consider:

FS κ IN : Π(E) → Π(E) : π 7→ FS(κ(π)) = κ(π) ∨ 0E .

Since (IN, FS) is an adjunction, by item 2 of Proposition 3 (and the well-
known similar result for openings), we obtain that FS κ IN will inherit from
κ the property of being respectively an opening / a C-thinning / an OC-
thinning.

Furthermore, if κ is a block splitting operator, κ = β(σ), then FS κ IN
will also be block splitting, namely FS κ IN = β(σ′) for σ′ : X 7→ σ(X)∨ 0X ;
indeed, for any π ∈ Π(E) we have:

β(σ′)(π) =
∨

B∈π

σ′(B) =
∨

B∈π

(

σ(B) ∨ 0B
)

=
(

∨

B∈π

σ(B)
)

∨
(

∨

B∈π

0B

)

=
(

∨

B∈π

σ(B)
)

∨ 0E = β(σ)(π) ∨ 0E = (FS β(σ) IN)(π) .

If κ = CSC for a partial connection C, then FS κ IN = CSC
′

, where C′ =
C ∪ S(E), the least connection containing C.

For example in the segmentation of Figure 12, if we want to have a partition
instead of a partial partition, we replace the partial connection Ci by the
connection Ci∪S(E); the resulting segmentation of X will then be κ(1X)∨0X
instead of κ(1X), in other words the parts of the set X not covered by the
partial partition κ(1X) will be covered by singletons.



31

Remark 19 In mathematical morphology, given a connection C and a predicate
p, one defines an attribute thinning [4] as the operator that removes from a
set X all C-components Z such that p(Z) = 0; formally, the result is written
⋃

x∈X τp(γx(X)). When the predicate p is isotone, this operator will be an
opening, it is then called an attribute opening. This is the anti-extensive case of
the so-called grain operators according to [6] (quite generally, such an operator
can also add to X all C-components of Xc that do not satisfy some predicate
q). Of courses, everything works also if we take for C a partial connection.

In our framework, this operator can be written:

θCp : X 7→ supp
[

B(τp)
(

PCC(X)
)]

= supp
[

B(τp)CS
C(1X)

]

;

in other words, θCp = supp · B(τp)CS
C · 1•. Since (1•, supp) is an adjunction

and B(τp)CS
C is an OC-thinning (by Theorem 14), the attribute thinning θCp

will be an OC-thinning (by item 2 of Proposition 3). When the predicate p

is isotone, θCp is an opening; in fact we can use Proposition 16: θCp (X) is the
union of all (Cp ∩ C)-components of X, where

Cp ∩ C = {∅} ∪
{

X ∈ C \ {∅} | p(X) = 1
}

.

We can be more general: for any anti-extensive operator ψ on partial par-
titions, define the operator on sets ψ = supp · ψ · 1• : X 7→ supp[ψ(1X)]. Since
supp is a complete morphism [15]), the map ψ 7→ ψ is a complete morphism.
Also, by item 2 of Proposition 3, whenever ψ is respectively an opening / a
C-thinning / an OC-thinning, ψ will have that property.

4 Discussion and conclusion

The analysis of block splitting openings in the first paper, together with [13],
provides a theoretical basis for Serra’s approach to segmentation, that we have
called connective segmentation [13,17].

Then Section 3 expands our analysis by building idempotent block split-
ting operators that are not isotone; this is achieved by combining block split-
ting openings with other constructions. We rely on the background of Subsec-
tion 2.1. In Subsection 3.1, one should mainly remember Proposition 8, because
it shows how operators like those used in practical applications for extracting
tubular shapes [8,9], lead to block splitting OC-thinnings on partial partitions.
Subsection 3.2 shows that Serra’s [22] residual combination of block splitting
openings is analogous to the residual combination of set openings considered
in [11], and has the same property of being a C-thinning; this approach is used
in the so-called composed segmentation of [17]. Subsection 3.3 shows how the
composition of block splitting into C-components and block selection according
to predicates, leads to OC-thinnings. It springs from the work of Soille [27–30]
on segmentation by the combination of connective and constraining criteria.
We call his approach constrained connective segmentation; we have thus given
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here its theoretical basis. Besides image segmentation, our results can also be
applied to the decomposition of shapes, cf. Figures 1, 11 and 12.

Our approach considers only block splitting operators, and emphasizes con-
ditions for their idempotence, because this corresponds to current views on
image segmentation [28]. Indeed, we explained in the introduction of the first
paper that the segmentation of an image E → T according to a homogeneity
criterion, means that one associates to F a set splitting operator σ that splits
every set X into a partial partition σ(X) of X, whose blocks are homogeneous
for F according to the criterion; furthermore, it was required that β(σ) is
idempotent and that for every π0, π ∈ Π∗(E), we have

β(σ)(π0) < π ≤ π0 =⇒ β(σ)(π) < π , (20)

in other words, β(σ)(π0) is a maximal element of the set of all invariants
of β(σ) that are ≤ π0. When β(σ) is a C-thinning (in particular, if it is an
opening), we have β(σ)(π0) ≤ π ≤ π0 ⇒ β(σ)(π) = β(σ)(π0), so (20) holds.
Thus Serra’s connective [23] and composed (multi-stage) [22] segmentations
satisfy all segmentation requirements.

On the other hand, in Soille’s constrained connective segmentation [27–
30], β(σ) is an OC-thinning, so (20) does not necessarily hold. We saw for
example in Figure 12 two partial partitions {X3, X4} and 1X2

that satisfy
β(σ)(1X2

) < β(σ)2({X3, X4}) = β(σ)({X3, X4}) ≤ {X3, X4} < 1X2
, thus

(20) is violated for π0 = 1X2
and π = β(σ)({X3, X4}). We could restrict

the predicates used in order to obtain a C-thinning, but then this would give
an opening. Indeed, given a predicate p, if B(τp) is a C-thinning, then by

Propositions 6, 7 and 16, τp is an opening and B(τp)CS
C = CSCp∩C , where Cp is

a partial connection. Thus we fall back into block splitting openings, in other
words Soille’s approach reduces to Serra’s in this case.

Although OC-thinnings do not satisfy (20), an interesting point is that
they constitute a Moore family, while this is not the case for thinnings (anti-
extensive idempotent operators); overcondensation might well be the weakest
possible property related to order, that guarantees the idempotence of a supre-
mum of thinnings.

The concepts of C-thinning and OC-thinning were introduced by the author
[11,12] in order to describe the behaviour of some morphological operators on
binary or grey-level images (i.e., sets and numerical functions) given in the
literature. Afterwards these two concepts remained unused, until the author
saw that the operators underlying Soille’s segmentation approach [28] and the
attribute thinnings on sets [4] (cf. Remark 19) are OC-thinnings, then that
Serra’s construction for multi-stage segmentation [22,17] is the analogue, for
partial partitions, of an old algorithm [10] for the decomposition of a set by a
residual combination of set openings, and shares with it the property of being
a C-thinning.

Due to lack of space, we have left out some special classes of operators.
Soille [27] emphasized the importance of antitone predicates; indeed, they fa-
cilitate computations of operators like those of Corollary 15. Serra [24] showed
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also, in the framework of Corollary 15, the need for antitone predicates in order
to guarantee the so-called “regional knowlege” in segmentation, namely to ob-
tain, for any subset B of a set X, a smallest possible set B′ with B ⊂ B′ ⊆ X
such that B′ determines if B is a block of σ(X). A link [20] is the meet of an
isotone operator and an antitone operator. Now when a predicate p is antitone
(more generally, when p is a link), it can be shown that τp, B(τp) and B(τp)CS

C

are links. An operator ψ is inf-separable [1] if for x, y, z such that x ≤ y ≤ z,
ψ(x) ∧ ψ(z) ≤ ψ(y). Every link is inf-separable, and in a frame (complete lat-
tice where the binary meet distributes arbitrary suprema), reciprocally every
inf-separable operator is a link. This equivalence applies in particular to pred-
icates and trivial operators (because {0, 1} and P(E) are frames). However
Π∗(E) is not a frame, and indeed we give here a counter-example: let E = Z2,
for any p ∈ E write λ(x) (resp., ρ(x)) for the point q ∈ E that is the left
(resp., right) neighbour of p, and for any X ∈ P(E), set

L(X) = {p ∈ X | λ(p) /∈ X, ρ(p) ∈ X}
and R(X) = {p ∈ X | λ(p) ∈ X, ρ(p) /∈ X} ,

(so L(X) ∩R(X) = ∅); now define the set splitting operator

σ : P(E) → Π∗(E) : X 7→ 1L(X) ∨ 1R(X) ;

then σ and β(σ) are inf-separable but not links.
The connective segmentation approach [23,17,13], as well as its composed

(i.e., multi-stage) application [22,17] and its constrained variant [27–30], share
common features. They associate to each function one or several partial con-
nections, whose elements are generally built by chaining basic bricks called
seeds [23,13], and then the segmentation is obtained by lattice-theoretical
operations on partial partitions involving these seeds. The lattice-theoretical
properties required from the various operations allow to take into account gen-
eral knowledge about the meaning of the segmentation process (for example
idempotence stands for the stability of the result, and isotony means that a
join of objects not split or erased by segmentation will give an object that
will also not be split or erased, cf. Figures 1 and 2). On the other hand, the
choice of the criterion that associates to each function a partial connection (in
practice, the extraction of seeds from the function) allows to take into account
specific knowledge about objects to be segmented (for example in angiography
[8,9]: seeds are narrow and elongated connected bright zones surrounded by a
darker image portion).

To conclude: we have studied idempotent anti-extensive operators on par-
tial partitions, that are relevant in image segmentation methods based on the
decomposition of space into homogeneous regions. They can also be applied
in situations where the image segmentation produces a partition that is too
coarse (this phenomenon is called under-segmentation). An opposite approach
segments images by growing or clustering multiple seeds. This provides thus
a rationale for investigating extensive operators on partial partitions, mod-
elling such a process; they could also be applied in situations where the image
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segmentation produces a partition that is too fine (this phenomenon is called
over-segmentation). Of particular interest are closures on partial partitions
(for example by clustering blocks). Since the lattices Π(E) and Π∗(E) are not
auto-dual, the theory of extensive operators should have no similarity to that
of anti-extensive ones.

In our ongoing study of lattice-theoretical and monoid properties of maps
on partial partitions, we have already analysed adjunctions on partitions and
partial partitions [15]. Besides the study of extensive operators, such as block
clustering ones, an interesting but more difficult problem is to apply to partial
partitions well-known “topological” notions used in imaging sciences, such as
connectivity, connected components and their reconstruction from seeds (i.e.,
the well-known flood-fill algorithm). Note in this respect the extension of the
notion of connection to complete lattices [21,16,3], and the first description of
reconstruction operators on partitions [14].

Acknowledgements The author has for several years discussed with Jean Serra about
connections, partitions and segmentation. More recently, he started such a dicussion with
Pierre Soille. The presentation of our two papers benefited from the constructive suggestions
by the referees and the editors.
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