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Abstract. Sachs [16] showed that a Boolean algebra is determined by its lattice of sub-
algebras. We establish the corresponding result for orthomodular lattices. We show that
an orthomodular lattice L is determined by its lattice of subalgebras Sub(L), as well as by
its poset of Boolean subalgebras BSub(L). The domain BSub(L) has recently found use in
an approach to the foundations of quantum mechanics initiated by Butterfield and Isham
[10, 3], at least in the case where L is the orthomodular lattice of projections of a Hilbert
space, or von Neumann algebra. The results here may add some additional perspective to
this line of work.

1. Introduction

In [2] Birkhoff showed that the subalgebra lattice Sub(B) of a finite Boolean algebra B with
n atoms is dually isomorphic to the lattice Pn of partitions of an n-element set {1, . . . , n}.
Indeed, viewing B as the power set of {1, . . . , n}, the atoms of a subalgebra S of B provide
a partition of {1, . . . , n}, and each such partition arises this way.

Sachs [16] showed every Boolean algebra B is determined by its lattice of subalgebras.
In fact, he showed that if B,C are Boolean algebras and ϕ : Sub(B) → Sub(C) is a lattice
isomorphism, then there is a Boolean algebra isomorphism ϕ∗ : B → C with ϕ(S) = ϕ∗[S]
for each subalgebra S of B. Here ϕ∗[S] denotes the image {ϕ∗(s) : s ∈ S} of the set S under
the map ϕ∗. Further, this map ϕ∗ is unique provided that B has other than four elements.
Grätzer et. al. [6] characterized the lattices arising as Sub(B) for some Boolean algebra B
as those algebraic lattices where the interval [0, k] beneath each compact element k is dually
isomorphic to some finite partition lattice Pn. A wealth of other information on subalgebra
lattices of Boolean algebras is found in [14].

For an orthomodular lattice (abbreviated: oml) L, we let Sub(L) be its lattice of sub-
algebras, and BSub(L) be its meet-semilattice of Boolean subalgebras. We show that L is
determined by Sub(L) and that L is determined by BSub(L). We remark that these results
use only the order structure of Sub(L) and BSub(L), and not the the elements of the sub-
algebras or the algebraic structure on these elements. This contrasts, for example, with [9].
We further prove that if L,M are omls and ϕ : Sub(L) → Sub(M) is a lattice isomorphism,
there is an oml-isomorphism ϕ∗ : L → M with ϕ(S) = ϕ∗[S] for each subalgebra S of L,
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and such ϕ∗ is unique provided L has no 4-element blocks. Similar results hold for an iso-
morphism ϕ : BSub(L) → BSub(M). Unfortunately, we do not yet have a result analogous
to that of Grätzer et. al. characterizing the lattices arising as Sub(L) or the posets arising
as BSub(L) for some oml L.

Apart from their intrinsic interest, these results may shed some additional light on a recent
approach to the foundations of quantum mechanics introduced by Isham and Butterfield
[10, 3]. These authors take as a basic ingredient BSub(L) for L the oml of projections of a
Hilbert space, or more generally, the oml of projections of any von Neumann algebra. That
BSub(L) determines L is perhaps worth noting in this context.

This note is arranged in the following manner. The second section provides basic observa-
tions about BSub(L) and shows that a chain-finite oml is determined by the poset BSub(L).
The third section reviews the results of Sachs we use. The fourth section provides our main
results. The fifth section discusses some categorical connections, and the sixth provides some
directions for further study. The reader should consult [2] for general background on lattice
theory, and [11, 15] for background on omls.

2. Basic observations on BSub(L)

In this section we describe basic properties of the poset of Boolean subalgebras, and show
that a chain-finite oml is determined by this poset of Boolean subalgebras. As a comment
on notation, we tend to use upper case letters such as L,M for lattices and omls, lower
case letters near the start of the alphabet such as a, b, c for elements of omls, and lower case
letters near the end of the alphabet such as x, y, z for subalgebras of omls. We do this as
subalgebras of L are elements of the poset BSub(L). Finally, we assume throughout that all
Boolean algebras and omls are non-trivial, meaning that they have at least two elements.

Definition 2.1. For an oml L, let BSub(L) be the collection of Boolean subalgebras of L
partially ordered by set inclusion.

We next provide a simple example to illustrate this notion.

Example 2.2. Consider the oml L shown at left below, with BSub(L) at right.
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The elements in the poset BSub(L) shown at right are as follows. The bottom element is the
subalgebra {0, 1}, and the atoms from left to right are the subalgebras {0, 1, a, a′}, {0, 1, b, b′},
{0, 1, c, c′}, {0, 1, d, d′}, and {0, 1, e, e′}. The maximal element at left is {0, 1, a, a′, b, b′, c, c′}
and the maximal element at right is {0, 1, c, c′, d, d′, e, e′}.

Note, for any oml L, each non-empty collection of elements of BSub(L) has a meet, and
each up-directed subset has a join. Further obvious properties are listed below. We recall
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that, for an oml L, a block of L is a maximal Boolean subalgebra of L. Also, for an element
x ∈ BSub(L), we write [0, x] for the interval {y ∈ BSub(L) : 0 ≤ y ≤ x} of the poset
BSub(L).

Proposition 2.3. Suppose L is an oml.

(1) The maximal elements of BSub(L) are the blocks of L.
(2) Every element of BSub(L) lies beneath a maximal element of BSub(L).
(3) The least element of BSub(L) is the subalgebra {0, 1} of L.
(4) The atoms of BSub(L) are the subalgebras {0, a, a′, 1} where a ∈ L− {0, 1}.
(5) Each element of BSub(L) is the join of the atoms beneath it.
(6) The interval [0, x] = {y ∈ BSub(L) : 0 ≤ y ≤ x} of BSub(L) is the lattice of

subalgebras of the Boolean algebra x.

Clearly a Boolean algebra is finite if and only if it has only finitely many subalgebras. The
final condition above allows us to easily recognize the finite Boolean subalgebras of L.

Definition 2.4. Say x ∈ BSub(L) has finite height if the interval [0, x] is finite, and then
let the height of x be one less than the size of a maximal chain in [0, x].

So the elements of BSub(L) of finite height are the finite Boolean subalgebras of L; the
elements of height 1 are the atoms of BSub(L) and these correspond to 4-element Boolean
subalgebras of L; and the elements covering atoms are those of height 2, and these correspond
to 8-element Boolean subalgebras of L. The following small observations are key.

Lemma 2.5. Let L be an oml, x = {0, a, a′, 1}, y = {0, b, b′, 1} for some a, b ∈ L− {0, 1}.

(1) x, y are atoms of BSub(L).
(2) a, b are commuting elements of L iff x ∨ y exists in BSub(L).
(3) a is comparable to one of b, b′ iff x ∨ y exists and has height at most 2.

Proof. The first statement is trivial. The second follows as a commutes with b iff a, b lie
in a Boolean subalgebra of L. For the third, if a is comparable to one of b, b′, then a and b
commute, so lie in a Boolean subalgebra of L, and the Boolean subalgebra generated by two
comparable elements has at most 8 elements. Conversely, if a, b lie in a Boolean subalgebra
with at most 8 elements, then a must be comparable to either b or b′. ✷

Lemma 2.6. Suppose L is an oml, a ∈ L− {0, 1} and x = {0, a, a′, 1}. The following are
equivalent:

(1) At least one of a, a′ is an atom of L.
(2) For each atom y of BSub(L), if x ∨ y exists then it has height at most 2.

Further, both a, a′ are atoms of L iff x is a maximal element of BSub(L).

Proof. It is well known [11] that an element of L belonging to a block z is an atom of L iff
it is an atom of z. To see (1) ⇒ (2) suppose either a or a′ is an atom of L. If y is an atom
of BSub(L), then y = {0, b, b′, 1} for some b ∈ L − {0, 1}. If x ∨ y exists, then a commutes
with b, so a, b belong to some block z of L. Then either a or a′ is an atom of z, and it follows
that a is comparable to either b or b′. So x∨ y has height at most 2. To see (2) ⇒ (1), find a
block z of L containing a. Condition (2) implies for each b ∈ z that a is comparable to one
of b, b′, and this implies that one of a, a′ is an atom of z, hence an atom of L. The further
comment is trivial. ✷

Already, these simple observations are enough to treat the situation for chain-finite omls.
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Theorem 2.7. If one is given a poset P and told P is isomorphic to BSub(L) for some
finite oml L, then one can determine, up to isomorphism, the oml L.

Proof. Note first that any chain-finite oml L is determined by its atom structure (A,⊥)
where A is the set of atoms of L and ⊥ is the relation of orthogonality on A. Indeed,
L is isomorphic to the set of subsets S ⊆ A having the property that S = S⊥⊥, where
S⊥ = {a ∈ A : a ⊥ b for all b ∈ S}. From P , we will construct a structure (X,⊥) isomorphic
to (A,⊥), showing that P determines L, up to isomorphism.

Guided by Lemma 2.6, we let U be the set of atoms of P that satisfy condition (2) of
Lemma 2.6 and are not maximal in P , and V be the set of atoms of P that satisfy (2) and are
maximal in P . For each v ∈ V create two elements v1, v2. Set X = U ∪ {v1, v2 : v ∈ V }. We
define ⊥ on X by setting v1 ⊥ v2 and v2 ⊥ v1 for each v ∈ V . This reflects that the atoms
of a 4-element block are orthogonal to each other and not to any other atoms. For u, w ∈ U
we set u ⊥ w if u 6= w and u ∨ w exists, reflecting that any two distinct atoms belonging to
a common block are orthogonal. Then (X,⊥) is isomorphic to (A,⊥) as required. ✷

3. Results of Sachs

In this section we review results of [16]. To make the paper self-contained, we include proofs
of the key facts. Throughout, for a Boolean algebra B, we use Sub(B) for the collection of
subalgebras of B ordered by set inclusion.

Definition 3.1. A subalgebra of a Boolean algebra B is a dual subalgebra if it consists of an
ideal and its complementary filter. It is called a principal dual subalgebra (p.d. subalgebra)
if it consists of a principal ideal and its complementary filter.

Key results of [16] give purely order-theoretic characterizations of the elements of Sub(B)
given by dual, and by p.d. subalgebras. We also give such characterizations, but in a way
that somewhat simplifies the approach of [16].

Lemma 3.2. If x is a dual subalgebra of B and a, b 6∈ x, then the following are equivalent:

(1) b is in the subalgebra generated by x ∪ {a}.
(2) a is in the subalgebra generated by x ∪ {b}.

Proof. Suppose x = I ∪ F where I is a (uniquely determined) proper ideal and F = {i′ :
i ∈ I}. If b is in the subalgebra generated by x ∪ {a}, then b/I is in the subalgebra of B/I
generated by a/I. Then as b 6∈ x, either b = a/I or b = a′/I. Without loss of generality,
assume the first. Then b ∨ i = a ∨ i for some i ∈ I. Then a = (a ∨ i) ∧ (a ∨ i′) = (b ∨ i) ∧ f
where f is the element a ∨ i′ of F . So a belongs to the subalgebra generated by x ∪ {b}. ✷

We now provide an order-theoretic characterization of dual subalgebras.

Proposition 3.3. For a subalgebra x of B, the following are equivalent:

(1) x is a dual subalgebra.
(2) For all atoms y of Sub(B) that are incomparable to x, we have x ∨ y covers x.

Proof. Suppose x is a dual subalgebra. If y is an atom that is incomparable to x, then
y = {0, a, a′, 1} for some a 6∈ x. Clearly x < x∨ y. Suppose z is such that x < z ≤ x∨ y. As
x < z there is some b ∈ z with b 6∈ x. As z ≤ x ∨ y we have b is in the subalgebra generated
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by x∪ {a}, so by Lemma 3.2 we have a is in the subalgebra generated by x∪ {b}. So y ≤ z,
and as x < z, we have x ∨ y = z. Thus x ∨ y covers x.

To show the second statement implies the first, we first observe that as x is a subalgebra
of B, the set I = {a : [0, a] ⊆ x} is an ideal of B and F = {a : [a, 1] ⊆ x} = {i′ : i ∈ I} is its
dual filter. If x = I ∪ F , then x is a dual subalgebra.

Assume x is not a dual subalgebra. We will produce an atom y that is incomparable to
x with x ∨ y not covering x. By the above comments, it follows that x 6= I ∪ F . So there
is some a ∈ x with [0, a] 6⊆ x and [a, 1] 6⊆ x. Choose b < a and c < a′ with b, c 6∈ x. Set
d = b ∨ c. Note that a ∧ d = a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) = b and similarly a′ ∧ d = c.

Consider the atom y = {0, d, d′, 1}. As a ∧ d = b, and a ∈ x, b 6∈ x, it follows that d 6∈ x.
So x ∧ y = 0, showing that the atom y is incomparable to x. It is well known, and easy to
verify, that the subalgebra generated by x∪{b} is {(e1 ∧ b)∨ (e2 ∧ b

′) : e1, e2 ∈ x}. We claim
c does not lie in this subalgebra. Indeed, if c = (e1 ∧ b) ∨ (e2 ∧ b

′) for some e1, e2 ∈ x, then
as c ≤ a′ ≤ b′ we have c = c ∧ a′ = e2 ∧ b

′ ∧ a′ = e2 ∧ a
′, and this contradicts c 6∈ x. Since

b = a ∧ d and c = a′ ∧ d, both belong to x ∨ y. Then as b 6∈ x, the subalgebra generated
by x ∪ {b} properly contains x and does not contain c. Thus this subalgebra it is properly
contained in x ∨ y and x ∨ y does not cover x. ✷

This leads to the following order-theoretic characterization of p.d. subalgebras.

Proposition 3.4. A dual subalgebra x is a principal dual subalgebra iff one of the following
conditions holds:

(1) x = 0.
(2) x = B.
(3) x is an atom.
(4) There is a dual subalgebra y with x ∧ y an atom that is not a dual subalgebra.

Proof. Suppose x = [0, a] ∪ [a′, 1]. If a = 0 then x = 0. If a is a coatom or 1, then x = B.
If a is an atom, then x = {0, a, a′, 1} is an atom. Otherwise y = [0, a′] ∪ [a, 1] is a dual
subalgebra with x ∧ y = {0, a, a′, 1} an atom that is not a dual subalgebra.

For the converse, note 0 and B are principal dual subalgebras. Any dual subalgebra
containing only finitely many elements must be principal, so a dual subalgebra that is an
atom must be principal. For the remaining case assume x = I ∪ F where I is an ideal and
F = {i′ : i ∈ I}. Assume also that y = J ∪ G where J is an ideal and G = {j′ : j ∈ J},
and that x ∧ y is an atom {0, a, a′, 1} that is not a dual subalgebra. Then neither a, a′ is an
atom. One of a, a′ belongs to I, and we may assume this is a. Then a cannot belong to J
as this would imply some 0 < b < a belongs to x∧ y. So a belongs to G. Then there cannot
be an element c ∈ I that is strictly larger than a as this element would belong to I ∩G and
hence to x ∧ y. So I is a principal ideal, hence x is a principal dual subalgebra. ✷

Remark 3.5. Sachs gave order-theoretic characterizations of dual and p.d. subalegbras in
his Theorems 1 and 2 of [16]. His mechanism was somewhat different. He first defined the
notion of a dual modular element in a lattice as an element x with (x ∨ y) ∧ z = x ∨ (y ∧ z)
for each z ≥ x and (y ∨ x) ∧ w = y ∨ (x ∧ w) for each w ≥ y. We note that this is related
to, but different from, the usage in [12], and states that (x, y) and (y, x) are dual modular
pairs for each element y ∈ L. In his Theorem 1, Sachs shows that the dual modular elements
in the lattice Sub(B) are exactly the dual subalgebras, and in his Theorem 2 then uses this
description to characterize the p.d. subalgebras.
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With an order-theoretic characterization of the p.d. subalgebras, we can show a Boolean
algebra B is determined by its lattice of subalgebras. This is the content of the following
theorem, effectively proved by Sachs in the proof of his Theorem 4. As there is a small
amount of work to extract the result below from his proof, we outline the steps.

Theorem 3.6. Suppose B and C are Boolean algebras and ϕ : Sub(B) → Sub(C) is a
lattice isomorphism. Then, there is an isomorphism ϕ∗ : B → C so that ϕ(x) = ϕ∗[x] for
each subalgebra x of B. Further, except in the case where B has exactly four elements, the
isomorphism ϕ∗ with this property is unique.

Proof. Let B0 be the set of elements of B that are not coatoms or 1, and similarly for C0.
If b ∈ B0 then x = [0, b] ∪ [b′, 1] is a p.d. subalgebra not equal to the top of Sub(B). The
dual subalgebras are characterized lattice-theoretically in Prop. 3.3 and the p.d. subalgebras
among dual subalgebras are characterized in Prop. 3.4. As ϕ is an isomorphism, ϕ(x) is a p.d.
subalgebra of C that is not the top of C. So there is a unique c ∈ C0 with ϕ(x) = [0, c]∪[c′, 1].
Define ϕ∗(b) = c. This defines a map from B0 to C0, and as a1 ≤ a2 implies [0, a1] ∪ [a′1, 1]
is contained in [0, a2] ∪ [a′2, 1], this map is order-preserving. As ϕ is an isomorphism, it has
an inverse λ, and repeating this process we obtain a map λ∗ from C0 to B0 that is order-
preserving. One sees that ϕ∗ and λ∗ are mutually inverse, showing ϕ∗ is an isomorphism
from the poset B0 to the poset C0.

If B has exactly 4 elements, then B0 = {0}, hence C0 = {0}, so C has 4 elements, and
there is an isomorphism ϕ∗ from B to C with ϕ∗[x] = ϕ(x) for each subalgebra x of B. In
fact, there are two such isomorphisms as there are two choices how to map the two atoms of
B to the two atoms of C. Similar arguments lead to a unique isomorphism in the case when
B has exactly 2 elements (then B0 = C0 = ∅).

Suppose B has more than 4 elements. Then for each b ∈ B − B0 we have b′ ∈ B0. So
we extend ϕ∗ to B by setting ϕ∗(b) = ϕ∗(b′)′ for each b ∈ B − B0. This extension is seen
to be order-preserving by noting that d ≤ b implies d ∧ b′ = 0, hence ϕ∗(d) ∧ ϕ∗(b′) = 0,
so ϕ∗(d) ≤ ϕ∗(b′)′ = ϕ∗(b). Similarly λ∗ extends to C, and these extensions ϕ∗ and λ∗ are
easily seen to be mutually inverse order-preserving maps between B and C, hence Boolean
algebra isomorphisms.

We next show ϕ∗[x] = ϕ(x) for each subalgebra x of B. By construction, this is true
for each p.d. subalgebra x. Suppose b ∈ B, let x = [0, b] ∪ [b′, 1] and y = [0, b′] ∪ [b, 1],
and note x ∧ y = {0, b, b′, 1}. Then as ϕ∗ is an isomorphism, ϕ∗[{0, b, b′, 1}] = ϕ∗[x ∧ y] =
ϕ∗[x] ∧ ϕ∗[y] = ϕ(x) ∧ ϕ(y) = ϕ(x ∧ y) = ϕ({0, b, b′, 1}). For any subalgebra z we have
z =

⋃
{{0, b, b′, 1} : b ∈ z}. As ϕ is an isomorphism, ϕ(z) =

⋃
{ϕ({0, b, b′, 1}) : b ∈ z} =⋃

{ϕ∗[{0, b, b′, 1}] : b ∈ z} = ϕ∗[
⋃
{{0, b, b′, 1} : b ∈ z}] = ϕ∗[z]. Finally, any isomorphism

from B to C with this property must, by construction, agree with ϕ∗, giving uniqueness
when B has other than 4 elements. ✷

4. Main results

Theorem 4.1. If L and M are omls and ϕ : BSub(L) → BSub(M) is an isomorphism
of posets, then there is an isomorphism ϕ∗ : L → M with ϕ(x) = ϕ∗[x] for each Boolean
subalgebra x of L. Further, the map ϕ∗ with this property is unique provided L has no blocks
with four elements.

Proof. Note that blocks of L are maximal elements of BSub(L). So a block of L having
exactly four elements is simply a maximal element of L that is an atom of BSub(L). As there
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is an isomorphism between BSub(L) and BSub(M), then L has a block with four elements
iff M has one. We assume for now that L has no four-element block.

For each x ∈ BSub(L) we use ϕx for the restriction ϕ|[0, x] of ϕ to the interval [0, x] of
BSub(L). As ϕ is an isomorphism, we have ϕx : [0, x] → [0, ϕ(x)] is an isomorphism. Note
[0, x] is literally equal to the lattice of subalgebras of the Boolean subalgebra x ⊆ L, and
[0, ϕ(x)] is literally equal to the lattice of subalgebras of the Boolean subalgebra ϕ(x) ⊆M .
Then as long as x has more than four elements, in other words as long as x is not an
atom of BSub(L), the above result shows there is a unique Boolean algebra isomorphism
ϕ∗

x
: x→ ϕ(x) with ϕx(y) = ϕ∗

x
[y] for each subalgebra y of x.

We next consider how these maps ϕ∗

x
match up. Suppose x, y belong to BSub(L) and

z = x ∧ y. This means z is the intersection of the Boolean subalgebras x, y of L. As ϕ is an
isomorphism, ϕ(z) is the intersection of the Boolean subalgebras ϕ(x), ϕ(y) of M . We then
have that ϕ∗

x
is an isomorphism from x to ϕ(x), ϕ∗

y
is an isomorphism from y to ϕ(y), and

ϕ∗

z
is an isomorphism from z to ϕ(z). It is obvious from the definitions that ϕx and ϕy agree

on [0, z], our aim is to show ϕ∗

x
and ϕ∗

y
agree on (the elements of) z.

Claim 1 Suppose x, y are Boolean subalgebras of L and z = x ∧ y has other than four
elements. Then ϕ∗

x
and ϕ∗

y
agree on z.

Proof. Note ϕ∗

x
|z is an isomorphism from z to ϕ∗(z). Indeed, as z ≤ x we have ϕ∗

x
[z] =

ϕx(z) = ϕ(z). Then as ϕ∗

x
is an isomorphism from x to ϕ(x), we have ϕ∗|z is an isomorphism

from z to ϕ(z). Further, for w ≤ z we have w ≤ x. So (ϕ∗

x
|z)[w] = ϕ∗

x
[w] = ϕx(w) = ϕz(w).

But z has other than 4 elements, so there is a unique isomorphism ψ : z → ϕ(z) with
ψ[w] = ϕz(w) for all w ≤ z. We have shown ϕ∗

x
|z is such a map, and by definition ϕ∗

z
is

another. So ϕ∗

x
|z = ϕ∗

z
. We may apply this argument to show ϕ∗

y
|z is also equal to ϕ∗

z
, so

ϕ∗

x
|z = ϕ∗

y
|z, showing ϕ∗

x
and ϕ∗

y
agree on z. ✷

Claim 2 Suppose x, y are blocks of L, and z = x ∧ y equals {0, b, b′, 1} where b is an atom
of L. Then ϕ∗

x
and ϕ∗

y
agree on z.

Proof. As x is maximal in BSub(L) and ϕ is an isomorphism, ϕ(x) is maximal in BSub(M),
so ϕ(x) is a block of M . Similarly ϕ(y) is a block of M . As x, y are blocks of L, neither
is contained in the other unless they are equal, and in this case it is clear that ϕ∗

x
and ϕ∗

y

agree. So both properly contain their intersection, hence both have at least 8 elements.
As b is an atom of L, it is an atom of both x, y, and its complement b′ is not an atom

of either x, y as these blocks have at least 8 elements. As ϕ∗

x
is an isomorphism from the

block x of L to the block ϕ(x) of M , the atom b of x is mapped by ϕ∗

x
to an atom of ϕ(x),

and the non-atom b′ of x is mapped by ϕ∗

x
to a non-atom of ϕ(x). As ϕ(x) is a block of

M , we have ϕ∗

x
(b) is an atom of M and ϕ∗

x
(b′) is a non-atom of M . The same argument

shows ϕ∗

y
(b) is an atom of M and ϕ∗

y
(b′) is a non-atom of M . Now z = x ∧ y is an atom of

BSub(L) and ϕ is an isomorphism, so ϕ(z) is an atom of BSub(M), hence a four-element
subalgebra {0, c, c′, 1} of M that is equal to the intersection of the blocks ϕ(x) ∩ ϕ(y). We
know ϕ∗

x
[z] = ϕx(z) = {0, c, c′, 1} and ϕ∗

y
[z] = ϕy(z) = {0, c, c′, 1}. So {ϕ∗

x
(b), ϕ∗

x
(b′)} must

equal {c, c′} and similarly {ϕ∗

y
(b), ϕ∗

y
(b′)} also equals {c, c′}. As ϕ∗

x
(b) is an atom of M and

ϕ∗

x
(b′) is not, exactly one of c, c′ is an atom of M , say this is c. Then we have ϕ∗

x
(b) = c and

ϕ∗

y
(b) = c. It follows that ϕ∗

x
and ϕ∗

y
agree on all of z = {0, b, b′, 1}. ✷
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Claim 3 Suppose x, y are blocks of L and z = x∧ y equals {0, b, b′, 1} where neither b, b′ is
an atom of L. Then ϕ∗

x
and ϕ∗

y
agree on z.

Proof. As b ∈ x and b is not an atom of L, then b is not an atom of the block x. So
there is a ∈ x with 0 < a < b. Similarly as b′ ∈ y and b′ is not an atom of L, then b′ is
not an atom of y, so there is c ∈ y with 0 < c < b′. Then a < b < c′ showing a, b, c belong
to a Boolean subalgebra of L. Using 〈·〉 for the subalgebra generated by some set, we let
u = 〈a, b〉, v = 〈b, c〉, and w = 〈a, b, c〉. Then as u, v each have a non-trivial comparability,
they have at least 8 elements, hence so also does w. We note z < u < x, and z < v < y.

Apply Claim 1 to x, u noting u = x ∧ u has more than 4 elements. We then obtain ϕ∗

x

and ϕ∗

u
agree on u. In particular, ϕ∗

x
(b) = ϕ∗

u
(b). Similarly, as v = y ∧ v has more than 4

elements, we have ϕ∗

v
(b) = ϕ∗

y
(b). We next apply Claim 1 to w, u noting u = w ∧ u has more

than four elements, to obtain ϕ∗

u
(b) = ϕ∗

w
(b), and similarly as v = w ∧ v has more than 4

elements, we obtain ϕ∗

w
(b) = ϕ∗

v
(b). So ϕ∗

x
(b) = ϕ∗

u
(b) = ϕ∗

w
(b) = ϕ∗

v
(b) = ϕ∗

y
(b). It follows

that ϕ∗

x
and ϕ∗

y
agree on all of z = {0, 1, b, b′}. ✷

We have shown the following.

Claim 4 If x, y are blocks of L, then ϕ∗

x
and ϕ∗

y
agree on z = x ∧ y.

We may therefore define

ϕ∗ : L→M by setting ϕ∗(b) = ϕ∗

x
(b) if b belongs to the block x.

This is a well-defined map as if b belongs to the blocks x and y, then ϕ∗

x
(b) and ϕ∗

y
(b) agree.

Claim 5 For any y ∈ BSub(L) we have ϕ(y) = ϕ∗[y].

Proof. Indeed, such y is contained in some block x of L. Then by definition, ϕ∗[y] = ϕ∗

x
[y].

But ϕ∗

x
was chosen to have the property that ϕ∗[y] = ϕx(y) for all y ≤ x. Thus ϕ∗[y] = ϕx(y),

and as ϕx(y) equals ϕ(y), we have ϕ(y) = ϕ∗[y]. ✷

Claim 6 ϕ∗ is an oml-isomorphism.

Proof. Note ϕ∗ preserves 0, 1 since ϕ∗

x
is a Boolean algebra homomorphism for each block x.

Also ϕ∗ preserves orthocomplementation as b ∈ x implies b′ ∈ x and ϕ∗

x
(b′) = ϕ∗

x
(b)′. We

note also that ϕ∗ is order-preserving. Indeed, if a ≤ b, then there is a block x with a, b ∈ x.
Then ϕ∗(a) = ϕ∗

x
(a) ≤ ϕ∗

x
(b) = ϕ∗(b) where the partial ordering in this expression is that in

the block ϕ(x), and this implies ϕ∗(a) ≤ ϕ∗(b) in M .
As ϕ : BSub(L) → BSub(M) is an isomorphism of posets, there is an inverse map

λ : BSub(M) → BSub(L). We can then define λ∗ : M → L by the exact process as above.
We will then have that λ∗ is order-preserving. If we can show that ϕ∗ and λ∗ are mutually
inverse, then it will follow that ϕ is an order isomorphism, hence a lattice isomorphism,
hence an ortholattice isomorphism.

Let b ∈ L belong to the block x of L. Then for the restrictions ϕx : [0, x] → [0, ϕ(x)]
and λϕ(x) : [0, ϕ(x)] → [0, x], we have these are mutually inverse isomorphisms between the
lattices of subalgebras of x and ϕ(x). As we have assumed all blocks have at least 8 elements,
there are unique isomorphisms ϕ∗

x
: x → ϕ(x) and λ∗

ϕ(x) : ϕ(x) → x with ϕ∗

x
[y] = ϕx(y) for
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all y ≤ x and λ∗
ϕ(x)[p] = λϕ(x)(p) for all p ≤ ϕ(x). From considerations in the Boolean case,

or by applying uniqueness to the composite and the identity map, we have ϕ∗

x
and λ∗

ϕ(x) are
mutually inverse isomorphisms. So ϕ∗ and λ∗ are mutually inverse, as required. ✷

Claim 7 If ψ : L→ M satisfies ψ[y] = ϕ(y) for each y ∈ BSub(L), then ψ = ϕ∗.

Proof. Suppose b ∈ L and b belongs to the block x of L. As ψ[x] = ϕ(x) we have that the
restriction ψ|x of ψ to x is an isomorphism from x to ϕ(x). Further, for each y ≤ x we have
(ψ|x)[y] = ψ[y] = ϕ(y) = ϕx(y). But ϕ

∗

x
is the unique isomorphism from x to ϕ(x) with this

property, so ψ|x = ϕ∗

x
. As b ∈ x we have ψ(b) = (ψ|x)(b) = ϕ∗

x
(b) = ϕ∗(b). So ψ = ϕ∗. ✷

We have proved our result in the case that L has no blocks with four elements. Suppose
L,M are arbitrary with ϕ : BSub(L) → BSub(M) a poset isomorphism. Let L0 be the
oml obtained from L by removing all elements that are both atoms and coatoms, and let
M0 be obtained similarly from M . As 4-element blocks of L are exactly those atoms of
BSub(L) that are maximal, ϕ provides a bijection between the 4-element blocks of L and
those of M , so they have the same number of 4-element blocks. Enumerate the 4-element
blocks of L as zα (α ∈ κ), so the 4-element blocks of M are exactly the ϕ(zα) (α ∈ κ).
Then BSub(L0) is simply BSub(L) with the elements zα (α ∈ κ) removed, and BSub(M0)
is simply BSub(M) with the elements ϕ(zα) (α ∈ κ) removed. So ϕ restricts to a poset
isomorphism ϕ0 between BSub(L0) and BSub(M0). As L0,M0 are omls with no 4-element
blocks, we get an isomorphism (ϕ0)

∗ : L0 →M0 with (ϕ0)
∗[y] = ϕ(y) for every subalgebra y

of L0. We extend (ϕ0)
∗ to a map ϕ∗ from L to M by choosing for each α ∈ κ one of the two

possible isomorphisms from the 4-element block zα of L to the block ϕ(zα) of M . It is clear
that (ϕ0)

∗ is an isomorphism from L0 to M0 with (ϕ0)
∗[y] = ϕ0(y) for each y ∈ BSub(L0).

Therefore ϕ∗ is an isomorphism from L to M with ϕ∗[y] = ϕ(y) for each y ∈ BSub(L). ✷

Having established Theorem 4.1, we find consequences of this result for the lattices of all
(not only Boolean) subalgebras of omls.

Theorem 4.2. If L,M are omls and ϕ : Sub(L) → Sub(M) is a lattice isomorphism, then
there is an isomorphism ϕ∗ : L →M with ϕ∗[x] = ϕ(x) for each subalgebra x of L. Further,
if L has no 4-element blocks, this map ϕ∗ is unique.

Proof. We first show that if K is an oml and Sub(K) is isomorphic to Sub(B) for some
Boolean algebra B, then K is Boolean. Indeed, if K is not Boolean, there are two non-
commuting elements in K, hence a non-Boolean two-generated subalgebra of K. As the free
oml on two generators is MO2×24, where MO2 is the modular ortholattice with 0, 1 and four
atoms [11], there is a non-Boolean quotient of this that is a subalgebra of K. One can check
that this implies K has a subalgebra x isomorphic to either MO2 or MO2 × 2. This means
the interval [0, x] of Sub(K) is isomorphic to Sub(MO2) or Sub(MO2 × 2). But Sub(MO2)
has 2 atoms and Sub(MO2 × 2) has 5 atoms, so neither can be an interval of Sub(B) for a
Boolean algebra B as the number of atoms in the subalgebra lattice of a Boolean algebra
with 2n elements is 2n−1 − 1.

So BSub(L) consists exactly of the elements x ∈ Sub(L) with [0, x] isomorphic to Sub(B)
for some Boolean algebra B. As ϕ is an isomorphism from Sub(L) to Sub(M), we have that
ϕ restricts to an isomorphism from BSub(L) to BSub(M). Then by Theorem 4.1 there is an
isomorphism ϕ∗ : L→ M with ϕ∗[y] = ϕ(y) for each Boolean subalgebra y of L, and if L has
no 4-element blocks this is unique. For each a ∈ L the subalgebra {0, a, a′, 1} is Boolean, so
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ϕ∗[{0, a, a′, 1}] = ϕ({0, a, a′, 1}). As every subalgebra of L is the union of ones of this form,
as in the proof of Theorem 3.6, this shows ϕ∗[x] = ϕ(x) for each subalgebra x of L. ✷

Corollary 4.3. An oml L is determined up to isomorphism by the poset BSub(L), and is
determined up to isomorphism by the lattice Sub(L). Therefore each of Sub(L) and BSub(L)
determines, up to isomorphism, the other.

Remark 4.4. These results can in part be extended to orthomodular posets (abbreviated:
omps). For an omp P , we say [15, 7] a subset B ⊆ P is a Boolean subalgebra of P if B
consists of pairwise commuting elements and is closed under orthocomplementation and the
necessarily existing finite joins and finite meets of P (commuting elements in an omp always
have a join and meet). One then defines BSub(P ) in the obvious manner, and notes that if
P is in fact an oml, then this definition of BSub(P ) agrees with the earlier one. The proof
of Theorem 4.1 is valid, word for word, in this more general setting.

Remark 4.5. One might ask whether these results extend also to the setting of ortholattices
(abbreviated: ols). This is not the case. The underlying reason is that the orderings of the
Boolean subalgebras of an oml determine the ordering of an oml, but this does not apply to
ols. For a specific example, consider the 6-element non-modular ol L commonly referred to
as the benzene ring [1]. For it, we have BSub(L) consists of a bottom element and two atoms
covering this, and Sub(L) is simply formed by adding a top element to BSub(L). These
structures are isomorphic to BSub(MO2) and Sub(MO2) respectively.

5. Categorical implications

Let OML be the category with omls as objects and oml-homomorphisms as morphisms,
and let ALG be the category with algebraic lattices as objects and maps that preserve
arbitrary meets and non-empty up-directed joins as morphisms. As with any variety of
algebras considered as a category, we trivially have the following.

Proposition 5.1. There is a contravariant functor Sub : OML → ALG taking an oml L
to Sub(L), and an oml-homomorphism f : L→ M to the map f−1 : Sub(M) → Sub(L).

Recall [8] that a contravariant functor F : C → D is dense if each object in D is isomor-
phic to one in the image of F ; full if the restriction of F to each homset C(A,B) is onto
D(FB, FA); and faithful if the restriction of F to each homset is one-one. We say F is a
dual equivalence if it is dense, full, and faithful.

Proposition 5.2. Sub : OML → ALG is not dense, full, or faithful.

Proof. It is easy to find an algebraic lattice that is not equal to Sub(L) for any oml L, for
instance the 3-element chain, so the functor Sub is not dense. The 4-element Boolean algebra
B has a non-trivial automorphism α, and α−1 and id−1 are both the identity map on Sub(B),
so Sub is not faithful. Finally, consider the 8-element Boolean algebra B with atoms a, b, c.
The subalgebra Sub(B) has a bottom, top, and three atoms. Consider the map ϕ : Sub(B) →
Sub(B) that maps one of these atoms, say {0, c, c′, 1}, to the bottom, and leaves all other
elements fixed. One can see that ϕ preserves all meets, and as Sub(B) is finite, trivially
preserves non-empty up-directed joins. But ϕ cannot equal f−1 for any homomorphism
f : B → B as ϕ({0, 1}) = {0, 1} would imply f is one-one, and ϕ({0, c, c′, 1}) = {0, 1} would
imply f is not onto as nothing is mapped to c. So Sub is not full. ✷
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For any contravariant functor F : C → D, by restricting to suitable subcategory D0 we
obtain a functor F0 : C → D0 that is dense and full. In the following, we consider more
closely the matter of faithfulness. Here we let Imf be the image of f .

Proposition 5.3. Suppose L,M are omls and f : L→ M .

(1) If Imf has two elements, then any g : L→M with Imf = Img has f−1 = g−1.
(2) If Imf has a 4-element block, there is a g : L→M with f−1 = g−1 and f 6= g.
(3) Otherwise, if g : L→M and f−1 = g−1, then f = g.

In the first case above, there may, or may not, be such a g that is different from f .

Proof. For the first statement, suppose f, g : L → M both have image {0, 1}. Then
f−1[x] = L and g−1[x] = L for every subalgebra x of M , so f−1 = g−1. To see the further
remark regarding the first statement, note that a Boolean algebra with more than 2 elements
will have different maps onto a 2-element Boolean algebra. On the other hand, the oml of
finite and cofinite dimensional subspaces of a Hilbert space has only a single map onto the
2-element Boolean algebra. For the second statement, define an automorphism α of M to
be the non-trivial automorphism on the 4-element block of M which is the image of f and
is the identity elsewhere. Then f and α ◦ f are distinct, but f−1 and (α ◦ f)−1 agree.

We consider the third statement. Suppose f, g : L →M with f−1 = g−1. As the image of
f is the least element of Sub(M) mapped by f−1 to the top of Sub(L), it follows that the
image of f equals that of g.

Claim 1 For each a ∈ L, g(a) equals either f(a) or f(a)′.

Proof. As f−1[{0, 1}] = g−1[{0, 1}], we have that f(a) belongs to {0, 1} iff g(a) belongs to
{0, 1}. In particular, our claim is established if f(a) is either 0, 1. Suppose f(a) does not equal
0, 1, so g(a) also does not equal 0, 1. As a ∈ f−1[{0, f(a), f(a)′, 1}] = g−1[{0, f(a), f(a)′, 1}],
it follows that g(a) is either f(a) or f(a)′. ✷

Claim 2 For each a ∈ L, f(a) = 0 iff g(a) = 0.

Proof. From Claim 1, the only way this can fail to happen is if there is some a ∈ L with
f(a) = 0 and g(a) = 1. As the image of f has more than 2 elements, there is some m in this
image with 0 < m < 1. Choose some b ∈ L with f(b) = m. Then f(a∨ b) = 0∨m = m. As
a ∨ b ≥ a we have g(a ∨ b) ≥ g(a) = 1, showing g(a ∨ b) = 1. This contradicts Claim 1 as
g(a ∨ b) equals neither f(a ∨ b) nor f(a ∨ b)′. ✷

Finally, we show that f(a) = g(a) for any a ∈ L. From Claim 2, we may assume f(a) 6= 0,
and using the fact that f, g are homomorphisms, we may assume f(a) 6= 1. So assume there
is some a ∈ L with f(a) 6= 0, 1 and g(a) 6= f(a). Then by Claim 1 g(a) = f(a)′. Suppose
f(a) = m. Then 0 < m < 1 and g(a) = m′. As the image of f , which equals the image of g,
has no 4-element blocks, there is some element n in this image with either 0 < n < m < 1
or 0 < n < m′ < 1. As we may work with f(a′), g(a′) instead of f(a), g(a), we may assume
0 < n < m < 1. As n belongs to the image of f there is some b ∈ L with f(b) = n.
Considering a ∧ b if necessary, we may assume b < a. By Claim 1, g(b) must be either
f(b) = n or f(b)′ = n′. But b ≤ a implies g(b) ≤ g(a) = m′, and as n < m, neither n, n′ is
less than m′. This provides a contradiction. So g(a) = f(a). ✷
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Definition 5.4. Let OML0 be the category whose objects are omls having no blocks with 4
or fewer elements and whose morphisms are onto oml-homomorphisms.

In this category any f : L → M satisfies condition (3) of the above proposition. This
provides the following.

Corollary 5.5. The functor Sub : OML0 → ALG is faithful, and therefore induces a dual
equivalence between OML0 and a subcategory of ALG.

It is not clear that these categorical considerations are more than a curiosity. Still, they
seem worth the small investment of effort past our main results.

6. Conclusions

To conclude, we mention several problems related to this work.

Problem 1. Suppose L is an oml and P is a poset isomorphic to BSub(L). Find a direct
construction of an oml isomorphic to L from the poset P . Similarly, find a way to directly
construct an oml isomorphic to L from a lattice isomorphic to Sub(L).

This first problem may be related to what is known as “pasting” families of Boolean
algebras [11]. Alternately, the method of Grätzer et al. [6] of constructing a Boolean algebra
from Sub(B) via a direct limit of finite Boolean algebras may perhaps be of use.

Problem 2. Characterize the posets that arise as BSub(L) and the lattices that arise as
Sub(L) for some oml L.

This second problem may be related to results involving “loops” in omls [11].

Problem 3. For an oml L, each of BSub(L) and Sub(L) determines the other. We have
provided a simple order-theoretic way to construct a BSub(L) from Sub(L). Provide a direct
order-theoretic construction of Sub(L) from BSub(L).

Problem 4. Characterize order-theoretically the maps that arise as f−1 : Sub(M) → Sub(L)
for some homomorphism f : L→M .

Finally, the following is related to work initiated by Isham and Butterfield [10, 3].

Problem 5. To what extent is a C∗-algebra determined by its poset of abelian C∗-subalgebras?

We make a few comments on this last question. An abelian C*-algebra is determined
up to *-isomorphism by its lattice of C*-subalgebras [13, Theorem 11]. In the non-abelian
case, we note that a C*-algebra and its opposite have exactly the same subalgebras. So by
results in [4] we cannot in general hope to recover a C*-algebra A from its poset of abelian
C*-subalgebras. Perhaps recovering A up to its Jordan structure might be a reasonable goal.
In the setting of von Neumann algebras, this is what is achieved in [5]. Finally, we thank
C. Heunen for pointing out reference [4] to us.
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