Continuous Maps on Aronszajn Trees*

Kenneth Kunen ${ }^{\dagger}$ Jean A. Larson; ${ }^{\ddagger}$ and Juris Steprāns ${ }^{\S}$

November 19, 2018

Abstract

Assuming \diamond : Whenever B is a totally imperfect set of real numbers, there is special Aronszajn tree with no continuous order preserving map into B.

1 Introduction

We use the following notation: If \sqsubset is a relation on T and $x \in T$, then $x \uparrow$ denotes $\{y \in T: x \sqsubset y\}$ and $x \downarrow$ denotes $\{y \in T: y \sqsubset x\}$. Then a tree is a set T with a strict partial order \sqsubset such that each $x \downarrow$ is well-ordered by \sqsubset. In a tree T, $\operatorname{height}(x)$ is the order type of $x \downarrow$ and $\mathcal{L}_{\alpha}=\mathcal{L}_{\alpha}(T)=\{x \in T$: height $(x)=\alpha\}$. T is an ω_{1}-tree iff $|T|=\aleph_{1}$, each $\mathcal{L}_{\alpha}(T)$ is countable, and $\mathcal{L}_{\omega_{1}}(T)=\emptyset$. An Aronszajn tree is an ω_{1}-tree T with no uncountable chains; then, T is special iff T is a countable union of antichains.

We give a tree T its natural tree topology, in which $U \subseteq T$ is open iff for all $y \in U$ with $\operatorname{height}(y)$ a limit ordinal, there is an $x \sqsubset y$ such that $x \uparrow \cap y \downarrow \subseteq$ U. Then the elements whose heights are successor ordinals or 0 are isolated points. Note that T need not be Hausdorff, although any tree that we construct explicitly will be Hausdorff (equivalently, $y \downarrow=z \downarrow \rightarrow y=z$).

Let T be an ω_{1}-tree. A map $\varphi: T \rightarrow \mathbb{R}$ is called order preserving iff $x \sqsubset y \rightarrow \varphi(x)<\varphi(y)$ for all $x, y \in T$. The existence of such a φ clearly implies that T is Aronszajn, but not necessarily special; there is a counter-example [2] under \diamond. However, it is easy to see (first noted by Kurepa [3]) that T is special iff there is an order preserving $\varphi: T \rightarrow \mathbb{Q}$.

Let T be an Aronszajn tree. If there is an order preserving $\varphi: T \rightarrow \mathbb{R}$, then there is also a continuous order preserving $\psi: T \rightarrow \mathbb{R}$, where $\psi(y)=\varphi(y)$ unless height (y) is a limit ordinal, in which case $\psi(y)=\sup \{\varphi(x): x \sqsubset y\}$. If we assume $M A\left(\aleph_{1}\right)$, then every Aronszajn tree is special, as Baumgartner [1]

[^0]proved by forcing with finite order preserving maps into \mathbb{Q}. Note that this same forcing also produces a continuous order preserving $\psi: T \rightarrow \mathbb{Q}$. We show here that this cannot be done in $Z F C$, since assuming \diamond, there is an Aronszajn tree T with an order preserving map into \mathbb{Q} (so T is special), but no continuous order preserving $\psi: T \rightarrow \mathbb{Q} .1$

This last result can be generalized somewhat. First, we can replace "order preserving" by the weaker requirement that each $\psi^{-1}\{q\}$ is discrete in the tree topology; observe that when ψ is order preserving, each $\psi^{-1}\{q\}$ is an antichain, and hence closed and discrete. Then, we can replace \mathbb{Q} by any metric space which has no Cantor subsets (that is, subsets homeomorphic to 2^{ω}):

Theorem 1.1 Assume \diamond, and fix a metric space B with no Cantor subsets such that $|B| \leq \aleph_{1}$. Then there is a special Aronszajn tree T which has no continuous map $\psi: T \rightarrow B$ such that each $\psi^{-1}\{b\}$ is discrete.

By $C H$ (which follows from \diamond), $|B| \leq \aleph_{1}$ holds whenever B is separable, as well as when B has a dense subset of size \aleph_{1}.

Observe that if T is special and $B \subseteq \mathbb{R}$ does have a Cantor subset F, then there must be a continuous order preserving $\psi: T \rightarrow B$. Just let $D \subseteq F$ be countable and order-isomorphic to \mathbb{Q}, let $\varphi: T \rightarrow D$ be order preserving, and then construct a continuous $\psi: T \rightarrow F$ as described above.

In Theorem 1.1, T depends on B. There is no one tree which works for all B by the following, which holds in $Z F C$ (although it is trivial unless $C H$ is true):

Theorem 1.2 Let T be any special Aronszajn tree. Then there is a $B \subseteq \mathbb{R}$ with no Cantor subsets and a continuous order preserving map $\psi: T \rightarrow B$ such that for all $x, y \in T, \psi(x) \neq \psi(y)$ unless $x \downarrow=y \downarrow$.

So, ψ is actually 1-1 if T is Hausdorff. Theorem 1.1 is proved in Section 2, and Theorem 1.2 is proved in Section 3,

By Theorem 1.2, the " $|B| \leq \aleph_{1}$ " cannot be removed in Theorem 1.1, since B could be the direct sum of all totally imperfect subspaces of \mathbb{R}.

2 Killing Continuous Maps

Throughout, T always denotes an ω_{1}-tree and B denotes a metric space. We begin with some remarks on pruning open $U \subseteq T$. In the special case when U is a subtree (that is, $x \downarrow \subseteq U$ for all $x \in U$), the pruning reduces to the standard procedure of removing all $x \in U$ with $x \uparrow \cap U$ countable. For a general U, we replace "countable" by "non-stationary" (which is the same when U is a subtree).

[^1]Definition 2.1 For $U \subseteq T: U$ is stationary iff $\{\operatorname{height}(x): x \in U\}$ is stationary, and U^{p} is the set of all $x \in U$ such that $x \uparrow \cap U$ is stationary.

Clearly $U^{p} \subseteq U$. If U is open then U^{p} is open, since $x \in U^{p} \rightarrow x \downarrow \cap U \subseteq U^{p}$.
Lemma 2.2 If $U \subseteq T$ is open, then $\left(U^{p}\right)^{p}=U^{p}$.
Proof. Fix $a \in U^{p}$; so $a \uparrow \cap U$ is stationary. We need to show: $\{x \in a \uparrow \cap U$: $x \uparrow \cap U$ is stationary $\}$ is stationary. So, we fix a club $C \subseteq \omega_{1}$, and we shall find an x such that height $(x) \in C$ and $a \sqsubset x$ and $x \in U$ and $x \uparrow \cap U$ is stationary.

Since $a \in U^{p}$, fix a stationary S such that for all $\beta \in S: a \uparrow \cap U \cap \mathcal{L}_{\beta}(T) \neq \emptyset$ and β is a limit point of C. For each $\beta \in S$: Choose $y_{\beta} \in a \uparrow \cap U \cap \mathcal{L}_{\beta}(T)$; then, since U is open, choose $x_{\beta} \sqsubset y_{\beta}$ such that $x_{\beta} \in a \uparrow \cap U$ and height $\left(x_{\beta}\right) \in C$.

By the Pressing Down Lemma, fix x and a stationary $S^{\prime} \subseteq S$ such that $x_{\beta}=x$ for all $x \in S^{\prime}$. Then $x \uparrow \cap U$ is stationary (since it contains $\left\{y_{\beta}: \beta \in S^{\prime}\right\}$) and height $(x) \in C$ and $a \sqsubset x$ and $x \in U$. -

Lemma 2.3 If $A \subseteq T$ is discrete in the tree topology and U is a stationary open set, then the set $S:=\left\{\alpha: U \cap \mathcal{L}_{\alpha} \neq \emptyset \wedge U \cap \mathcal{L}_{\alpha} \subseteq A\right\}$ is non-stationary. Hence, $U \backslash A$ is stationary.

Proof. In fact, S is discrete in the ordinal (= tree) topology on ω_{1}. To see this, suppose that $\alpha \in S$ is a limit ordinal. Then fix $y \in U \cap \mathcal{L}_{\alpha}$. Note that $y \in A$ since $U \cap \mathcal{L}_{\alpha} \subseteq A$. Since U is open and A is discrete, we may fix $x \sqsubset y$ such that $x \uparrow \cap y \downarrow \subseteq U$ and $x \uparrow \cap y \downarrow \cap A=\emptyset$. Let $\xi=\operatorname{height}(x)$. Then $\xi<\alpha$, and S contains no ordinals between ξ and α. -

The next lemma has a much simpler proof when B is separable (then, each \mathcal{W}_{n} can be a singleton). For $b \in B$ and $\varepsilon>0$, let $N_{\varepsilon}(b)=\{z \in B: d(b, z)<\varepsilon\}$ (where d is the metric on B).

Lemma 2.4 Suppose that $U \subseteq T$ is a stationary open set, B is any metric space, and $\psi: U \rightarrow B$ is continuous, with each $\psi^{-1}\{b\}$ discrete. Then there are infinitely many $b \in B$ such that $\psi^{-1}\left(N_{\varepsilon}(b)\right)$ is stationary for all $\varepsilon>0$.

Proof. Since each $U \backslash \psi^{-1}\{b\}$ is also stationary open by Lemma 2.3, it is sufficient to prove that there is one such b. If there are no such b, then B is covered by the open sets W such that $\psi^{-1}(W)$ is non-stationary. By paracompactness of B, this cover has a σ-discrete open refinement, $\left\{\mathcal{W}_{n}: n \in \omega\right\}$. So, each \mathcal{W}_{n} is a discrete (and hence disjoint) family of open sets W such that $\psi^{-1}(W)$ is non-stationary, and $B=\bigcup_{n \in \omega}\left(\bigcup \mathcal{W}_{n}\right)$.

Fix n such that $\psi^{-1}\left(\bigcup \mathcal{W}_{n}\right)$ is stationary. We may assume that $\left|\mathcal{W}_{n}\right| \geq \aleph_{1}$, since $\left|\mathcal{W}_{n}\right| \leq \aleph_{0}$ yields an obvious contradiction. Also, we may assume that $|B| \leq \aleph_{1}$ (replacing B by $\psi(U)$), so that $\left|\mathcal{W}_{n}\right|=\aleph_{1}$. Let $\mathcal{W}_{n}=\left\{W_{\xi}: \xi<\omega_{1}\right\}$.

For each ξ, let C_{ξ} be a club disjoint from $\left\{\operatorname{height}(y): y \in \psi^{-1}\left(W_{\xi}\right)\right\}$. Let D be the diagonal intersection; so D is club and $\xi<\alpha \in D \rightarrow \alpha \in C_{\xi}$. Let S be the
set of limit $\alpha \in D$ such that $\mathcal{L}_{\alpha}(T) \cap \psi^{-1}\left(\bigcup \mathcal{W}_{n}\right) \neq \emptyset$; then S is stationary. For $\alpha \in S$, choose $y_{\alpha} \in \mathcal{L}_{\alpha}(T) \cap \psi^{-1}\left(\bigcup \mathcal{W}_{n}\right)$. Then $y_{\alpha} \in \psi^{-1}\left(W_{\xi_{\alpha}}\right)$ for some (unique) ξ_{α}, and $\xi_{\alpha} \geq \alpha$ since $\alpha \in D$. Then fix $x_{\alpha} \sqsubset y_{\alpha}$ with $x_{\alpha} \uparrow \cap y_{\alpha} \downarrow \subseteq \psi^{-1}\left(W_{\xi_{\alpha}}\right)$. By the Pressing Down Lemma, fix x and a stationary $S^{\prime} \subseteq S$ such that $x_{\alpha}=x$ for all $\alpha \in S^{\prime}$. Then, using $\xi_{\alpha} \geq \alpha$, fix stationary $S^{\prime \prime} \subseteq S^{\prime}$ such that the ξ_{α}, for $\alpha \in S^{\prime \prime}$, are all different. Then the sets $x \uparrow \cap y_{\alpha} \downarrow$, for $\alpha \in S^{\prime \prime}$ are pairwise disjoint, which is impossible because $\mathcal{L}_{\text {height }(x)+1}(T)$ is countable. -)

Proof of Theorem 1.1. Call $\psi: T \rightarrow B$ a $D P$ map iff ψ is continuous and each $\psi^{-1}\{b\}$ is discrete.

We build T, along with an order-preserving $\varphi: T \rightarrow \mathbb{Q}$, and use \diamond to defeat all DP maps $\psi: T \rightarrow B$.

As a set, T will be the ordinal ω_{1}, and the root will be 0 . We shall define the tree order \sqsubset so that $\mathcal{L}_{0}(T)=\{0\}, \mathcal{L}_{1}(T)=\omega \backslash\{0\}, \mathcal{L}_{n+1}(T)=\{\omega \cdot n+k: k \in \omega\}$ for $0<n<\omega$, and $\mathcal{L}_{\alpha}(T)=\{\omega \cdot \alpha+k: k \in \omega\}$ when $\omega \leq \alpha<\omega_{1}$. As in the usual construction of a special Aronszajn tree, we construct $\varphi: T \rightarrow \mathbb{Q}$ and \sqsubset recursively so that $\varphi(0)=0$ and

$$
\begin{align*}
& \forall x \in T \forall \alpha<\omega_{1} \forall q \in \mathbb{Q}[\alpha>\operatorname{height}(x) \wedge q>\varphi(x) \rightarrow \tag{*}\\
& \left.\quad \exists y \in \mathcal{L}_{\alpha}(T)[x \sqsubset y \wedge \varphi(y)=q]\right] .
\end{align*}
$$

This implies, in particular, that each node has \aleph_{0} immediate successors.
Let $\left\langle\psi_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a \diamond sequence, where each $\psi_{\alpha}: \alpha \rightarrow B$. Such a sequence exists by \diamond because $|B| \leq \aleph_{1}$.

In the recursive construction of \sqsubset and φ, do the usual thing in building each $\mathcal{L}_{\gamma}(T)$ to preserve $(*)$. But in addition, whenever $\omega \cdot \gamma=\gamma>0$ (so $T_{\gamma}=\gamma$ as a set, and $\psi_{\gamma}: T_{\gamma} \rightarrow B$): if ψ_{γ} is a DP map, then if it is possible, extend \sqsubset so that the node $\gamma \in \mathcal{L}_{\gamma}(T)$ satisfies:

$$
\sup \{\varphi(x): x \sqsubset \gamma\} \leq 1 \text { and }\left\langle\psi_{\gamma}(x): x \sqsubset \gamma\right\rangle \text { does not converge in } B .
$$

This implies that ψ_{γ} could not extend to a continuous map into B. Use the nodes $\gamma+1, \gamma+2, \ldots$ to preserve $(*)$, so if (\dagger) is possible, we may let $\varphi(\gamma)=1$. If (\dagger) is impossible, then ignore it and just preserve $(*)$. To ensure that the tree will be Hausdorff, make sure that if $j \neq k$ then $\gamma+j$ and $\gamma+k$ are limits of distinct branches.

Lemma 2.5 (Main Lemma) Suppose that $\psi: T \rightarrow B$ is a $D P$ map. Then there is a club $C \subseteq \omega_{1}$ so that for all limit points γ of $C: \omega \cdot \gamma=\gamma$, and if $\psi_{\gamma}=\psi \upharpoonright \gamma$, then (\dagger) is possible at level γ.

The theorem follows immediately, since choosing such a γ for which $\psi_{\gamma}=$ $\psi \upharpoonright \gamma$, we see that ψ cannot be continuous at node $\gamma \in \mathcal{L}_{\gamma}(T)$.

So, we proceed to prove the Main Lemma. We use a standard definition of C - namely, let $\left\langle M_{\xi}: \xi<\omega_{1}\right\rangle$ be a continuous chain of countable elementary
submodels of $H(\theta)$ (for a suitably large regular θ), such that $\varphi, \psi, \sqsubset, B \in M_{0}$ and each $M_{\xi} \in M_{\xi+1}$. Let $C=\left\{M_{\xi} \cap \omega_{1}: \xi<\omega_{1}\right\}$.

Now, fix a limit point γ of C, with $\psi_{\gamma}=\psi\left\lceil\gamma\right.$. Let $\alpha_{n} \nearrow \gamma$, with all $\alpha_{n} \in C$. We shall build a Cantor tree of candidates for the path satisfying (\dagger), and then prove that one of these works by using the fact that B does not have a Cantor subset. For $s \in 2^{<\omega}$, construct W_{s}, U_{s}, x_{s} with the following properties; here, $|s|$ denotes the length of s.

1. $W_{s} \subseteq B$ is open and non-empty, and $\operatorname{diam}\left(W_{s}\right) \leq 1 /|s|$.
2. $W_{\emptyset}=B$.
3. $\overline{W_{s} \frown 0}, \overline{W_{s} \frown 1} \subseteq W_{s}$ and $\overline{W_{s \smile 0}} \cap \overline{W_{s} \frown 1}=\emptyset$.
4. U_{s} is a stationary open subset of T, with $\left(U_{s}\right)^{p}=U_{s}$.
5. $U_{\emptyset}=\{x \in T: \varphi(x)<1\}$,
6. $U_{s}{ }_{0}, U_{s \sim 1} \subseteq U_{s}$ and $U_{s} \subseteq \psi^{-1}\left(W_{s}\right)$.
7. $x_{s} \in U_{s}$ and $U_{s}{ }^{-} \subseteq x_{s} \uparrow$ for $i=0,1$.
8. $x_{\emptyset}=0$, the root node of T.
9. For $n=|s|$: $\operatorname{height}\left(x_{s}\right)<\alpha_{n}$ and, when $n>0, \operatorname{height}\left(x_{s}\right) \geq \alpha_{n-1}$.
10. For $n=|s|$ and $\alpha_{n}=M_{\xi_{n}} \cap \omega_{1}: W_{s}, U_{s}, x_{s} \in M_{\xi_{n}}$.

For each $f \in 2^{\omega}$, conditions (7) and (9) guarantee that $P_{f}:=\bigcup\left\{x_{f \backslash n \downarrow} \downarrow: n \in \omega\right\}$ is a cofinal path through T_{γ}. Now, fix f so that $\bigcap_{n \in \omega} W_{f \upharpoonright n}=\emptyset$. There is such an f because otherwise, by conditions (1)(3), $\bigcup\left\{\bigcap_{n \in \omega} W_{f \upharpoonright n}: f \in 2^{\omega}\right\}$ would be a Cantor subset of B. Then, (\dagger) will hold if we place node γ above the path P_{f}; note that condition (5) guarantees that $\sup \{\varphi(x): x \sqsubset \gamma\} \leq 1$, and every limit point of $\left\langle\psi_{\gamma}(x): x \sqsubset \gamma\right\rangle$ must lie in $\bigcap_{n \in \omega} W_{f \upharpoonright n}$, which is empty.

Of course, we need to verify that the W_{s}, U_{s}, x_{s} can be constructed. Fix s, with $n=|s|$, and assume that we have W_{s}, U_{s}, x_{s}. Note that $U_{s} \cap x_{s} \uparrow$ is stationary by $\left(U_{s}\right)^{p}=U_{s}$. Applying Lemma $2.4\left(\right.$ to $\psi \upharpoonright\left(U_{s} \cap x_{s} \uparrow\right):\left(U_{s} \cap x_{s} \uparrow\right) \rightarrow$ $\left.W_{s}\right)$, there exist $b_{0} \neq b_{1}$ in W_{s} such that $\psi^{-1}\left(N_{\varepsilon}\left(b_{i}\right)\right) \cap U_{s} \cap x_{s} \uparrow$ is stationary for all $\varepsilon>0$; applying condition (10), choose such $b_{0}, b_{1} \in M_{\xi_{n}}$. Then fix ε to be the smallest of $1 /(n+1), d\left(b_{0}, b_{1}\right) / 3, d\left(b_{0}, B \backslash W_{s}\right) / 2$, and $d\left(b_{1}, B \backslash W_{s}\right) / 2$. Let $W_{s \frown i}=N_{\varepsilon}\left(b_{i}\right)$ and $U_{s \frown i}=\left(\psi^{-1}\left(W_{s \frown i}\right) \cap U_{s} \cap x_{s} \uparrow\right)^{p}$.
 $\left(U_{s \neg i}\right)^{p}=U_{s \frown i}$. Also, make sure that $x_{s\urcorner i} \in M_{\xi_{n+1}}$ (using $M_{\xi_{n+1}} \prec H(\theta)$), which guarantees that height $\left.\left(x_{s}\right)_{i}\right)<\alpha_{n+1}$ and that condition (10) will continue to hold.

3 Constructing Continuous Maps

Proof of Theorem 1.2. Let $H=\{1,4,16, \ldots\}=\left\{2^{2 i}: i \in \omega\right\}$ and $K=$ $\{2,8,32, \ldots\}=\left\{2^{2 i+1}: i \in \omega\right\}$. Observe that $H \cap K=\emptyset$ and

$$
\forall n_{1}, n_{2} \in H \forall j_{1}, j_{2} \in K\left[n_{1}+j_{1}=n_{2}+j_{2} \rightarrow n_{1}=n_{2} \wedge j_{1}=j_{2}\right]
$$

Now, let P be the set of all real numbers of the form $\sum_{j \in K} \varepsilon_{j} 2^{-j}$, where each $\varepsilon_{j} \in\{0,1\}$. Then P is a Cantor set and $0 \in P \subset[0,1]$.

Let S be the set of all sums of the form $\sum_{n \in H} z_{n} 2^{-n}$, where each $z_{n} \in P$. Then S is compact, since it is the range of the continuous map $\Gamma: P^{H} \rightarrow \mathbb{R}$ defined by $\Gamma(\vec{z})=\sum_{n \in H} z_{n} 2^{-n}$. Also, Γ is $1-1$; that is,

$$
\sum_{n \in H} z_{n} 2^{-n}=\sum_{n \in H} w_{n} 2^{-n} \Rightarrow \forall n \in H\left[z_{n}=w_{n}\right] \quad\left(\text { all } z_{n}, w_{n} \in P\right)
$$

To see this, let $z_{n}=\sum_{j \in K} \varepsilon_{j, n} 2^{-j}$ and $w_{n}=\sum_{j \in K} \delta_{j, n} 2^{-j}$. We then have $\sum\left\{\varepsilon_{j, n} 2^{-(j+n)}: j \in K \wedge n \in H\right\}=\sum\left\{\delta_{j, n} 2^{-(j+n)}: j \in K \wedge n \in H\right\}$. Since the values $j+n$ are all different, each $\varepsilon_{j, n}=\delta_{j, n}$.

For $n \in H$, define the "coordinate projection" $\pi_{n}: S \rightarrow P$ so that we have $\pi_{n}\left(\sum_{n \in H} z_{n} 2^{-n}\right)=z_{n}$. So, $\pi_{n}=\hat{\pi}_{n} \circ \Gamma^{-1}$, where $\hat{\pi}_{n}: P^{H} \rightarrow P$ is the usual coordinate projection.

Since T is special, fix $a: T \rightarrow H$ such that each $A_{n}:=a^{-1}\{n\}$ is antichain. Also, fix a 1-1 function $\zeta: T \rightarrow P \backslash\{0\}$ such that $\zeta(T)$ has no perfect subsets. Then, define

$$
\psi(x)=\sum\left\{\zeta(t) \cdot 2^{-a(t)}: t \in x \downarrow\right\}
$$

Let B be the range of ψ; then $\psi: T \rightarrow B$ is clearly continuous and order preserving.

Note that $\psi(x)=\sum_{n \in H} z_{n} 2^{-n}$, where $z_{n}=\zeta(t)$ if $t \in A_{n} \cap x \downarrow$, and $z_{n}=0$ if $A_{n} \cap x \downarrow=\emptyset$. Then, $x \downarrow \neq y \downarrow \rightarrow \psi(x) \neq \psi(y)$ follows from (\%) and the fact that ζ is 1-1.

Suppose that $C \subseteq B$ is a Cantor set. Then each $\pi_{n}(C)$ is a compact subset of $\operatorname{ran}(\zeta) \cup\{0\}$, and is hence countable. There is then a countable α such that $\pi_{n}(C) \subseteq \zeta\left(T_{\alpha}\right) \cup\{0\}$ for all $n \in H$. So, fix $x \in T$ with $\psi(x) \in C$ and height $(x)>$ α, let $x \downarrow \cap \mathcal{L}_{\alpha}(T)=\{t\}$, and let $n=a(t)$. Then $\zeta(t)=\pi_{n}(\psi(x)) \in \pi_{n}(C)$ and $\zeta(t) \notin \zeta\left(T_{\alpha}\right) \cup\{0\}$, a contradiction.

References

[1] J. Baumgartner, J. Malitz, and W. Reinhardt, Embedding trees in the rationals, Proc. Nat. Acad. Sci. U.S.A. 67 (1970) 1748-1753.
[2] K. Devlin, Note on a theorem of J. Baumgartner, Fund. Math. 76 (1972) 255-260.
[3] Đ. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Revista Ci., Lima 42 (1940) 827-846.
[4] S. Todorčević, Some partitions of three-dimensional combinatorial cubes, Journal of Combinatorial Theory, Series A 68 (2) (1994), 410-437.

[^0]: *2010 Mathematics Subject Classification: Primary 03E35, 54F05. Key Words and Phrases: special Aronszajn tree, diamond.
 ${ }^{\dagger}$ University of Wisconsin, Madison, WI 53706 kunen@math.wisc.edu
 ${ }^{\ddagger}$ University of Florida, Gainesville, FL 32611 jal@ufl.edu
 ${ }^{\S}$ York University, Toronto, Ontario M3J 1P3 steprans@yorku.ca

[^1]: ${ }^{1}$ A continuous order preserving map ψ from an Aronszajn tree T into the rationals is a nice thing to have. Todorčević [4. Remark 4.3.(d) on page 429] proved that a combination of such a map with his osc map can be used to color the 2-element chains of T with countably many colors so that every chain of order type ω^{ω} receives all the colors.

