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Abstract

For a family F of subsets of [n] = {1, 2, . . . , n} ordered by inclusion, and a partially ordered set P , we

say that F is P -free if it does not contain a subposet isomorphic to P . Let ex(n, P ) be the largest size

of a P -free family of subsets of [n]. Let Q2 be the poset with distinct elements a, b, c, d, a < b, c < d; i.e.,

the 2-dimensional Boolean lattice. We show that 2N − o(N) ≤ ex(n,Q2) ≤ 2.283261N + o(N), where

N =
(

n
⌊n/2⌋

)

. We also prove that the largest Q2-free family of subsets of [n] having at most three different

sizes has at most 2.20711N members.

1 Introduction

Let Qn be the n-dimensional Boolean lattice corresponding to subsets of an n-element set ordered by inclu-

sion. A poset P = (X,≤) is a subposet of Q = (Y,≤′) if there is an injective map f : X → Y such that

for x1, x2 ∈ X , x1 ≤ x2 implies f(x1) ≤′ f(x2). For a poset P , we say that a set of elements F ⊆ 2[n] is

P -free if (F ,⊆) does not contain P as a subposet. Let ex(n, P ) be the size of the largest P -free family of

subsets of [n]. We say that the set of all i-element subsets of [n],
(

[n]
i

)

, is the ith layer of Qn. Finally, let

N(n) = N =
(

n
⌊n/2⌋

)

; i.e., N is the size of a middle layer of a Boolean lattice.

∗Supported in part by NSA grant H98230-09-1-0063 and NSF grant DMS-0901008.
†Supported in part by NSA grant H98230-08-1-0015 and NSF grant DMS-0901008.
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The classical theorem of Sperner [12] says that ex(n,Q1) = N . Most asymptotic bounds for ex(n, P ) are

expressed in terms of N . Many largest P -free families are simply unions of largest layers in Qn. For

example, Erdős generalized Sperner’s result in [5], showing that the size of the largest subposet of Qn which

does not contain a chain with k elements, Ck, is equal to the number of elements in the k − 1 largest

layers of Qn; i.e., for a fixed k, ex(n,Ck) = (k − 1)N + o(N). De Bonis, Katona and Swanepoel showed

in [4] that ex(n,1) = 2N + o(N), where 1 is a subposet of Qn consisting of distinct sets a, b, c, d such

that a, b ⊂ c, d. De Bonis and Katona, as well as Thanh showed in [3], [13] that ex(n, Vr+1) = N + o(N),

where Vr+1 is a subposet of Qn with distinct elements f, gi, i = 1, . . . , r, f ⊂ gi for i = 1, . . . , r. More

generally, for a poset Ks,t, with distinct elements f1, . . . , fs ⊂ g1, . . . , gt, and a poset Pk(s), with distinct

elements f1 ⊂ · · · ⊂ fk ⊂ g1, g2, . . . , gs, Katona and Tarjan [9] and later De Bonis and Katona [3] proved

that ex(n,Ks,t) = 2N + o(N) and ex(n, Pk(s)) = kN + o(N), respectively. Griggs and Katona proved in [7]

that ex(n,N) = N+o(N), for a poset N with distinct elements a, b, c, d, such that a ⊂ c, d, and b ⊂ c. Griggs

and Lu [8] proved that ex(n, Pk(s, t)) = (k − 1)N + o(N), where Pk(s, t) is a poset with distinct elements

f1, f2 . . . , fs ⊂ g2 ⊂ g3 ⊂ · · · ⊂ gk−1 ⊂ h1, . . . , ht, k ≥ 3. They also showed that ex(n,O4k) = N + o(N),

ex(n,O4k−2) ≤ (1 +
√
2/2)N + o(N), where Oi is a poset of height two which is a cycle of length i as an

undirected graph. More generally, they proved that if G = (V,E) is a graph and P is a poset with elements

V ∪ E, with v < e if v ∈ V , e ∈ E and v incident to e, then ex(n, P ) ≤ (1−
√

1− 1/(χ(G)− 1))N + o(N).

Bukh [2] proved that ex(n, T ) = kN + o(N), where T is a poset whose diagram is a tree and k is an integer

which is one less than the height of T . As a general reference in poset theory, see [14].

The smallest poset, P , for which ex(n, P ) is not known to be an integer multiple of N , is P = Q2. This

manuscript is devoted to this little poset for which we still do not know whether ex(n,Q2) = kN+o(N) for an

integer k. We show that 2N−o(N) ≤ ex(n,Q2) ≤ 2.283261N+o(N). We believe that ex(n,Q2) = 2N+o(N).

Next, are our main results.

Theorem 1 If F ⊂ Qn is Q2-free, then 2N − o(N) ≤ |F| ≤ 2.283261N + o(N).

Theorem 2 Let F ⊂ Qn be a Q2-free family, F = S ∪ T ∪ U , where S is a subset of minimal elements of

F , U is a subset of maximal elements of F and T = F \ (S ∪ U) such that for any T ∈ T , S ∈ S, U ∈ U ,

|T | = k, |U | > k, |S| < k. Then |F| ≤ N(3 +
√
2)/2 + o(N) ≤ 2.20711N + o(N). In particular, if F is a

Q2-free subset of three layers of Qn, then |F| ≤ 2.20711N + o(N).

We prove the main theorems in Sections 2 and 3, prove supporting lemmas in Section 4.
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Figure 1: Local argument

2 Proof of Theorem 1

Sketch of the proof. We consider a Q2-free family, F , of subsets of [n]. Using a standard argument, we

assume that all members of F have size between n/2 − n2/3 and n/2 + n2/3. We bound F in terms of the

number of full chains containing exactly 3 sets or exactly 1 set of F . In doing this, we introduce an auxiliary

graph corresponding to 2-element subsets in local sub-lattices, express the number of chains in terms of the

size of that graph, and optimize the resulting expression. This produces the upper bound in the statement

of the theorem. The lower bound is achieved by F =
( [n]
⌊n/2⌋

)

∪
( [n]
⌊n/2⌋+1

)

.

Let us now begin the proof in full. Let F be a Q2-free family of subsets of [n], let S be the set of minimal

elements of F .

Lemma 1
∑

|k−n/2|≥n2/3

(

n
k

)

≤ 2n−Ω(n1/3) = 2−Ω(n1/3)N.

Proof of Lemma 1. We note that the expression 2−n
∑

|k−n/2|≥n2/3

(

n
k

)

computes the probability that

a B(n, 1/2) binomial random variable, X , takes on values outside of the interval
(

n/2− n2/3, n/2 + n2/3
)

.

Using a standard Chernoff bound, Pr (|X − n/2| ≥ δ(n/2)) ≤ 2 exp
{

−(n/2)δ2/2
}

. Observing that the left-

hand side sums
(

n
k

)

over all k for which |k − n/2| ≥ δ(n/2) and setting δ = 2n−1/3, we can conclude:

3



∑

|k−n/2|≥n2/3

(

n

k

)

≤ 2n+1e−n1/3

.

Since
(

n
n/2

)

= Ω(n−1/2)2n, we may conclude that
∑

|k−n/2|≥n2/3

(

n
k

)

≤ 2−Ω(n1/3)
(

n
n/2

)

. Note that, for every

C there exists a c such that
∑

|k−n/2|≥cn1/2 lnn

(

n
k

)

≤ n−C
(

n
n/2

)

. So, we could in fact have chosen a more

precise Ω(n1/2 lnn) as our error term, rather than the more convenient n2/3. 2

As a result of Lemma 1, we can assume that all elements in F are close to the middle layer. A full chain

in Qn is a chain containing n + 1 sets. For i = 1, 2, 3 and a set F ∈ F , let Υi
n(F,F) denote the set of full

chains in Qn that contain F and exactly i − 1 other members of F . Let Υi
n(F) be the set of full chains in

Qn that contain exactly i members of F .

Lemma 2 |F| ≤
(

2 + 1
n!

(

|Υ3
n(F)| − |Υ1

n(F)|
))

N ≤
(

2 + 1
n!

∑

S∈S
(

|Υ3
n(S,F)| − |Υ1

n(S,F)|
))

N.

Proof of Lemma 2. Let Υ be the set of all full chains in Qn. Let X = {(F, σ) : F ∈ F , σ ∈ Υ, F ∈ σ}.
Since each σ ∈ Υ contains at most 3 sets from F , we have that

|X | = 3|Υ3
n(F)|+ 2|Υ2

n(F)|+ |Υ1
n(F)|.

On the other hand, any F ∈ F is contained in |F |!(n − |F |)! ≥ ⌊n/2⌋!⌈n/2⌉! full chains from Υ. Thus

|F|⌊n/2⌋!⌈n/2⌉! ≤ |X | = 3|Υ3
n(F)|+ 2|Υ2

n(F)|+ |Υ1
n(F)|.

Since the terms |Υi
n(F)| sum to n!, |X | = 2n! + |Υ3

n(F)| − |Υ1
n(F)|. Thus,

⌊n/2⌋!⌈n/2⌉!|F| ≤ 2n! + |Υ3
n(F)| − |Υ1

n(F)|,

|F| ≤ 2N +
1

⌊n/2⌋!⌈n/2⌉!(|Υ
3
n(F)| − |Υ1

n(F)|) =
(

2 +
1

n!

(

|Υ3
n(F)| − |Υ1

n(F)|
)

)

N.

The second inequality in the lemma follows from the fact that every member of Υ3
n(F) contains a member

of S. 2

Fix S ∈ S. We shall bound
(

|Υ3
n(S,F)| − |Υ1

n(S,F)|
)

. Let G = G(S) = {F \ S : F ∈ F , S ⊆ F}. We see

that G is a system of subsets of an m-element set, where m = n − |S|, see Figure 1. Moreover, ∅ ∈ G, and
since F is Q2-free, for any X ∈ G, there is at most one set Y ∈ G \ ∅, such that Y ⊆ X . We see also that

|Υi
n(S,F)| = |S|!|Υi

m(∅,G)|.
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Figure 2: Family G and graph G, m = 9, η = 5.

Let T be the set of minimal elements in G − {∅} and U = G − (T ∪ {∅}). Let Ti = {T ∈ T : |T | = i},
i = 1, 2, 3, . . .. Without loss of generality let T1 = {{η+1}, {η+2}, . . . , {m}}, as a result T2 is a set of some

two-element subsets of [η]. We create an auxiliary graph G corresponding to G by letting the vertex set be

[η] and the edge set be T2. See Figure 2 for illustration. Let e, e be the number of edges and nonedges in G,

respectively. Let Υi = Υi
m(∅,G), i = 1, 3.

We shall then express the bounds on |Υ1| and |Υ3| in terms of proportions a = η/m and b = e

(η2)
. Note that

0 ≤ a, b ≤ 1. Finally, set

µ =







1, a < 1/2

1−a
a , a ≥ 1/2.

Next, we state the technical lemmas which are proved in Section 4.

Lemma 3 |Υ1| ≥ m!
[

b(a3 − a2)µ+ (a2 − a3)µ+O(m−1)
]

.

Lemma 4 |Υ3| ≤ m!
[

b2
(

a4/2− a3
)

+ b
(

a3 − 3a4/4
)

+
(

a4/4− a2 + a
)

+O(m−1)
]

.

With Lemmas 3 and 4,

|Υ3| − |Υ1| ≤ m!
[

b2
(

a4/2− a3
)

+ b
(

a3 − 3a4/4− a3µ+ a2µ
)

+
(

a4/4− a2 + a− a2µ+ a3µ
)

+O(m−1)
]

.

Lemma 5 With 0 ≤ a, b ≤ 1 and µ = µ(a) as defined above,

b2
(

a4/2− a3
)

+ b
(

a3 − 3a4/4− a3µ+ a2µ
)

+
(

a4/4− a2 + a− a2µ+ a3µ
)

≤ 0.283261.
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Using Lemma 5,

|Υ3
m(∅,G)| − |Υ1

m(∅,G)| ≤
[

0.283261+O(m−1)
]

m!. (1)

For a final calculation, we need the so-called LYM inequality, proven by Yamamoto [15], Bollobás [1], Lubell

[10], and Meshalkin [11].

Lemma 6 (LYM inequality) If A is an antichain in Qn, then
∑

A∈A

(

n

|A|

)−1

≤ 1.

Returning to Lemma 2, we have

|F| ≤ N

(

2 +
1

n!

∑

S∈S

(

|Υ3
n(S,F)| − |Υ1

n(S,F)|
)

)

.

Using inequality (1), we have

|F| ≤ N

(

2 +
∑

S∈S

1

n!
|S|!

[

0.283261+O((n − |S|)−1))
]

(n− |S|)!
)

.

LYM and the fact that that (n− |S|)−1 ≤ (n/2− n2/3)−1 give

|F| ≤ N
(

2.283261+O((n/2− n2/3)−1)
)

= 2.283261N + o(N).

This concludes the proof of the main theorem.

3 Proof of Theorem 2

For ease of notation, in this proof let N ′ =
(

n
k

)

. Suppose F is a Q2-free family from 3 layers, L1, L2, L3, of

the Boolean lattice Qn, where L1 =
(

[n]
k−1

)

, L2 =
(

[n]
k

)

, and L3 =
(

[n]
k+1

)

. Let S = F ∩ L1, T = F ∩ L2, and

U = F ∩L3. We may assume that |k−n/2| < n2/3 as a result of Lemma 1. Furthermore, it will be useful to

assume that |S|, |U| ≤ N ′; otherwise we could delete at most
(

n
k−1

)

−N ′ = O(n−1/3)N ′ = o(N ′) members

of S and O(n−1/3)N ′ = o(N ′) members of U to ensure that the resulting sets are at most N ′. Let Υ be the

set of 3-element chains contained in L1 ∪ L2 ∪ L3, and Υi = {σ ∈ Υ : |σ ∩ F| = i}, i = 0, 1, 2, 3.

We count ordered pairs, one element is a member of F and the other is a chain from Υ. That is, X :=

{(F, σ) : F ∈ F , σ ∈ Υ, F ∈ σ}. Then

|X | = 3|Υ3|+ 2|Υ2|+ |Υ1| = 2|Υ|+ |Υ3| − |Υ1| − 2|Υ0| ≤ 2|Υ|+ |Υ3| − |Υ1|.

6



On the other hand,

|X | = (k + 1)k|U|+ k(n− k)|T |+ (n− k + 1)(n− k)|S|.

Putting together these expressions for |X | and using the fact that |Υ| = N ′k(n− k), we have

(k + 1)k|U|+ k(n− k)|T |+ (n− k + 1)(n− k)|S| ≤ 2N ′k(n− k) + |Υ3| − |Υ1|. (2)

For X ∈ L1, Y ∈ L2, and Z ∈ L3, define

f(X) = |{T ∈ T : X ⊂ T }|; g(Z) = |{T ∈ T : Z ⊃ T }|;
f̆(Y ) = |{S ∈ S : S ⊂ Y }|; ğ(Y ) = |{U ∈ U : U ⊃ Y }|.

Note that
∑

X∈S
f(X) =

∑

Y ∈T
f̆(Y ) and

∑

Z∈U
g(Z) =

∑

Y ∈T
ğ(Y ).

We shall bound |Υ3| − |Υ1| by counting the chains that contain an element of T , S and U , then chains

containing an element of T , L1 \ S, L3 \ U .

|Υ3| − |Υ1| ≤
∑

Y ∈T

[

f̆(Y )ğ(Y )−
(

k − f̆(Y )
)

(n− k − ğ(Y ))
]

= (n− k)
∑

X∈S
f(X) + k

∑

Z∈U
g(Z)− |T |k(n− k). (3)

Now, we shall find a bound on
∑

f and
∑

g in terms of |S| and |U|. Recall that we were able to assume

that |S|, |U| ≤ N ′.

Lemma 7 If N ′ =
(

n
k

)

and |k − n/2| = O(n2/3), then

∑

X∈S
f(X) ≤ (k + 1)

√

|S| (N ′ − |U|) +O(n5/6)N ′,

∑

Z∈U
g(Z) ≤ (n− k + 1)

√

|U| (N ′ − |S|) +O(n5/6)N ′.

Proof of Lemma 7. Consider any X ∈ L1. One can associate members of L2 lying above X with the

elements of [n] −X that they contain. Furthermore, one can associate members of L3 lying above X with

7



the pairs of elements of [n]−X that they contain. So, for any X ∈ L1, then |{U ∈ U : U ⊃ X}| ≤
(

n−k+1
2

)

.

But if X ∈ S, there are
(

f(X)
2

)

members of L3 that cannot be above X . Hence, for each X ∈ S,

|{U ∈ U : U ⊃ X}| ≤
(

n− k + 1

2

)

−
(

f(X)

2

)

.

Symmetrically, for any Z ∈ L3, |{S ∈ S : S ⊂ Z}| ≤
(

k+1
2

)

but if Z ∈ U , then

|{S ∈ S : S ⊂ Z}| ≤
(

k + 1

2

)

−
(

g(Z)

2

)

.

Now we double-count the pairs (X,U) such that X ∈ L1, U ∈ U and X ⊂ U :
(

k + 1

2

)

|U| =
∑

X∈L1

|{U ∈ U : U ⊃ X}|.

We can partition the members of X ∈ L1 according to whether or not X ∈ S and use the estimates above.

To wit,

|U| ≤
(

k + 1

2

)−1
(

∑

X∈S

((

n− k + 1

2

)

−
(

f(X)

2

))

+
∑

X∈L1−S

(

n− k + 1

2

)

)

=

(

k + 1

2

)−1
(

|L1|
(

n− k + 1

2

)

−
∑

X∈S

(

f(X)

2

)

)

.

Since |L1| =
(

n
k−1

)

, then the first term simplifies to
(

n
k+1

)

. Hence,

|U| ≤
(

n

k + 1

)

− 1

(k + 1)2

∑

X∈S
(f(X))2.

Jensen’s inequality allows us to bound
∑

X∈S f2(X) ≥ 1
|S|
(
∑

X∈S f(X)
)2
. Furthermore, since f(X) ≤

n− k + 1 and |S| ≤
(

n
k−1

)

,
∑

X∈S f(X) ≤
(

n
k−1

)

(n− k + 1).

|U| ≤
(

n

k + 1

)

− 1

(k + 1)2|S|

(

∑

X∈S
f(X)

)2

+

(

n

k − 1

)

n− k + 1

(k + 1)2

= N ′n− k + 1

k + 1
− 1

(k + 1)2|S|

(

∑

X∈S
f(X)

)2

.

Rearranging the terms gives

(

∑

X∈S
f(X)

)2

≤ (k + 1)2|S|
(

N ′n− k + 1

k + 1
− |U|

)

.

8



Now, we solve for the summation and make some easy estimates:

∑

X∈S
f(X) ≤ (k + 1)

√

|S| (N ′ − |U|) + |S|n− 2k

k + 1
N ′

≤ (k + 1)
√

|S| (N ′ − |U|) + (k + 1)

√

|S| |n− 2k|
k + 1

N ′

≤ (k + 1)
√

|S| (N ′ − |U|) +O(n5/6)N ′

Symmetrically,
∑

Z∈U g(Z) ≤ (n − k + 1)
√

|U| (N ′ − |S|) + O(n5/6)N ′, and this concludes the proof of

Lemma 7. 2

Returning to (2) and using (3) we have:

(k + 1)k|U|+ k(n− k)|T |+ (n− k + 1)(n− k)|S|

≤ 2

(

n

k

)

k(n− k) + |Υ3| − |Υ1|

≤ 2N ′k(n− k) + (n− k)
∑

X∈S
f(X) + k

∑

Z∈U
g(Z)− |T |k(n− k). (4)

As |k − n/2| = O(n2/3) , we can utilize the estimates in Lemma 7 to bound
∑

X∈S f(X) and
∑

Z∈U g(Z)

and divide (4) by k(n− k) to get

k + 1

n− k
|U|+ |T |+ n− k + 1

k
|S| ≤ 2N ′+

k + 1

k

√

|S| (N ′ − |U|)+ n− k + 1

n− k

√

|U| (N ′ − |S|)+O(n−1/6)N ′−|T |.

The goal is to get 2|F| on the left-hand side of the inequality. What this enables us to do is to eliminate |T |
from the right-hand side. We may disregard all small-order terms because they are of magnitude at most

O(n−1/6)N ′:

2|U|+ 2|T |+ 2|S| ≤ 2N ′ + |U|+ |S|+
√

|S| (N ′ − |U|) +
√

|U| (N ′ − |S|) +O(n−1/6)N ′

≤ 3 +
√
2

2
N ′ +O(n−1/6)N ′.

Here the last inequality is obtained by maximizing function f(u, s) = 2 +
√

s(1− u) +
√

u(1− s) + u + s,

0 ≤ u, s ≤ 1. The maximum occurs when s = u = (2 +
√
2)/4.

Therefore,

|F| ≤ 3 +
√
2

2
N ′ + o(N ′) ≤ 2.20711N ′ + o(N ′). (5)

9



Consider now a more general setting. Recall that N =
(

n
n/2

)

. Let F be a Q2-free family of sets in Qn. Let

F = S ∪ T ∪ U , where S ⊂
(

[n]
kS

)

, T ⊂
(

[n]
k

)

and U ⊂
(

[n]
kU

)

, where kS < k < kU . We may assume that

n/2− n2/3 < kS < k < kU < n/2 + n2/3. Otherwise, by Lemma 1, at least one of S, T or U has size o(N)

and so |F| ≤ (2 + o(1))N .

Consider a Symmetric Chain Decomposition of Qn (see Greene and Kleitman [6] for the existence of such a

decomposition) and, in particular, the N ′ disjoint chains that contain elements of
(

[n]
k

)

, call them P1, . . . , PN ′ .

We can create a new family F ′ = U ′ ∪ T ∪ S ′ such that we shift S and U to the layers directly below and

above T , respectively, along each chain Pi. Formally, let

S ′ =

{

Pi ∩
(

[n]

k − 1

)

: there is S ∈ S ∩ Pi, i = 1, . . . , q

}

,

U ′ =

{

Pi ∩
(

[n]

k + 1

)

: there is U ∈ U ∩ Pi, i = 1, . . . , q

}

.

Note that F ′ is Q2-free and consists of three consecutive layers. Thus, the inequality (5) gives that |F ′| ≤
3+

√
2

2 N ′ + o(N ′).

There might be unshifted elements, but not too many. In fact, both |S| − |S ′| and |U| − |U ′| are at most

N −N ′. So,

|F| = |F ′|+ (|S| − |S ′|) + (|U| − |U ′|)

≤ 3 +
√
2

2
N ′ + o(N ′) + 2(N −N ′)

=

(√
2− 1

2

)

N ′ + 2N + o(N)

≤
(√

2− 1

2

)

N + 2N + o(N)

≤ 3 +
√
2

2
N + o(N) ≈ 2.20711N + o(N).

2
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4 Proofs of Lemmas

4.1 Proof of Lemma 3

In order to find the lower bound on |Υ1|, we shall consider Υ′
1 = {σ ∈ Υ1 : ∅ ∈ σ}; i.e., the set of full chains

in Qm containing only ∅ and no other sets from G.

Recall that G = {∅} ∪ T ∪ U , where T are the minimal elements of G − {∅}, and T = T1 ∪ T2 ∪ · · · , where
Ti is the family of sets from T of size i. Without loss of generality, the one-element members of T are

{η+1}, {η+2}, . . . , {m}, which correspond to 1-element subsets of [m]− [η]. A graph G is defined on vertex

set [η] with edges corresponding to sets from T2, e = |E(G)|, e = |E(G)|, d(v), d(v) is the degree of v in G

and G, respectively.

Let x ∈ [η], t ∈ [m]− [η].

If {x, t} ∈ G then denote C1(x, t) to be the set of full chains of the form ∅, {x}, {x, y}, {x, y, t}, . . ., where
y ∈ [η], {x, y} 6∈ G. We have that C1(x, t) ⊆ Υ′

1 and |C1(x, t)| ≥ (m− 3)!d(x).

If {x, t} 6∈ G then denote C2(x, t) to be the set of full chains of the form ∅, {x}, {x, t}, . . . unless such a chain

passes through A∪{t} where A∪{t} ∈ G. We have that C2(x, t) ⊆ Υ′
1 and |C2(x, t)| ≥ (m−2)!−(m−3)!d(x).

Observe also for any t, t′ ∈ [m]− [η], C1(x, t)∩C1(x, t′) = ∅ and C2(x, t)∩C2(x, t′) = ∅. Thus for each x ∈ [η],

the number of chains in Υ′
1 passing through x is at least

∑

t ∈ [m] − [η]

{x, t} ∈ G

|C1(x, t)|+
∑

t ∈ [m]− [η]

{x, t} 6∈ G

|C2(x, t)| ≥
∑

t∈[m]−[η]

min{(m− 3)!d(x), (m− 2)!− (m− 3)!d(x)}.

Thus,

|Υ1| ≥ |Υ′
1| ≥

∑

x∈[η]

∑

t∈[m]−[η]

min{(m− 3)!d(x), (m− 2)!− (m− 3)!d(x)}

= (m− η)(m− 3)!



2e−
∑

x∈[η]

max
{

0, 2d(x)−m+ 2
}



 . (6)

Consider the set D of all sequences of η nonnegative real numbers which are at most η − 1, and which add

11



up to 2e. Note that the degree sequence of G is in D. Thus,

∑

x∈[η]

max{0, 2d(x) −m+ 2} ≤ max
(d1,...,dn)∈D

η
∑

i=1

max{0, 2di −m+ 2}

≤ 2e

η − 1
(2η − 2−m+ 2).

Returning to (6), and recalling that a = η/m, and

µ =







1, a < 1/2,

1−a
a , a ≥ 1/2,

we have

(m− η)(m− 3)!



2e−
∑

x∈[η]

max
{

0, 2d(x)−m+ 2
}



 ≥







(m− η)(m − 3)!2e, 2η ≤ m− 2;

(m− η)(m − 3)!2e
[

m−η−1
η−1

]

, 2η > m− 2

≥ (m− η)(m− 3)!2e(µ−O(m−1)).

Therefore, since b = e/
(

η
2

)

,

|Υ1| ≥ (m− η)(m− 3)!2e(µ−O(m−1))

= m!
m− η

m(m− 1)(m− 2)
η2(1− b)(µ−O(m−1))

= m!
[

b(a3 − a2)µ+ (a2 − a3)µ−O(m−1)
]

.

2

4.2 Proof of Lemma 4

For each T ∈ T , let UT = {U ∈ U : U ⊃ T } and let

U ′
T = {V ⊃ T : |V | = |T |+ 1, 6 ∃T0 ∈ T − {T }, T0 ⊂ V }.

We say that G′ = ∅ ∪ T ∪⋃T∈T U ′
T is a compressed family.

We have that |Υ3
m(∅,G)| ≤ |Υ3

m(∅,G′)|. Indeed, if a chain contains both T ∈ T and U ∈ U , then there is

some U ′ ∈ U ′
T that this chain contains also.

12



Let Υ′
3 = Υ3

m(∅,G′). Recall that T = T1 ∪T2 ∪ · · · , where Ti is the family of sets from T of size i. To bound

|Υ′
3|, we count first the number of full chains from Υ′

3 containing sets from T1, then those containing sets

from T2, and finally those containing sets from Ti, i ≥ 3.

Recall that the graph G is defined on vertex set [η] with edges corresponding to sets from T2. Let α1 be the

number of triples from [η] which induce exactly one edge in G. Let B0 be the set of 4-element sets from [η]

which do not induce an edge in G, and let β0 = |B0|.

There are at most (m − η)η(m − 2)! chains from Υ′
3 containing sets from T1. There are 2α1(m − 3)! such

chains containing sets from T2. We need to do some more work to bound the number of chains from Υ′
3

containing sets from Ti, i ≥ 3. Call the set of such chains Y .

Recall that if T, U ∈ G′, T ⊆ U , T 6= ∅, then the number of full chains through T and U is |T |!(|U−|T |)!(m−
|U |)!. Since G′ is a compressed family, we have that |T | = |U | − 1. Moreover, if T, U belong to a chain in Y ,

we have that |U | ≥ 4. Let

U∗ = {U ∈ G′ \ T : U ∈ C ∈ Y }.

Since for each U ∈ G′ there is at most one T ∈ G′, T 6= ∅ such that T ⊆ U , we have

|Y | =
∑

U∈U∗

∑

T⊆U,T∈T
|T |!(m−|U |)! ≤

∑

U∈U∗

(|U |−1)!(m−|U |)! =
∑

U∈U∗

1

|U | |U |!(m−|U |)! ≤ 1

4

∑

U∈U∗

|U |!(m−|U |)!.

The last summation counts the number of full chains containing a set from U∗. Since for each U ∈ U∗, there

is B ∈ B0, B ⊆ U , we have that the number of full chains passing through sets in U∗ is at most the number

of full chains passing through B0 sets. Thus

|Y | ≤ 1

4

∑

B∈B0

|B|!(m− |B|)! ≤ 1

4

∑

B∈B0

|4|!(m− |4|)! = 1

4
4!(m− 4)!|B0| ≤ 3!(m− 4)!β0.

So, we have that

|Υ3| ≤ |Υ′
3| ≤ (m− η)η(m− 2)! + 2(m− 3)!α1 + 3!(m− 4)!β0. (7)

To bound the last two terms, we use the following lemma.

Lemma 8 With α1 and β0 defined as above for G, an η-vertex graph, and a = η/m,

α1 +
3

m− 3
β0 ≤ η3

8
+

e2

η
(a− 2) +

1

4
eη(4− 3a)− 1

8
(1− a)η3 +O(m2).
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Proof. Let βi = βi(G) be the number of 4-element subsets of the vertex set of G spanning exactly i edges.

Moreover, let

β2(G) = β‖(G) ∪ β∧(G), β3(G) = β△(G) ∪ β⊣(G) ∪ β⊔(G),

where β‖, and β∧ count such subsets inducing two disjoint edges, and two adjacent edges, respectively; β△,

β⊣, and β⊔ count the number of such subsets inducing triangle, a star of three edges, and a path with three

edges, respectively. We also denote βi(G) = βi(G), β‖(G) = β‖(G), β∧(G) = β∧(G), β△(G) = β△(G),

β⊣(G) = β⊣(G), β⊔(G) = β⊔(G). Note that β△(G) = β⊣(G), β⊔(G) = β⊔(G). Let d(v) and d(v) be the

degree of v in G and in G, respectively. Then,

∑

v∈V

d(v)

(

d(v)

2

)

= 2β1 + 4β‖ + 2β∧ + 2β⊔ + 3β⊣ + β∧,

∑

v∈V

(

d(v)

3

)

= β⊣ + β∧ + 2β1 + 4β0,

∑

v∈V

d(v)

(

d(v)

2

)

= 2β1 + 4β‖ + 2β∧ + 2β⊔ + 3β⊣ + β∧,

∑

v∈V

(

d(v)

3

)

= β⊣ + β∧ + 2β1 + 4β0.

Observe that the last two equations are complementary of the first two. In order to bound α1 +
3

m−3β0, we

shall express everything in terms of βs, and then in terms of e.

Since

α1(η − 3) = 2β1 + 4β‖ + 2β∧ + 3β△ + 2β⊔ + β∧,

and
(

η

4

)

= β0 + β1 + β2 + β3 + β4 + β5 + β6 = β0 + β1 + (β‖ + β∧) + (β△ + β⊔ + β⊣) + (β‖ + β∧) + β1 + β0,

we have, by recalling that a = η/m > (η − 3)/(m− 3),

Q := (η − 3)

[

α1 +
3

m− 3
β0

]

= 3
η − 3

(m− 3)
β0 + 2β1 + 4β‖ + 2β∧ + 3β△ + 2β⊔ + β∧

< 3

(

η

4

)

+ (3a− 3)β0 + (−1)β1 + 1β‖ + (−1)β∧ + 0β△ + (−1)β⊔ + (−3)β⊣

+(−2)β∧ + (−3)β‖ + (−3)β1 + (−3)β0.
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At the price of slightly increasing the right hand side, we collect the terms in order to utilize the various

formulas that sum the degrees:

Q ≤ 3

(

η

4

)

+
1

4

[

2β1 + 4β‖ + 2β∧ + 2β⊔ + (1 − 3)β∧ − 6β1 − 12β0

]

+
(1− a)

4

[

2β1 + 4β‖ + 2β∧ + 2β⊔ + (1− 3)β∧ − 6β1 − 12β0

]

= 3

(

η

4

)

+
1

4

[

∑

v

d(v)

(

d(v)

2

)

− 3
∑

v

(

d(v)

3

)

]

+
1− a

4

[

∑

v

d(v)

(

d(v)

2

)

− 3
∑

v

(

d(v)

3

)

]

= 3

(

η

4

)

+
η − 3

8

[

∑

v

d(v)(η − 2d(v))

]

+ (1 − a)
(η − 3)

8

[

∑

v

d(v)(η − 2d(v))

]

.

We can use the fact that d(v) = η − d(v)− 1 and collect terms

Q ≤ 3

(

η

4

)

+
η − 3

8
(−4 + 2a)

∑

v

d2(v) +
η − 3

8
(4η − 4− 3aη + 4a)

∑

v

d(v) +
η − 3

8
(a− 1)η(η − 1)(η − 2).

Using the fact that
∑

v d(v) = 2e and
∑

v d
2(v) ≥ 4e2/η,

Q ≤ η4

8
+ e2(a− 2) +

1

4
eη2(4 − 3a)− 1

8
(1− a)η4 + O(η3).

Dividing Q by η − 3 and observing that η ≤ m, this concludes the proof of Lemma 8. 2

Now, we return to the upper bound (7) on |Υ3|, recalling that a = η/m and e = b
(

η
2

)

,

|Υ3| ≤ (m− η)η(m− 2)! + 2(m− 3)!α1 + 3!(m− 4)!β0.

Because of Lemma 8,

|Υ3| ≤ m!

[

a(1− a) +
2

m3

(

η3

8
+

e2

η
(a− 2) +

1

4
eη(4 − 3a)− 1

8
(1− a)η3 +O(m−1)

)]

= m!
[

b2
(

a4/2− a3
)

+ b
(

a3 − 3a4/4
)

+
(

a4/4− a2 + a
)

+O(m−1)
]

.

This concludes the proof of Lemma 4. 2
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4.3 Proof of Lemma 5

The estimations here can be checked by a symbolic manipulation program.

Set

Q′ := b2
(

a4/2− a3
)

+ b
(

a3 − 3a4/4− a3µ+ a2µ
)

+
(

a4/4− a2 + a− a2µ+ a3µ
)

.

If 0 ≤ a < 1/2 we have that µ = 1 and

Q′ = b2
(

a4/2− a3
)

+ b
(

−3a4/4 + a2
)

+
(

a4/4 + a− 2a2 + a3
)

≤ 0.25,

which is achieved when b = 1 and a = 1/2.

If 1/2 ≤ a ≤ 1 we have that µ = (1 − a)/a and

Q′ = b2
(

a4/2− a3
)

+ b
(

2a3 − 3a4/4− 2a2 + a
)

+
(

a4/4 + a2 − a3)
)

< 0.283261.

The maximum is achieved when a ≈ 0.935 and b ≈ 0.285. 2

5 Conclusions

The method we use is local, it allows us to count the number of full chains with three or one element in F .

Using this method, one could not get a bound better than 2.25N for ex(n,Q2). To see this, consider a set

system with elements from [m], where m is even and [m] = M1 ∪M2, M1 = [m/2],M2 = {m/2 + 1,m/2 +

2, . . . ,m}. G = {∅} ∪ T ∪ U , where
T =

(

M1

2

)

∪
(

M2

2

)

,

U = {{a, b, c} : a, b ∈ M2, c ∈ M1} ∪ {{a, b, c} : a, b ∈ M1, c ∈ M2}.

We have that the number of full chains in Qm containing three elements of G is at 4
(

m/2
2

)

m/2(m− 3)!. On

the other hand, each full chain contains at least one nonempty set from F . Thus |Υ3| ≥ m!/4.
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