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Abstract. Rectangular lattices are special planar semimodular lattices in-
troduced by G. Grätzer and E. Knapp in 2009. By a patch lattice we mean

a rectangular lattice whose weak corners are coatoms. As a sort of gluings,
we introduce the concept of a patchwork system. We prove that every glued

sum indecomposable planar semimodular lattice is a patchwork of its maxi-
mal patch lattice intervals “sewn together”; see Figure 3 for a first impres-

sion. For a modular planar lattice, our patchwork system coincides with the
S-glued system introduced by C. Herrmann in 1973. Among planar semi-

modular lattices, patch lattices are characterized as the patchwork-irreducible
ones. They are also characterized as the indecomposable ones with respect to

the Hall-Dilworth gluing over chains; this fact gives another structure theo-

rem for planar semimodular lattices since patch lattices are obtained from the
four-element non-chain lattice by adding forks, introduced in our preceding

paper.

1. Introduction

Rectangular lattices were introduced by Grätzer and Knapp [16]. Roughly speak-
ing, a rectangular lattice is a planar semimodular lattice such that the contour of its
natural diagram is a rectangle. The smallest rectangular lattice is the four-element
Boolean lattice 22. If L is a non-chain lattice such that each x ∈ L \ {0, 1} is
incomparable with some element of L, then L is glued sum indecomposable.

Let L be a glued sum indecomposable planar distributive lattice. By the folklore
of lattice theory, see Grätzer and Knapp [15], the diagram of L can be decomposed
into 22-intervals (that is, intervals isomorphic to 22), and for any two distinct
22-intervals I and J ,

(1.1) I ∩ J is a chain, or I ∩ J = ∅.
We will say that the 22-intervals of L form a patchwork system HHH for L. This ter-
minology is motivated by the everyday’s life, where pieces of cloth of various colors
and shape (but usually rectangular shape) sewn together form a so-called patch-
work. Clearly, 22 is “patchwork-irreducible” since it is the smallest rectangular
lattice.
S-glued systems were introduced by Herrmann [20] (not only for planar lattices).

Let M be a glued sum indecomposable planar modular lattice. Then the maximal
atomistic (equivalently, complemented) intervals of M are rectangular lattices of
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length two, and they form an S-glued system HHH = HHHHerrm(M ). Clearly, (1.1)
holds again, and the intervals we consider are “patchwork-irreducible” again since
they have no proper rectangular subinterval. (For more details see Lemma 3.8
later.) Hence HHHHerrm(M ) in this case we will also be called a patchwork system.

Motivated by the above ideas, our goal is the develop a theory of patchwork sys-
tems for all planar semimodular lattices; see Figures 2 and 3 for a first impression.
Rectangular lattices whose weak corners are coatoms will be called patch lattices
since they will turn out to be exactly the patchwork-irreducible planar semimodular
lattices. Surprisingly, patch lattices will also be characterized as semimodular lat-
tices indecomposable with respect to the Hall-Dilworth gluing over chains. Hence
patch lattices give rise to two structure theorems for planar semimodular lattices:
one of them is based on patchwork systems (see Theorem 3.6 for details), while
the other one (see Corollary 3.5) is based on the Hall-Dilworth gluing over chains.
Of course, the value of these theorems depends on how the building stones, the
patch lattices, can be described. We will extract a constructive visual structure
theorem for patch lattices from [7], see Theorem 3.4(vii) or, for a first impression,
see Figure 2.

The structure theorem in [7] for planar semimodular lattices (the conjunction of
Propositions 2.1 and 2.2 here) needed three constructive steps to obtain all planar
semimodular lattices. These constructive steps were quite easy but not widely
known yet. Namely, we added “forks”, deleted “corners”, and added “eyes”. One of
our new structure theorems, Corollary 3.5, is based on the classical Hall-Dilworth
gluing over chains plus only on two recently introduced steps (adding forks and
adding eyes).

Outline. Based mainly on Kelly and Rival [23], Grätzer and Knapp [15] and [16],
and [6] and [7], Section 2 surveys those known concepts and facts on planar semi-
modular lattices that we need in the paper. Among all planar semimodular lattices,
the so-called slim ones play a distinguished role; Section 2 explains why.

Section 3 gives the most important new concepts and the main results. In par-
ticular, it formulates the results mentioned in (this) Section 1 and in the Abstract.

Many of the concepts we deal with depend on the planar diagram chosen, at least
formally. This motivates the study of these diagrams and some related questions
in Section 4. Lemmas 4.1, 4.3, 4.7, 4.8 and 4.9 are of independent interest. For
example, Lemma 4.7 asserts that the diagram of a slim semimodular lattice is
uniquely determined in some sense, while Lemma 4.9 says that rectangularity is
independent from the diagram chosen.

Section 5 is devoted to elements and rectangular intervals of L versus planar
diagrams of L; Lemmas 5.3 and 5.4 are worth mentioning here.

Section 6 presents a lot of properties of a planar semimodular lattice L that
depend only on a slim semimodular lattice “canonically” derived from L.

Section 7 proves Proposition 3.2, asserting that all properties of L that are really
important from our perspective are independent from the diagram of L.

Section 8 formulates and proves several properties of patchwork-indecomposable
lattices; these properties are consequences of the main results stated in Section 3.

As further consequences of the main results of Section 3, Section 9 proves some
properties of patchwork-indecomposable intervals of planar semimodular lattices.

Based on the auxiliary statements of all other sections, Section 10 completes the
paper by proving the main results formulated in Section 3.
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2. Preliminaries

We aim at planar semimodular lattices. However, most questions of the planar
case are easily deductible from the slim one; for example, see Proposition 2.1 and
Lemma 6.1 later. This fact and the number “I” in [7] explains that the adjective
“slim” rather than “planar” occurs in the title of the present paper.

Slimness. These years are witnessing an increasing role of slimness (to be defined
later) in Lattice Theory, see Grätzer and Knapp [15] and [17], and [2], [4], [5], [6],
[7], [8], [9] and [24]. The importance of slim lattices is explained by three facts.

Firstly, slim semimodular lattices are, up to dual isomorphism, exactly the lat-
tices that we obtain from two (finite) composition series of a group by forming all in-
tersections of their members. This explains that soon after Grätzer and Nation [18]
improved the classical Jordan-Hölder theorem, see Hölder [21] and Jordan [22], we
could add a uniqueness part to this theorem in [6], and even the number how many
ways two composition series can intersect has recently been determined in [9].

Secondly, slim lattices are planar by [6, Lemma 6], and planar semimodular
lattices play an intensive role in various results on the finite congruence lattice
representation problem. An overview is given in Grätzer [14] while [3], [24], and
Grätzer and Knapp [16] and [17] represent some recent developments.

Thirdly, each planar semimodular lattice is obtained from a unique slim semi-
modular lattice in a very simple way, see Proposition 2.1 and Lemma 4.1 later. This
explains that although many of the proofs deal with slim semimodular lattices, our
theorems hold for all planar semimodular lattices.

Basic concepts. All lattices occurring in this paper are assumed to be finite, even
if this is not mentioned all the time. In particular, if a lattice is slim or planar,
then it is finite by definition. In most of the cases, our lattices are assumed to have
at least four elements. The systematic study of slim semimodular lattices started
in Grätzer an Knapp [15]. Recall that a lattice L is called (upper) semimodular,
if b ∨ c covers or equals a ∨ c for all a, b, c ∈ L with a ≺ b. Because of their links
to combinatorics and geometry, the study of these lattices is an important branch
of Lattice Theory; see Stern [25] and [5] for surveys. By a slim lattice we mean a
finite lattice M such that the order Ji(M ) of (non-zero) join-irreducible elements
of M contains no three-element antichain. (Orders are also called partially ordered
sets or posets.) Equivalently, see Dilworth [11], Grätzer and Knapp [15] or [7], a
finite lattice M is slim iff Ji(M ) is the union of two chains. As already mentioned,
slim lattices are planar. A straightforward but extremely useful property of slim
lattices, see [7, Lemma 2], is that

(2.1) each element of a slim lattice has at most two covers.

Another pleasant property is that

(2.2) every interval of a slim lattice is slim;

this follows from the fact that {a ∨ x : x ∈ Ji(L), x ≤ b} join-generates [a, b].
Let Diag(L) stand the set of all planar diagrams of L. The general convention

throughout the paper is that a planar diagram D ∈ Diag(L) is fixed, unless oth-
erwise stated. Many concepts we are going to define depends on the choice of D,
at least seemingly. However, in several cases we will prove that this dependence is
only apparent without being real. The diagram D divides the plane into minimal
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regions, which are called cells. In presence of semimodularity, all cells are covering
squares (i.e., cover-preserving four-element Boolean sublattices), so these cells are
called 4-cells. While 4-cells are always covering squares, (the usual diagram of) M3

indicates that the converse fails even for modular planar lattices in general; indeed,
M3 has three covering squares but only two 4-cells. By [7, Prop. 1], for any planar
semimodular lattice L and for an arbitrary D ∈ Diag(L),

(2.3) L is slim iff all of its covering squares are 4-cells.

This is the original definition of slimness in [15] for the semimodular case. Notice
that the expression “4-cells” in (2.3) is a short form of the more precise “4-cells
of the fixed diagram D” or “its 4-cells with respect to D”; similar terminology
will frequently occur. A lattice L (in particular, a chain) is called nontrivial if it
contains at least two elements. If L is a non-chain lattice and for each x ∈ L\{0, 1},
there is a y ∈ L such that x and y are incomparable, then L is called glued sum
indecomposable.

Given a fixed planar diagram D of a lattice L, it has a left boundary chain
Bleft(L) = BD

left(L), a right boundary chain Bright(L) = BD
right(L), and a boundary

B(L) = BD(L) = Bleft(L) ∪ Bright(L). (Here and in similar situations, if there is
no danger of confusion, we often drop D from the notation.) The interior of L,
denoted by intD(L) or simply by int(L), is L \ BD(L). For a rigorous treatment of
these concepts see Kelly and Rival [23]. Notice that, by [23, Prop. 2.2],

(2.4) Ji(L) ∩ Mi(L) ∩ Bleft(L) 6= ∅ and Ji(L) ∩ Mi(L) ∩ Bright(L) 6= ∅,
provided |L| ≥ 3. We have to recall some further concepts and properties of
planar lattices from [23]. Let L be a planar lattice with a fixed planar dia-
gram D. If C is a maximal chain of L, then it has a left side, denoted by
leftD

side(C), and a right side rightD
side(C). Notice that leftD

side(C) ∪ rightDside(C) = L

and C = leftDside(C) ∩ rightD
side(C). The strict sides of C (with respect to D) are

leftD
side(C) \ C and rightDside(C) \ C. If a ≤ b in L, |[a, b]| ≥ 3 and C1 and C2 are

maximal chains of [a, b] such that C1∩C2 = {a, b}, then C1 and C2 determines a so-
called region R of L. It is a convex sublattice with {Bleft(R),Bright(R)} = {C1, C2}.
Its interior, int(R) is R \ B(R). Assume that u ∈ R and v ∈ L \ R, or conversely.
Let a, b, c ∈ L. Further, let C be a maximal chain of L, and let x, y ∈ L such that
x and y are on different sides of C. Then, by [23, Lemmas 1.2 and 1.5], by the
definition of a region, and by (2.7),

If x ≤ y, then there is a z ∈ C with x ≤ z ≤ y;(2.5)

every interval is a region;(2.6)

if u ≤ v, then there is a w ∈ B(R) with u ≤ w ≤ v;(2.7)

if b ∈ int(R) and a ≺ b ≺ c, then a, c ∈ R.(2.8)

When referring to properties of regions, we often use (2.6) implicitly. By the exact
definition of a region, given in [23], we also have that

(2.9) if R is a region, then int(R) ⊆ int(L).

For slim lattices, we can assert even more. By [7, Lemma 6],

(2.10) Ji(L) ⊆ BD(L), provided L is slim.

Also, if L is slim, then B(L) is uniquely determined by [7, Lemma 7]. That is,
BD(L) = BF (L), for all D,F ∈ Diag(L). By [7, Lemma 7], if L is slim and glued
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sum indecomposable, then even {Bleft(L),Bright(L)} is uniquely determined. That
is, the left and th right boundary chains are determined up to symmetry. (For a
stronger statement, see Lemma 4.7 later.)

Let L be a planar semimodular lattice with a fixed D ∈ Diag(L). By a weak
corner ofD we mean a doubly irreducible element d on the boundary of L such that
d is distinct from 0 and 1. (Sometimes we speak of weak corners of L even if they
depend onD.) FollowingGrätzer and Knapp [16], by a rectangular lattice we mean a
planar semimodular lattice L such that L has a planar diagramD such that BD

left(L)
has exactly one weak corner, denoted by w`

L, w`
D or w`

D(L), BD
right(L) has exactly

one weak corner, denoted by wr
L, wr

D or wr
D(L), and they are complementary, that

is, w`
D ∧ wr

D = 0 and w`
D ∨ wr

D = 1. (Although the weak corners depend on D,
Lemma 5.5 will show later that all planar diagrams are equally appropriate to check
whether L is rectangular.) Clearly, rectangular lattices have at least four elements
and they cannot be chains. If L is slim, then, by the already mentioned [7, Lemma
7], {BD

left(L),BD
right(L)} and {w`

D(L), wr
D(L)} do not depend on the planar diagram

chosen. (In fact, Lemma 4.7 will state even more.) It is easy to see (and we know
it from [7, before Prop. 10]) that for a slim (not just planar) semimodular lattice
L, L is rectangular iff Ji(L) is the union of two disjoint chains C and W such that
every element of C is incomparable with all elements of W .

For a rectangular lattice L and D ∈ Diag(L), we define the top boundary chains
BD

nw(L) = ↑w`
D ∩BD

left(L) and BD
ne(L) = ↑wr

D ∩BD
right(L), the bottom boundary chains

BD
sw(L) = ↓w`

D ∩ BD
left(L) and BD

se (L) = ↓wr
D ∩ BD

right(L), the northern boundary
BD

north(L) = BD
nw(L)∪BD

ne(L), and the southern boundary BD
south(L) = BD

sw(L)∪BD
se (L).

We know from Grätzer and Knapp [16, Lemmas 3 and 4] and from the definition
of a rectangular lattice that, for each rectangular lattice L,

BD
nw(L), BD

ne(L), BD
sw(L) and BD

se (L) are indeed chains,(2.11)

BD
nw(L) = ↑w`

D, BD
ne(L) = ↑wr

D, BD
sw(L) = ↓w`

D, BD
se (L) = ↓wr

D,(2.12)

BD
north(L) \ {1} ⊆ Mi(L), BD

south(L) \ {0} ⊆ Ji(L),(2.13)

each element of BD(L) \ BD
north(L) has at least two covers, and(2.14)

each element of BD(L) \ BD
south(L) has at least two lower covers.(2.15)

Let d be a doubly irreducible element of a slim semimodular lattice L. Then
d belongs to (at least) one of the boundary chains BD

left(I) and BD
right(I) by (2.10).

Since this boundary chain is a maximal chain, it contains the unique lower cover
d− and the unique upper cover d+ of d. If d− has exactly two upper covers and
d+ has exactly two lower covers, then d is called a corner of D. Note that corners
are weak corners but (even for rectangular lattices) not conversely. A corner can
be removed and a slim semimodular sublattice remains by [7, Prop. 10].

Some earlier structure theorems. Let S be a 4-cell of a planar diagram D
of a planar lattice L. Replace this 4-cell by a copy of M3, the five-element non-
distributive modular lattice (with a fixed diagram). This means that we insert a
new element, which is called an eye, into the interior of S, and this way we divide
S into two new 4-cells. This way we obtain a new diagram that determines a new
lattice. If D• and L• is obtained from L by inserting eyes one by one, then D•

and L• is called an anti-slimming of D and L, respectively, and D• ∈ Diag(L•). A
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Figure 1. S7 and the downward-going procedure

0-1-sublattice means a sublattice with the same 0 and 1. We recall the following
statement.

Proposition 2.1 (Grätzer and Knapp [15]). Each planar semimodular lattice L is
an anti-slimming of one of its slim semimodular 0-1-sublattices, L′.

Proposition 2.1 reduces most of the questions on planar semimodular lattices
to the slim case. Let D ∈ Diag(L) be fixed. Then the sublattice L′ (with the
corresponding diagram D′) above is called a full slimming sublattice of L. More
exactly,D′ is obtained fromD by omitting all elements from the interiors of intervals
of length two. For a fixed L′ (which depends only on D), the elements of L \ L′

(or those of D \D′) are called eyes. Clearly, for each eye e ∈ L \ L′, if e− and e+

denote the unique lower and upper cover of e, respectively, then

(2.16) e− and e+ belong to a unique 4-cell {e−, a, b, e+} of L′.

Let us emphasize the difference between a full slimming sublattice of L, which is a
sublattice (a concrete subset of L) and depends on D, and the full slimming of L,
which is an abstract lattice, not a concrete sublattice of L. While L can have many
full slimming sublattices, as witnessed by L = M3, the full slimming of L will turn
out to be unique, see Remark 4.2.

The first structure theorem for slim semimodular lattices is due to Grätzer and
Knapp [15], and it was soon generalized in [4]. (We have recently discovered that
even the generalized version was already present but well-hidden in Stern [25].
However, it is [15] that initiated a rapid development leading to the present work.)
Other structure theorems were given in [7] (two theorems), [2], and [8]; we will
need and recall only one of them. Let S be a 4-cell of a slim semimodular lattice
L, with respect to D ∈ Diag(L). Then S is a covering square {a = b1 ∧ b2, b1, b2,
c = b1 ∨ b2}. We change L to a new lattice L∗ as follows. Firstly, we replace S
by a copy of S7; see Figure 1 for its definition. This way we get three new 4-cells
instead of S. Secondly, as long as there is a chain u ≺ v ≺ w such that v is a new
element and T = {x = u ∧ z, z, u, w = u ∨ z} is a 4-cell in the original lattice
L but x ≺ z at the present stage, see Figure 1, we insert a new element y such
that x ≺ y ≺ z and y ≺ v. (This way we get two 4-cells to replace the 4-cell T .)
When this “downward-going” procedure terminates, we obtain L∗. The collection
of all new elements, which is an order (also called poset), will be called a fork. We
say that L∗ is obtained from L by adding a fork to L (at the 4-cell S). For an
illustration, see see Figure 2, where Li is obtained from Li−1 by adding a single
fork; the new elements of Li, which form a fork, are the black-filled ones. Adding
forks to L means adding several forks to L one by one. For example, L3 in Figure 2
is obtained from L0 = 22 by adding forks, in three steps. By a grid we mean the
direct product of two finite, nontrivial chains. (The smallest grid is 22.) We are
now ready to recall
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Figure 2. Forks and slim patch lattices

Proposition 2.2 ([7, Theorem 12]). Let L be a slim semimodular lattice consisting
of at least three elements. Then L can be obtained from a grid such that

(i) first we add finitely many (possibly zero) forks one by one,
(ii) and then we remove some (possibly zero) corners, one by one.

For later reference, we formulate a trivial statement, see also [9, Figure 1].

Lemma 2.3. Each nontrivial finite lattice is uniquely decomposable as a glued sum
of nontrivial chains and glued sum indecomposable lattices.

Rectangular lattices are of separate interest, not only in the present paper but
also in Grätzer and Knapp [16], [17], [3] and [24]. In connection with parts (iv) and
(vii) of (the forthcoming) Theorem 3.4, we present the following structure theorem
for them. Remember that grids are defined right before Proposition 2.2.

Proposition 2.4 (Mainly [7, Lemma 22], as detailed in Section 10). Let L be an
arbitrary slim rectangular lattice. Then

(i) there is a grid G such that L can be obtained from G by adding forks;
(ii) For all D ∈ Diag(L), G is (isomorphic to) ↑w`

D(L) × ↑wr
D(L). Consequently,

G is uniquely determined up to isomorphism.
(iii) Every lattice obtained from a grid by adding forks is a slim rectangular lattice.
(iv) Each rectangular lattice is an anti-slimming of a slim rectangular lattice, which

is unique up to isomorphism.

3. patchwork systems and the new results

An interval is called a rectangular interval, if it is a rectangular lattice. As usual,
N and N0 stand for the set of positive integers and N ∪ {0}, respectively. We will
deal only with glued sum indecomposable lattices. In virtue of Lemma 2.3, this
reasonable restriction is not a serious loss since finite chains and the glued sum
construction are well-understood.

Definition 3.1. Let L be a glued sum indecomposable planar semimodular lattice,
and let HHH be a collection of rectangular intervals of L. Let E

(
HHH

)
denote the set

{(I, J) ∈ HHH2 : I 6= J and I ∩ J 6= ∅}. We say that HHH is a patchwork system for L,
if the following three conditions hold:

(i) For each covering square S of L, there exists an I ∈ HHH such that S ⊆ I.
(ii) For all (I, J) ∈ E

(
HHH

)
, I ∩ J is a chain.

(iii) L has a planar diagram D such that, for all (I, J) ∈ E
(
HHH

)
, we have that

I ∩ J ⊆ BD
north(I) ∩ BD

south(J) or I ∩ J ⊆ BD
south(I) ∩ BD

north(J).
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If HHH is a patchwork system of L such that D ∈ Diag(L) witnesses (iii), then we
also say that HHH is a patchwork system for the diagram D. Hence HHH is a patchwork
system for L iff it is a patchwork system for some D ∈ Diag(L). A patchwork
system HHH is nontrivial if |HHH| ≥ 2.

Sometimes we say that L is sewn from the members of HHH. If there is a patchwork
system for L, then we also say that L allows a patchwork system. An example of
a patchwork system for L is provided by Figure 3; this system consists of eleven
rectangular intervals: four light grey ones, five dark gray ones and two striped
ones. The following statement sheds more light on this concept, and it offers the
possibility of several equivalent definitions. Condition (i) of Definition 3.1 will be
referenced as 3.1(i), and a similar convention will apply for conditions occurring in
statements.

Proposition 3.2. Assume that HHH is a set of rectangular intervals of a glued
sum indecomposable planar semimodular lattice L such that HHH satisfies 3.1(i) and
3.1(ii). Then the following four conditions are equivalent.

(i) HHH satisfies 3.1(iii), that is, HHH is a patchwork system for L.
(ii) For all planar diagrams D of L and for for all (I, J) ∈ E

(
HHH

)
, we have that

I ∩ J ⊆ BD
north(I) ∩ BD

south(J) or I ∩ J ⊆ BD
south(I) ∩ BD

north(J). That is, HHH is a
patchwork system for all D ∈ Diag(L).

(iii) There exists a planar diagram D of L such that for each (I, J) ∈ E
(
HHH

)
,

(a) I ∩ J ⊆ BD
north(I) ∩BD

south(J) or I ∩ J ⊆ BD
south(I) ∩ BD

north(J), and
(b) I ∩ J ⊆ BD

left(I) ∩ BD
right(J) or I ∩ J ⊆ BD

right(I) ∩ BD
left(J).

(iv) The previous two subconditions, 3.2(iiia) and 3.2(iiib), hold for all planar
diagrams D of L and for each (I, J) ∈ E

(
HHH

)
.

Remark 3.3. Let L be and HHH be as in Proposition (3.2).
(i) If I and J are distinct members of a patchwork system HHH, then I and J are

incomparable (in notation, I ‖ J), that is, I 6⊆ J and J 6⊆ I. (This follows
from 3.1(ii) since a rectangular interval is never a chain.)

(ii) Since Bleft(I) and Bright(I) are always chains, 3.2(iiib) implies 3.1(ii).
(iii) It will follow from 3.1(i) and Lemma 4.3 that HHH covers L in the sense that

L =
⋃

I∈HHH I.
(iv) Let GGG be a set of rectangular intervals of L. Then 3.1(i) holds for GGG iff L has

a planar diagram D such that each 4-cell of D is a subset of some member of
GGG iff for every a planar diagram D of L each 4-cell of D is a subset of some
member of GGG.

(v) The purpose of 3.1(i) is to ensure something like “HHH is simply connected” (in
other words, 1-connected) in topological sense. For example, if L = 32 and GGG
is the collection of all covering squares, then GGG is a patchwork system for L.
However, if the middle square S is removed, then GGG \ {S} is not a patchwork
system since 3.1(i) fails (while 3.1(ii) and 3.1(iii) hold).

We call a slim semimodular lattice L patchwork-irreducible, if it allows a patch-
work system and, in addition, for every patchwork system HHH for L, |HHH| = 1. In
other words, if L is rectangular and it allows only the trivial patchwork system. For
example, S7 in Figure 1 is patchwork-irreducible. To define two related but more
classical concepts, let L be a nontrivial lattice. If there are a proper ideal I and a
proper filter F such that I ∩F is nonempty and L = I ∪F , then L is decomposable
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Figure 3. A patchwork system

with respect to the Hall-Dilworth gluing (in the general sense), HDg-decomposable
for short. If L is not a chain (equivalently, |L| ≥ 3 or, still equivalently, |L| ≥ 4)
and L is not HDg-decomposable, then we say that L is indecomposable with re-
spect to the Hall-Dilworth gluing, HDg-indecomposable for short. Notice that the
two-element lattice is neither HDg-decomposable, nor HDg-indecomposable.

Similarly, assume that L is not a chain (equivalently, |L| ≥ 3 or, still equivalently,
|L| ≥ 4), and whenever I is an ideal and F is a filter of L such that I ∩F is a chain
and L = I ∪F , then L ∈ {I, F}. Then we say that L is indecomposable with respect
to the Hall-Dilworth gluing over chains, HDc-indecomposable for short. Each of
patchwork-irreducibility, HDg-indecomposability and HDc-indecomposability im-
plies that our lattice is not a chain, it is glued sum indecomposable and consists of
at least four elements.

Theorem 3.4. Let L be a planar semimodular lattice. Assume that |L| ≥ 4. Then
the following seven conditions are equivalent.

(i) L is a patchwork-irreducible lattice;
(ii) L is indecomposable with respect to the Hall-Dilworth gluing;
(iii) L is indecomposable with respect to the Hall-Dilworth gluing over chains;
(iv) L is a rectangular lattice whose weak corners w`

D and wr
D, with respect to some

planar diagram D of L, are coatoms;
(v) L has a planar diagram such that the intersection of the leftmost coatom and

the rightmost coatom is 0;
(vi) for each planar diagrams of L, the intersection of the leftmost coatom and the

rightmost coatom is 0;
(vii) L is an anti-slimming of a lattice obtained from the four-element Boolean

lattice by adding finitely many forks one by one.

By a patch lattice we mean a rectangular lattice L whose weak corners, with
respect to some D ∈ Diag(L), are coatoms; that is, a lattice satisfying 3.4(iv)
above. Theorem 3.4 offers six alternative definitions. Some slim patch lattices
are given in Figure 2. Some non-slim patch lattices occur among the members of
PPPmax(L) in Figure 3. Theorem 3.4 trivially leads to the following structure theorem,
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which, opposed to Proposition 2.2 (and the other theorem of [7]), does not need
the concept of a corner.

Corollary 3.5 (A structure theorem). Each planar semimodular lattice can be
constructed as the last member of a finite list L1, L2, . . . , Ln such that each Li

(i = 1, . . . , n) is either a patch lattice (constructed according to Theorem 3.4(vii)),
or there are j, k < i such that Li is a Hall-Dilworth gluing of Lj and Lk over
a chain. Conversely, every lattice constructed this way is a planar semimodular
lattice.

A patch of a lattice is an interval that is a patch lattice. Let PPP(L) denote the
set of all patches of L, and let PPPmax(L) be the set of maximal patches of L (with
respect to set inclusion). Our third structure theorem is the following one.

Theorem 3.6. Let L be a glued sum indecomposable planar semimodular lattice.
Then PPPmax(L) is a patchwork system for L.

For example, if L is the (glued sum indecomposable planar semimodular) lattice
given by Figure 3, then PPPmax(L) is depicted in the same figure. This L is not slim.
If we deleted all the black-filled elements, then we would obtain a slim lattice L′,
and the figure would depict PPPmax(L′).

Since S7 is not a modular lattice, in the modular case we cannot add forks.
Similarly, in the distributive case we cannot add eyes. Hence Theorems 3.4 and 3.6
together with Proposition 2.1 clearly imply the following two corollaries (except for
the last sentence of the second one). The first of them is a folklore result (with
another terminology), see also Grätzer and Knapp [15, Introduction].

Corollary 3.7. If L is a glued sum indecomposable planar distributive lattice, then
PPPmax(L) is the set of all 4-cells, and it is a patchwork system for L.

The definition of Herrmann’s S-glued systems will not be needed here; the reader
can see [20] for details. The main result of Herrmann [20] asserts that the maximal
complemented (equivalently, maximal atomistic) intervals of a modular lattice M
of finite length form an S-glued system, which we denote by HHHHerrm(M ).

Corollary 3.8. If L is a glued sum indecomposable planar modular lattice, then
PPPmax(L) is the set of all non-chain intervals of length 2. Moreover, the patchwork
system PPPmax(L) coincides with the S-glued system HHHHerrm(L).

Hence Theorem 3.6 extends the main result of Herrmann [20] to planar semi-
modular lattices. However, there is an essential difference. If M is a modular
lattice, then % :=

⋃
{A2 : A ∈ HHHHerrm(M )} is a lattice tolerance, see Day and

Herrmann [10], and the quotient lattice L/ρ in the sense of [1] is what Herrmann
calls the “skeleton” of his construction. However, if L is (the planar semimodular)
lattice given in Figure 3, then % :=

⋃
{A2 : A ∈ PPPmax(L)} is not a lattice tolerance.

Hence we do not associate “skeleton lattices” with patchwork systems.

4. More about planar diagrams

Lemma 4.1. Let L′
i be a full slimming sublattice of a planar semimodular lattice

Li, for i ∈ {1, 2}. If L1 is isomorphic to L2, then L′
1 is isomorphic to L′

2.

Remark 4.2. This lemma allows us to speak of the full slimming of a slim semi-
modular lattice L: it is any of the full slimming sublattices of L, and it is considered
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an abstract lattice. Lemma 4.1 implies that the full slimming L′ of L is uniquely
determined up to isomorphism. In other words, the isomorphism type of L′ does
not depend on the planar diagram of L.

Proof of Lemma 4.1. We apply induction by |L1|. LetDi be a planar diagram of Li,
for i ∈ {1, 2}. Let ϕ : L1 → L2 be an isomorphism. If L1 is slim, then the statement
is trivial. Assume that L1 is not slim. Then there are u < v ∈ L1 such that [u, v]
is an interval of length two and [u, v] contains a doubly irreducible element s1
that belongs to intD1 ([u, v]) (the interior of [u, v] with respect to the diagram D1).
Let s2 be a doubly irreducible element of L2 that belongs to intD2 ([ϕ(u), ϕ(v)]).
Then t := ϕ−1(s2) is a doubly irreducible element in L1, and it belongs to [u, v].
Obviously, there is an automorphism of L1 that sends s1 to t and t to s1, and keeps
any other element fixed. Let ψ denote the composite of this automorphism and ϕ.
Then ψ : L1 → L2 is an isomorphism and ψ(s1) = s2.

Let L−
i := Li \{si}, for i ∈ {1, 2}, and let D−

i denote the diagram obtained from
Di by removing si. The restriction ψ− of ψ to L−

1 is an isomorphism ψ− : L−
1 → L−

2 .
Clearly, L′

i is the full slimming sublattice of L−
i with respect to D−

i , for i = 1, 2.
Since |L−

1 | < L1, the induction hypothesis applies, and we obtain that L′
1
∼= L′

2. �

Two-element intervals are called prime intervals. That is, [a, b] is a prime interval
iff a ≺ b. A covering square B is formed by four edges, which are the prime intervals
of B. Opposed to 4-cells of a given diagram, covering squares need not be regions.

Lemma 4.3. Let [a, b] be a prime interval of a glued sum indecomposable planar
semimodular lattice. Then a is meet-reducible or b is join-reducible. Furthermore,
[a, b] is an edge of a covering square. Moreover, for any fixed planar diagram of L,
[a, b] is an edge of a 4-cell of D.

Proof. By way of contradiction, assume that a ≺ b such that a ∈ Mi(L) and
b ∈ Ji(L). Since L is glued sum indecomposable, we can select a minimal y ∈ L
such that y ‖ b. Then y 6= 0, so it has a lower cover x. By the minimality of
y, we have that x < b , which gives that x ≤ a. Semimodularity yields that
a = a ∨ x � a ∨ y. This means that a ∨ y is a or b since b is the only cover of
a. However, both possibilities lead to y ≤ b, a contradiction. Thus, a /∈ Mi(L) or
b /∈ Ji(L), proving the first part of the lemma.

If a is meet-reducible, then it has a cover c distinct from b, and S = {a, b, c, b∨c}
is a covering square by semimodularity. The prime interval [a, b] is an edge of S. If
we chose c such that b and c are neighboring covers of a (in the fixed diagram D),
then S is a 4-cell. Next, assume that b is join-reducible. Then, with respect to D,
there is a c ∈ L such that a and c are neighboring lower covers of b. Then [a∧ c, b]
is a 4-cell by [7, Lemma 13], and [a, b] is one of its edges. �

On the set Prin(L) of all prime intervals of L, we define a relation µ as follows: for
p, q ∈ Prin(L), let p µ q mean that there is a covering square B such that both p and
q are edges of B. We will also need a similar relation defined on Prin(D) = Prin(L),
where D ∈ Diag(L). For p, q ∈ Prin(L), let p %D q mean that there is a 4-cell B in
the diagram D such that both p and q are edges of B. Both µ and %D are reflexive
and symmetric relations, provided L belongs to the scope of Lemma 4.3. Their
transitive closures will be denoted by µ∗ and %∗D.
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Lemma 4.4. Let L be a glued sum indecomposable planar semimodular lattice, and
let D ∈ Diag(L). Then µ∗ and %∗D are the “full relation” Prin(L) × Prin(L) on the
set of prime intervals of L.

Proof. Clearly, µ ⊆%∗D . Therefore, it suffices to deal with µ. Let [u, v] ∈ Prin(L).
By induction on the height h(v) of v, we are going to show that

(4.1) there is an atom r ∈ L such that [0, r] µ∗ [u, v].

By reflexivity, this is trivial for h(v) = 1. So let h(v) ≥ 2. Let a and b be the
leftmost lower cover and the rightmost lower cover of u, respectively. (They are not
distinct in general, and they are never distinct if h(v) = 2.) Let H be a maximal
chain in ↑v. Then W := BD

left(↓u) ∪H and E := BD
right(↓u) ∪H are maximal chains

of L, and a ∈ W and b ∈ E. These two maximal chains divide L into the strict
left side LW := leftDside(W ) \W of W , the strict right side RE := rightD

side(E) \E of
E, and H ∪ ↓u = rightD

side(W ) ∩ leftD
side(E). Since L is glued sum indecomposable,

there is an x ∈ L such that x ‖ u. We assume that x is minimal with respect to
this property. By left-right symmetry, we can also assume that x ∈ RE . There are
two cases.

Assume first that b ≤ x. Then b < x since x ‖ u and b < u. Take an atom x′ in
the interval [b, x]. Then u 6≤ x gives that x′ 6= u. Hence, as two covers of b, x′ and
u are incomparable. Since x was minimal with respect to this property, we obtain
that x′ = x. That is, we have the situation

(4.2) there is an x ∈ RE such that x 6= u and b ≺ x.

Let t = u ∨ x. Then {b, u, x, t} is a covering square by semimodularity. If t 6= v,
then {u, v, t, v ∨ t} is another covering square. Since h(u) < h(v), the induction
hypothesis yields an atom r ∈ L such that [0, r] µ∗ [b, u]. The covering square
{b, u, x, t} gives that [b, u] µ∗ sq[u, t]. Hence [u, t] µ∗ [u, v] follows either from v = t
and reflexivity, see Lemma 4.3, or from the covering square {u, v, t, v ∨ t}. By
transitivity, [0, r] µ∗ [u, v], as desired.

Secondly, we assume that b 6≤ x, that is, b < b ∨ x. Since x ‖ u, x has a lower
cover x0. The minimality of x gives that x0 < u. Hence x0 is on the left side of E
while x ∈ RE is on the strict right side of E. We conclude from (2.5) and x0 ≺ x
that x0 ∈ E. Hence x0 ∈ Bright(↓u). Since Bright(↓u) is a chain and x 6= u, we
obtain that x0 ≤ b. Hence b = b∨x0 ≺ b∨x by semimodularity. Clearly, b∨x 6= u
since u ‖ x. Moreover, b ∨ x ‖ u since h(b ∨ x) = h(b) + 1 = h(u). Furthermore,
E ∪RE is a region (surrounded by E and Bright(L)) that contains b and x. Hence
b ∨ x ∈ E ∪ RE since regions are (convex) sublattices. Since b ∨ x ‖ u ∈ E, we
obtain that b ∨ x ∈ RE. Therefore b ∨ x (instead of x) witnesses that (4.2) holds,
which does the job. We have seen that (4.1) holds for each prime interval [u, v].

Finally, for any two atoms, r1 and r2, {0, r1, r2, r1 ∨ r2} is a covering square and
[0, r1] µ∗ [0, r2]. Hence the lemma follows from (4.1) by transitivity. �

The following lemma it not at all surprising.

Lemma 4.5. Let L be a planar lattice, and let S and T be 4-cells of D ∈ Diag(L).
Assume that S and T has a common edge on the same side, that is, Prin(BD

left(S))∩
Prin(BD

left(T )) 6= ∅ or Prin(BD
right(S)) ∩ Prin(BD

right(T )) 6= ∅. Then S = T .

Proof. Assume, by way of contradiction, that a, b ∈ L such that a ≺ b and a, b ∈
Bleft(S) ∩ BD

left(T ).
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Firstly, assume that a, b ∈ BD
sw(S) ∩ BD

sw(T ). Let c = wr
S = wr

D(S) and d = wr
T .

Since S 6= T , we have that c 6= d. Let, say, d be strictly on the right of c, and extend
{a, c, b∨ c} = Bright(S) to a maximal chain C of L. If b∨d = 1T was strictly on the
right of C, then b ≺ b∨d would contradict (2.5). If 1T was strictly on the left of C,
then d ≺ b ∨ d would induce the same contradiction. Hence 1T ∈ C together with
h(1T ) = h(1S) gives that 1T = 1S. However, then c ∈ int(T ) is a contradiction
since T is a 4-cell. By duality, a, b ∈ Bnw(S) ∩Bnw(T ) also leads to a contradiction.

Secondly, assume that a, b ∈ Bsw(S) ∩ Bnw(T ). Let c = wr
S again. Since wr

T is
strictly on the right of the previous C and b is strictly on the left of C, wr

T ≺ b
contradicts (2.5). �

Definition 4.6. For i = 1, 2, let Di ∈ Diag(Li), and let ϕ : L1 → L2 be a lattice
isomorphism. Then ϕ is a directed diagram isomorphism (L1, D1) → (L2, D2), if

(i) ϕ(BD1
left ([a, b])) = BD2

left ([ϕ(a), ϕ(b)]) and ϕ(BD1
right([a, b])) = BD2

right([ϕ(a), ϕ(b)]),
for all a < b ∈ L1, and

(ii) for each maximal chain C of L1, we have that ϕ(leftD1
side(C)) = leftD2

side(ϕ(C))
and ϕ(rightD1

side(C)) = rightD2
side(ϕ(C)).

By reflecting the diagramD trough a vertical axis we obtain its mirror image Dmir.
Let idL denote the identical L → L, x 7→ x mapping. We say that L is uniquely
oriented if for any two planar diagrams D and F of L, idL : (L,D) → (L,F ) or
idL : (L,D) → (L,Fmir) is a directed diagram isomorphism.

For example, S7 in Figure 2 is uniquely oriented but M3 is far from that. We
are interested in planar diagram only up to directed diagram isomorphisms.

Lemma 4.7.
(i) Let L1 and L2 be glued sum indecomposable slim semimodular lattices, and

let ϕ : L1 → L2 be a lattice isomorphism. Assume that D1 ∈ Diag(L1) and
D2 ∈ Diag(L2). Then ϕ : (L1, D1) → (L2, D2) or ϕ : (L1, D1) → (L2, D

mir
2 ) is

a directed diagram isomorphism.
(ii) Each glued sum indecomposable slim semimodular lattice is uniquely oriented.

Proof. Observe that part (i), applied to the identical mapping, implies part (ii).
Hence it suffices to prove part (i). It follows from [7, Lemma 7] that the set
{ϕ(BD1

left (L1)), ϕ(BD1
right(L1))} is equal to {BD2

left (L2),BD2
right(L2)}. Hence, after replac-

ing D2 by Dmir
2 if necessary, we can assume that ϕ(BD1

left (L1)) = BD2
left (L2) and

ϕ(BD1
right(L1)) = BD2

right(L2). For a prime interval p ∈ Prin(L1), the distance of p

from BD1
left (L1) will be measured by

(4.3) d(p) := min{n ∈ N0 : there is a q ∈ Prin(BD1
left (L1)) such that q µn p},

where µ is defined right before Lemma 4.4. Notice that, in virtue of (2.3), the
covering squares of L1 and the 4-cells of D1 are the same. Hence µ in (4.3) can
be, and sometimes will be, replaced by %D1 . For a 4-cell S of L1 (with respect to
D1), we let d(S) := min{d(p) : p ∈ Prin(S)}. By Lemma 4.4, d(p) and d(S) are
well-defined. We will show by induction on d(S) that, for each 4-cell S of L1,

(4.4) ϕ(BD1
left (S)) = BD2

left (ϕ(S)) and ϕ(BD1
right(S)) = BD2

right(ϕ(S)).

If d(S) = 0, which means that S has an edge on the left boundary chain, then
(4.4) is evident. Assume that n := d(S) > 0, and p ∈ Prin(S) such that d(p) = n.
Then there are a q ∈ Prin(BD1

left (L1)) and an r ∈ Prin(L1) such that q %n−1
D1

r and
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r %D1 p. Clearly, d(r) ≤ n − 1. (Actually, we have equality but we do not need
it.) By the definition of %D1 , there is a 4-cell T of L1 such that r, p ∈ Prin(T ).
Since d(T ) ≤ d(r) ≤ n − 1, we have that T 6= S. The induction hypothesis says
that ϕ(BD1

left (T )) = BD2
left (ϕ(T )) and ϕ(BD1

right(T )) = BD2
right(ϕ(T )). By Lemma 4.5, the

common edge r of S and T determines how the left-right orientation of S depends
on that of T , and this “determination” is preserved by ϕ. This fact together with
the induction hypothesis implies that ϕ(BD1

left (S)) = BD2
left (ϕ(S)) and ϕ(BD1

right(S)) =
BD2

right(ϕ(S)). This completes the proof of (4.4).
In the rest of the proof we will focus mainly on the left sides; if the corresponding

right sides are not mentioned then their treatment would be analogous. Let a <
b ∈ L1. By Lemma 2.3, we can assume that [a, b] is a glued sum indecomposable
lattice since otherwise we could deal with its glued summands. Hence a is meet-
reducible in [a, b]. Moreover, [a, b] is a slim lattice by (2.2). Therefore, we conclude
from (2.1) that a has exactly two covers, c and d, in [a, b]. By semimodularity and
(2.3), S := {a, c, d, c∨ d} is a 4-cell. Roughly saying, the idea is that [a, b] is slim,
its boundary is determined, its bottom 4-cell S intersects the boundary of [a, b] in
{a, c, d} = BD1 (S) \ {1S}, so S determines which one of the boundary chains is the
left one and which one is the right one. More exactly, [7, Lemma 7] yields that
{ϕ(BD1

left ([a, b])), ϕ(BD1
right([a, b]))} = {BD2

left ([ϕ(a), ϕ(b)]),BD2
right([ϕ(a), ϕ(b)])}. Hence,

knowing that (4.4) holds for S and keeping {c, d} ⊆ BD1 ([a, b]) in mind, we conclude
that ϕ satisfies 4.6(i).

Next, we prove the validity of 4.6(ii) for L1 by induction on length(L1). The
case length(L1) = 2, where L1 necessarily equals 22, is trivial. Let length(L1) ≥ 3,
and let C be a maximal chain of L1. Since L1 is glued sum indecomposable, it
has exactly two atoms, u and v, by (2.1). Let, say, u ∈ C. We have previously
assumed that ϕ(BD1

left (L1)) = BD2
left (L2). By the left-right symmetry, we can assume

that u ∈ BD1
left (L1); notice that we will not be allowed to use the left-right symmetry

for the right side of C later. By the induction hypotheses, ϕ(leftD1∩↑u
side (C \ {0})) is

equal to leftD2∩↑ϕ(u)
side (ϕ(C) \ {0}). Hence

ϕ
(
leftD1

side(C)
)

= ϕ
(
{0} ∪ leftD1∩↑u

side (C \ {0})
)

= {0} ∪ leftD2∩↑ϕ(u)
side (ϕ(C) \ {0}) = leftD2

side(ϕ(C)).

Since ϕ is a bijection, the equation just obtained implies that ϕ
(
rightD1

side(C)
)

=
ϕ
(
C∪ (L1\ leftD1

side(C))
)

= ϕ(C)∪
(
L2 \ leftD2

side(ϕ(C))
)

= rightD2
side(ϕ(C)). This shows

that ϕ satisfies 4.6(ii), completing the induction. �

Let L be a planar semimodular lattice, and x ∈ L. We say that x is a possible
weak corner of L, if x is a weak corner of L with respect to some planar diagram
of L. The set of possible weak corners of L will be denoted by Cornpw(L). Clearly,
Cornpw(L) ⊆ Ji(L) ∩ Mi(L) but the converse inclusion does not hold in general.
(For example, if L is obtained from a grid by insert an eye e into a “middle 4-cell”,
then e /∈ Cornpw(L).) The set of non-chain intervals of length 2 will be denoted
by Ivl2(L). By the trunk of an I ∈ Ivl2(L), denoted by Trnk(I), we mean the
nontrivial antichain I \ {0I, 1I}. As usual, the unique lower cover and upper cover
of a doubly irreducible element x is denoted by x− and x+, respectively.

Lemma 4.8. Let L be a glued sum indecomposable planar semimodular lattice with
a fixed planar diagram D. Then Cornpw(L) = {x ∈ L : x is a double irreducible
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element, [x−, x+] ∈ Ivl2(L), and Trnk([x−, x+]) contains a weak corner of L with
respect to D}.

Proof. Let U denote the set on the left of the equality sign in the lemma. Firstly,
to prove the “⊇” inclusion, assume that x ∈ U . Let w be a weak corner of D
witnessing that x ∈ U . Clearly, [w−, w+] = [x−, x+]. Since both x and w are
doubly irreducible elements of [w−, w+] ∈ Ivl2(L), there is an automorphism of L
that interchanges w and x but keeps the rest of elements fixed. Therefore, if we
interchange the labels w and x in the diagramD, we obtain a new diagram in which
x is a weak corner. Hence x ∈ Cornpw(L), which proves that Cornpw(L) ⊇ U .

To prove the converse inclusion, assume that v ∈ Cornpw(L). Then there is an
F ∈ Diag(L) such that v is a weak corner with respect to F . This implies that
v ∈ Ji(L)∩Mi(L). We obtain from Lemma 4.3 that v− has a cover y that is distinct
from v. Since v = v ∨ v− � v ∨ y 6= v by semimodularity and v+ is the only cover
of v, we obtain that v ∨ y = v+ and I := [v−, v+] ∈ Ivl2(L). This yields that if v
happens to be a weak corner of D, then v ∈ U . So we can assume that v is not
a weak corner of D. Let L′

D be the full slimming sublattice of L with respect to
D. Assume for a contradiction that v ∈ L′

D. Then v does not belong to intD(L′
D)

since otherwise it would be join-reducible by (2.10). Hence v ∈ BD(L′
D) = BD(L),

implying that v is a weak corner of D, a contradiction again.
Therefore, v ∈ L \ L′

D. Let a resp. b denote the left weak corner resp. the right
weak corner of I with respect to D. In other words, a is the leftmost element of
Trnk(I), and b is the rightmost one. Clearly, a, b ∈ L′

D. Hence |{v, a, b}| = 3. It
follows from v ∈ BF (L), (2.6) and (2.9) that v belongs to BF (I). This together
with |BF (I)| ≤ 2 and |{v, a, b}| = 3 yields that {a, b} 6⊆ BF (I). Let, say, b /∈ BF (I).
We conclude from (2.7) that v− is the only lower cover of b and v+ is the only upper
cover of b. Hence b ∈ Ji(L)∩Mi(L). In particular, b ∈ Ji(L′

D). Hence (2.10) implies
that b ∈ BD(L′

D) = BD(L). Therefore, b is a weak corner of D. Thus, v ∈ U . �

Lemma 4.9. Let L be a rectangular lattice, and let F be a planar diagram of L.
(Not necessarily the same that witnesses the rectangularity of L.) Then

(i) F has exactly one left weak corner w`
F and exactly one right weak corner wr

F ,
and they are complementary.

(ii) Consequently, all planar diagrams are “equally appropriate” when we want to
verify the rectangularity of a planar semimodular lattice.

(iii) BF (L) \ BF
south(L) and BF (L) \ BF

north(L) do not depend on F ∈ Diag(L).

Notice that 4.9(ii) will often be used implicitly.

Proof. We can assume that length(L) ≥ 3 since otherwise the statement is evident.
Let D be a fixed planar diagram that witnesses the rectangularity of L. In particu-
lar, we know that w`

D and wr
D are complementary elements. Let ID

` := [w`
D

−
, w`

D
+]

and ID
r := [wr

D
−, wr

D
+] be the intervals of length 2 whose trunk contains w`

D and
wr

D, respectively.
Next, let F ∈ Diag(L) be arbitrary. We know from (2.4) that there is a double

irreducible element x in BF
left(L) \ {0, 1}. Lemma 4.8 implies that x ∈ Trnk(ID

` ) or
x ∈ Trnk(ID

r ). Let, say x ∈ Trnk(ID
` ); the other case would be left-right symmetric

and needs no separate treatment.
Assume for a contradiction that x′ is another weak corner of F such that x′ is

comparable with x. Let, say, x′ < x. Since x′+ 6= x by Lemma 4.3, we have that
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x′+ ≤ x−. We obtain x′ ∈ Trnk(ID
r ) from Lemma 4.8, and wr

D
+ = x′+ ≤ x− =

w`
D

−. Hence wr
D < w`

D contradicts the fact that w`
D and w`

D are complementary
elements and they are distinct from 0 and 1. Consequently,

(4.5) no two distinct weak corners of F are comparable.

In particular, since BF
left(L) is a chain, x is the only weak left corner of F ; so we

denote it by x = w`
F . Clearly,

(4.6) w`
F

−
= w`

D

−
and w`

F

+
= w`

D

+
.

Similarly, BF
right(L) has a unique doubly irreducible element y, and y ∈ Trnk(ID

` )
or y ∈ Trnk(ID

r ). Assume for a contradiction that y ∈ Trnk(ID
` ). Then y− =

(w`
D)− = x− and y+ = (w`

D)+ = x+. Since x− ∈ BF
left(L), x− = y− ∈ BF

right(L)
and L is glued sum indecomposable, it follows that x− = 0L. Dually, x+ = y+ ∈
BF

left(L) ∩ BF
right(L) yields that x+ = 1L. This contradicts length(L) ≥ 3. Therefore

y = wr
F ∈ Trnk(ID

r ) is the unique right weak corner of F and we have that

(4.7) wr
F
− = wr

D
− and wr

F
+ = wr

D
+.

We know from (4.5) that w`
F ‖ wr

F . Hence (4.6) and (4.7) yield that w`
F ∧ wr

F =
w`

F
− ∧ wr

F
− = w`

D
− ∧ wr

D
− = 0 and w`

F ∨ wr
F = w`

F
+ ∨ wr

F
+ = w`

D
+ ∨ wr

D
+ = 1.

That is, w`
F and wr

F are complementary elements. This proves 4.9(i).
Next, (2.12) yields that

(4.8) BF (L) \ BF
south(L) = ↑w`

F

+ ∪ ↑wr
F

+ and BF (L) \ BF
north(L) = ↓w`

F

− ∪ ↓wr
F
−,

proving 4.9(iii). Finally, (4.8), (4.6) and (4.7) imply 4.9(ii). �

5. Some properties of elements and rectangular intervals versus
diagrams

Lemma 5.1. Let I be a rectangular interval of a slim semimodular lattice L. As-
sume that a ∈ I, b ∈ L \ I such that a < b. Then [a, b] ∩ BD

north(L) 6= ∅, for all
D ∈ Diag(L).

Proof. Let D ∈ Diag(L). We know from Lemma 4.9(ii) that the rectangularity
of I is witnessed by D. It follows from (2.6) and (2.7) that there is a maximal
x ∈ B(I) = BD(I) such that a ≤ x < b. Let x+ be an atom in [x, b]; it is not in I by
the choice of x. If we had x /∈ Bnorth(I), then x would have at least two additional
covers in I by (2.14), which would contradict (2.1). Hence x ∈ [a, b] ∩ Bnorth(I)
proves the statement. �

Lemma 5.2. Assume that I is a rectangular interval of a slim semimodular lat-
tice L and D ∈ Diag(L). Then the intervals [0I, w

`
D(I)]L and [0I , w

r
D(I)]L, under-

stood in L, are chains.

Proof. By way of contradiction, we assume that, say, [0I, w
`
I ]L is not a chain. Then

there is an x ∈ [0I, w
`
I]L \ {w`

I} with (at least) two distinct covers, y1 and y2,
in [0I, w

`
I]L. Let, say, y1 ∈ [0I, w

`
I]I (the interval within I). Then y2 /∈ I, since

[0I, w
`
I]I is a chain by (2.11) and (2.12). By (2.14), there is an y3 ∈ I \ {y1} such

that x ≺ y3. Now we have three distinct covers of x, which contradicts (2.1). �

Lemma 5.3. If L is a planar semimodular lattice and u ∈ L\Mi(L), then any two
covers of u have the same join.
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Proof. Fix a D ∈ Diag(L), and let L′ be the full slimming sublattice of L with
respect to D. Then u ∈ L′. We obtain from (2.1) that u has exactly two covers, a
and b, within L′. Let v = a∨ b ∈ L′. All further covers of u in L are eyes belonging
to [u, v]. Hence the join of arbitrary two distinct covers of u equals v. �

If L is a planar semimodular lattice and x ∈ L, then the height of x is defined
to be the length of any maximal chain of ↓x. (By the Jordan-Hölder theorem, no
matter which chain is considered). Let D ∈ Diag(L) be fixed. Let x, y ∈ L with
h(x) = h(y). We say that x is on the left of y, with respect to D, if for every
(equivalently, some) maximal chain C of L that contains y, x is on the left of C.
(Equivalently, if y ∈ rightDside(C) for all maximal chains C that contain x.) Let us
emphasize that, in our terminology, “x is on the left of y” implies that h(x) = h(y).
If x is on the left of y, x 6= y and there is no z ∈ L \ {x, y} such that x is on the
left of z and z is on the left of y, then y is the right neighbor of x (with respect to
D). Clearly,

if x belongs a maximal chain C, h(x) = h(y) and y is (strictly)
on the left of x, then y is (strictly) on the left of C;

(5.1)

if x is on the left of y, y is on the left of x and h(x) = h(y), then x = y;(5.2)

if x ∈ Bleft(L) and h(x) = h(y), then x is on the left of y;(5.3)

each x ∈ L \ BD
right(L) has a unique right neighbor (with respect to D).(5.4)

Notice that these assertions imply, for a planar semimodular L, that

(5.5) if a ∈ BD
left(L), then BD

left(↓a) = BD
left(L) ∩ ↓a and BD

left(↑a) = BD
left(L) ∩ ↑a.

Indeed, for x ∈ BD
left(L) ∩ ↓a, let y denote the unique element of BD

left(↓a) such that
h(x) = h(y). Applying (5.3) to L and also to ↓a, we obtain that x and y are
mutually on the left of each other. Hence they are equal by (5.2), and the first
equality of (5.5) follows. The second one holds by duality.

The following lemma is the counterpart of Lemma 5.3. Although it looks evident
by our geometric intuition, its rigorous proof needs a result borrowed from Kelly
and Rival [23].

Lemma 5.4. Assume that a and b are the leftmost lower cover and the rightmost
lower cover of an element v in some planar diagram of a planar lattice L, respec-
tively. Then a ∧ b is the meet of all lower covers of v.

Proof. We can clearly assume that a 6= b. Let u = a ∧ b. By (2.6), I := [u, v] is
a region. Let C0 and C1 be maximal chains in ↓u and in ↑v, respectively. Then
W := C0 ∪ Bleft(I) ∪ C1 and E := C0 ∪ Bright(I) ∪ C1 are maximal chains in L. It
follows from Kelly and Rival [23] that

(5.6)
I = {x ∈ L : x is on the right of W , x is and on the left of E,

x 6≤ u and x 6≥ v}.
Let x be a lower cover of v. Then x cannot be strictly on the left of W since then x
would be strictly on the left of the leftmost lower cover, a. Hence x is on the right
of W and, similarly, on the left of E. This together with (5.6) shows that x ∈ I.
Hence u = 0I ≤ x for all lower covers x of v, proving the lemma. �

Although the boundary of a planar semimodular lattice L is not unique in gen-
eral, see M3, the following assertion holds.
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Lemma 5.5. Let L be a glued sum indecomposable planar semimodular lattice, and
let D be a planar diagram of L. Let I and J be rectangular intervals such that I∩J
is a chain. Then I ∩ J ⊆ BD(I) ∩ BD(J).

Proof. Let x be the least element of the chain I∩J . Assume first that x ∈ intD(I)∩
intD(J). Then x 6= 0L, so x has a lower cover y. By (2.6) and (2.8), y ∈ I ∩ J ,
contradicting the choice of x. This excludes that x ∈ intD(I) ∩ intD(J).

Secondly, we assume that x ∈ BD(I) ∩ intD(J). By (2.6) and (2.8), all lower
covers of x belong to J . Hence, by the choice of x, no lower cover of x belongs
to I. This means that x = 0I . However, then x has at least two covers in I, and
these covers belong to J (and therefore to I ∩ J) by (2.6) and (2.8). This is a
contradiction since I ∩ J is a chain. Thus, taking the I-J symmetry into account,
we conclude that x /∈ BD(I) ∩ intD(J) and x /∈ intD(I) ∩ BD(J).

Therefore, x ∈ BD(I)∩BD(J). Assume for a contradiction that x has more than
one covers both in I and J . Let a1, a2 ∈ I and b1, b2 ∈ J covers of x such that
a1 6= a2 and b1 6= b2. Let v := a1 ∨ a2 ∈ I. Since a1 ∨ a2 = b1 ∨ b2 by Lemma 5.3,
v ∈ J . By the convexity of I ∩ J , we have that {a1, a2} ⊆ [u, v] ⊆ I ∩ J , which is a
contradiction since I ∩ J is a chain. This proves that, say, x has at most one cover
in I. This fact together with (2.14) implies that x ∈ BD

north(I).
We are now in the position to show that each y ∈ I∩J belongs to BD(I)∩BD(J).

We already know this if y = x. Hence we can assume that y > x. We obtain from
x ∈ BD

north(I) and (2.12) that y ∈ BD
north(I) \ BD

south(I). Hence (2.15) yields that y
has at least two lower covers, z1 and z2, in I. If we had y ∈ intD(J), then (2.6)
and (2.8) would imply {z1, z2} ⊆ J , and the antichain {z1, z2} ⊆ I ∩ J would be
a contradiction. Consequently, y ∈ BD(J), whence y ∈ BD(I) ∩ BD(J) proves the
statement. �

6. Some properties that depend on the full slimming of L

Given a rectangular interval or, in particular, a patch (interval) I = [u, v] of L, its
bottom and top will sometimes be denoted by 0I = u and 1I = v, while w`

I = w`
D(I)

and wr
I = wr

D(I) stand for its weak corners, with respect to D ∈ Diag(L).

Lemma 6.1. Let L be a planar semimodular lattice, and let L′ be the full slimming
of L. Then L′ is a slim semimodular lattice, and the following five assertions hold.

(i) L is a patchwork-irreducible lattice iff so is L′;
(ii) L is a rectangular lattice iff so is L′;
(iii) L is a patch lattice (that is, a rectangular lattice whose weak corners are

coatoms, see also Lemma 4.9(ii)) iff so is L′;
(iv) L is glued sum indecomposable iff so is L′.
(v) L is indecomposable with respect to the Hall-Dilworth gluing over chains iff so

is L′.
Moreover, if D is a fixed planar diagram of L, L′ denotes the full slimming sublat-
tice of L with respect to D, and D′ is the restriction of D to L′, then the following
three assertions also hold.
(vi) BD(L) = BD′

(L′).
(vii) Let a < b ∈ L. Then [a, b]L is a rectangular interval of L iff a, b ∈ L′

and [a, b]L′ is a rectangular interval of L′. In particular, [a, b]L ∈ PPP(L) iff
a, b ∈ L′ and [a, b]L′ ∈ PPP(L′). Hence [a, b]L ∈ PPPmax(L) iff a, b ∈ L′ and
[a, b]L′ ∈ PPPmax(L′).
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(viii) Let HHH = {[ai, bi]L : 1 ≤ i ≤ n} be a system of rectangular intervals of L, and
let HHH′ = {[ai, bi]L′ : 1 ≤ i ≤ n} be the corresponding system of rectangular
intervals of L′, see part (vii). Then HHH is a patchwork system for D iff HHH′ is
a patchwork system for D′.

In connection with parts (vi)–(viii), notice that we often write D for D′ in the
paper when an interval or a sublattice of L is considered.

Proof. In virtue of Lemma 4.1 (see also Remark 4.2), we can assume that L′ is
the full slimming sublattice of L with respect to a fixed planar diagram D even in
parts (ii)–(v) of the lemma. We will have to be more careful in case of (i) since
the full slimming sublattice and the patchwork system may depend on different
diagrams. Similarly, L could have intervals I whose rectangularity comes from
diagrams distinct from the restriction of D to I, and this phenomenon would cause
a lot of difficulty while proving (vii). Fortunately, Lemma 4.9 allows us to use D
(and its restriction) without caring with this possibility.

We know from Proposition 2.1 that L′ is a slim semimodular lattice. We can
assume that L 6= L′. Let e ∈ L\L′ denote an arbitrary eye. The 4-cell {e−, a, b, e+}
of L′, see (2.16), will be denoted by S. The notation a = ae and b = be are also
fixed in the proof.

Since e ∈ intD′
(S) ⊆ intD′

(L′) by (2.9), we insert the eyes into the interior of
L′. Hence BD(L) = BD′

(L′). This gives (vi), which implies (ii) and (iii). We also
obtain (iv) since glued sum indecomposability in the planar case means that the
lattice in question has at least four elements and {0, 1} is the intersection of the
left and the right boundary chains.

Assume that an eye e belongs to a rectangular interval I. Since e ∈ Mi(L)∩Ji(L),
we obtain that e /∈ {0I , 1I}. Hence [e−, e+] ⊆ I. Using (2.9), we conclude that
e ∈ intD([e−, e+]) ⊆ intD(I). That is,

(6.1) e cannot be on the boundary of a rectangular interval of L.

In particular, (6.1) implies that an eye cannot be the bottom or the top of a
rectangular interval. Therefore, if we consider an interval I as the pair (0I , 1I),
then we can say that L′ and L has “exactly the same” rectangular intervals. This
implies the first half (vii). The rest of (vii) is then evident since L′ is a cover-
preserving sublattice of L.

While proving (viii), we use the following notation: for I ∈ HHH, we let I′ :=
I ∩ L′ = [0I, 1I]L′ ; and for J ′ ∈ HHH ′, we let J := [0J ′, 1J ′ ]L. By the definition of
HHH′, we have that

(6.2) K ∈ HHH iff K ′ ∈ HHH ′, and (I, J) ∈ E
(
HHH

)
iff (I′, J ′) ∈ E(HHH′).

Since the tops and the bottoms of covering squares are the same in L as in L′, (6.2)
yields that HHH satisfies 3.1(i) iff so does HHH′.

If HHH satisfies 3.1(ii), then so does HHH′, evidently. Before proving the converse
implication, we we assert that, for all I, J ∈ HHH,

(6.3) if I′ ∩ J ′ is a chain, then I ∩ J = I′ ∩ J ′, whence I ∩ J is also a chain.

By way of contradiction, let us assume that (6.3) fails for some I, J ∈ HHH. Then
I ∩ J = [0I ∨ 0J , 1I ∧ 1J ]L contains an eye e. If 0I ∨ 0J /∈ {0I , 0J}, then 0I ∨ 0J

is join-reducible. If 0I ∨ 0J ∈ {0I, 0J}, then 0I ∨ 0J is meet-reducible. Hence, in
both cases, 0I ∨ 0J /∈ Ji(L) ∩ Mi(L). Dually, 1I ∧ 1J /∈ Ji(L) ∩ Mi(L). Therefore,
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e /∈ {0I ∨ 0J , 1I ∧ 1J}. Hence 0I ∨ 0J < e < 1I ∧ 1J , and we conclude that
0I ∨0J ≤ e− < a < e+ ≤ 1I ∧1J . This yields that a ∈ I′∩J ′. We obtain b ∈ I′∩J ′

similarly, which is a contradiction since I′ ∩ J ′ is a chain. This proves (6.3).
Next, assume that HHH′ satisfies 3.1(ii), and let (I, J) ∈ E

(
HHH

)
. Then (I′, J ′) ∈

E(HHH′) by (6.2), whence I′ ∩ J ′ is a chain. So is I ∩ J by (6.3). Hence HHH also
satisfies 3.1(ii).

As a preparation for 3.1(iii), assume that K ′ is an arbitrary rectangular interval
of L′. Equivalently, see 6.1(vii), we assume that K is a rectangular interval of L.
We claim that

(6.4)
K ′ is the full slimming sublattice of K
with respect to (the restriction of) D.

It suffices to show that ifK contains an eye e ∈ L\L′, then {e−, e+} ⊆ K ′. But this
is easy: if 0K ≤ e ≤ 1K , then 0K < e < 1K since e ∈ Ji(L) ∩ Mi(L), 0K /∈ Mi(L)
and 1K /∈ Ji(L), whence 0K ≤ e− < e < e+ ≤ 1K , indeed.

Since D′ is a restriction of D, either of (6.1) and (6.4) yields that

(6.5) BD′

left(K
′) = BD

left(K) and BD′

right(K
′) = BD

right(K).

It follows from (2.13), (2.14) and (2.15) that, for every rectangular lattice R and
F ∈ Diag(R),

(6.6) BF
north(R) = BF (R) \

(
R \ Mi(R)

)
and BF

south(R) = BF (R) \
(
R \ Ji(R)

)
.

Furthermore, it follows from (6.4) that K ′ \Mi(K ′) = K \Mi(K) and K ′ \Ji(K ′) =
K \ Ji(K). This together with (6.5) and (6.6) yields that

(6.7) BD′

north(K
′) = BD

north(K) and BD′

south(K
′) = BD

south(K).

Next, assume that HHH is a patchwork system for D. We have already seen that
HHH′ satisfies 3.1(i) and 3.1(ii). Let (I′, J ′) ∈ E(HHH′). Since (I, J) ∈ E

(
HHH

)
by (6.2),

we have that, say, I ∩ J ⊆ BD
north(I) ∩ BD

south(J). Hence, using (6.7), we obtain that
I′ ∩ J ′ ⊆ I ∩ J ⊆ BD

north(I) ∩BD
south(J) = BD′

north(I′) ∩ BD′

south(J ′). This shows that HHH ′

also satisfies 3.1(iii) for D′, so it is a patchwork system for D′.
Conversely, assume that HHH′ is a patchwork system for D′. We have already

seen that HHH satisfies 3.1(i) and 3.1(ii). Let (I, J) ∈ E
(
HHH

)
. Since (I′, J ′) ∈ E(HHH′)

by (6.2), we have that I′ ∩ J ′ is a chain and, say, I′ ∩ J ′ ⊆ BD′

north(I
′) ∩ BD′

south(J
′).

Consequently, using (6.3) and (6.7), we obtain that I ∩ J = I′ ∩ J ′ ⊆ BD′

north(I′) ∩
BD′

south(J ′) = BD
north(I) ∩ BD

south(J). Hence HHH satisfies 3.1(iii) for D. Thus, it is a
patchwork system for D. This completes the proof of (viii).

Next, armed with (viii), we derive (i). Assume that L is patchwork-reducible.
Then there is a D ∈ Diag(L) and there is a nontrivial patchwork system HHH for D.
Let L′

D be the full slimming sublattice of L with respect to D. We conclude from
(viii) that HHH ′ = HHH′

D is a nontrivial patchwork system for (the diagram restricted to)
L′

D. Hence L′
D is patchwork-reducible, and so is L′ since L′ ∼= L′

D by Lemma 4.1.
Conversely, assume that L′ is patchwork-reducible. Hence there is a D′ in

Diag(L′) such that there is a nontrivial patchwork system HHH′ for D′. Let F ∈
Diag(L), and take the full slimming sublattice L0 of L determined by F . Clearly,
Fmir would determine the same full slimming sublattice L0. The restriction of F
to L0 is denoted by F0. We know from Lemma 4.1 (and Remark 4.2) that there
exists a lattice isomorphism ϕ : L′ → L0. After replacing F by Fmir if necessary, we
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obtain from Lemma 4.7 that ϕ : (L′, D′) → (L0, F0) is a directed diagram isomor-
phism. Since 3.1(iii) is based on concepts preserved by this sort of isomorphisms,
ϕ(HHH ′) = {ϕ(I) : I ∈ HHH′} is a nontrivial patchwork system for F0. Hence 6.1(viii)
yields a nontrivial patchwork system for F , proving that L is patchwork-reducible.
This proves (i).

To prove the “if” part of (v), we assume that L is HDc-decomposable; we have to
show that so is L′. By the assumption, there are a proper ideal I and a proper filter
F of L such that L = I ∪F and C := I ∩F is a chain. Let I′ := I ∩L′, F ′ := F ∩L′

and C′ := C ∩ L′ = I′ ∩ F ′. Clearly, L′ = I′ ∪ F ′. Assume for a contradiction
that C′ = ∅. Then C contains an eye e since C 6= ∅. Using that C′ is empty and
{e−, e+} ⊆ L′, we infer that {e−, e+} ∩ C = ∅. It follows from e− < e ∈ I and
e− /∈ C that e− ∈ I \ F . Dually, we obtain that e+ ∈ F \ I. Using L = I ∪ F ,
we have that a = ae ∈ I or a ∈ F . However, a ∈ I gives that e+ = e ∨ a ∈ I,
contradicting e+ ∈ F \ I, while a ∈ F gives that e− = e ∧ a ∈ F , contradicting
e− ∈ I \F . This contradiction yields that C′ is nonempty, indeed. So C′ is a chain
since C′ ⊆ C. Since 0L and 1L are not eyes, they belong to L′, and 1L′ = 1L

and 0L′ = 0L. Hence if 1L′ belonged to I′, then 1L ∈ I would contradict I 6= L.
Therefore, 1L′ /∈ I′ shows that I′ is a proper ideal of L′. Working with 0L′ = 0L

dually, we obtain that F ′ is a proper filter of L′. Thus, L′ is HDc-decomposable,
indeed. This proves the “if” part of (v).

To prove the “only if” part of (v), we next assume that L′ is HDc-decomposable,
and we have to show that so is L. By the assumption, there are u, v ∈ L′ such
that L′ = [0, v]L′ ∪ [u, 1]L′, 0 < u ≤ v < 1, and C′ := [u, v]L′ = [0, v]L′ ∩ [u, 1]L′,
understood in L′, is a chain. Define I := [0, v]L and F := [u, 1]L, understood in
L. Then I and F are proper subsets of L since u 6= 0 and v 6= 1. Assume for a
contradiction that C := [u, v]L = I ∩ F contains an eye. Then e ∈ [u, v]L \ {u, v}
since e ∈ L \ L′. Hence e−, e+ ∈ [u, v]L implies that the 4-cell S is included in the
chain C′ = [u, v]L′, a contradiction. Thus, we conclude that C = C′, whence C is a
chain in L. Assume for a next contradiction that L 6= I ∪F . Then there is an eye e
such that e /∈ I = [0, v]L and e /∈ F = [u, 1]L. Hence e+ /∈ [0, v]L and e− /∈ [u, 1]L.
Using e− = a∧b and e+ = a∨b, we conclude that {a, b} 6⊆ [0, v]L and {a, b} 6⊆ [u, 1]L.
In fact, it is more reasonable to write {a, b} 6⊆ [0, v]L′ and {a, b} 6⊆ [u, 1]L′ since
a, b ∈ L′. On the other hand, {a, b} ⊆ L′ = [0, v]L′ ∪ [u, 1]L′. Therefore, we have
that, say, a ∈ [0, v]L′ \ [u, 1]L′ and b ∈ [u, 1]L′ \ [0, v]L′. It follows from e− /∈ [u, 1]L,
e− < b and b ∈ [u, 1]L′ that e− < e− ∨ u ≤ b. This together with e− ≺ b implies
that e− ∨ u = b. We know that u belongs to [0, v]L′. Since e− ≤ a ∈ [0, v]L′, we
have that e− also belongs to [0, v]L′. Therefore, b = e− ∨ u ∈ [0, v]L′, which is a
contradiction. Thus, L = I ∪F , and L is HDc-decomposable. This proves (v). �

7. Getting rid of diagrams

The fact that many of our concepts depends (at least formally) on the diagram
chosen causes a lot of inconvenience. The aim of this section is to get rid of this
difficulty by proving Proposition 3.2. The following lemma is not surprising.

Lemma 7.1. Let I be a rectangular interval of a planar semimodular lattice L,
and let D ∈ Diag(L). Assume that x ∈ I \ BD

right(I). Then the right neighbor of x
(in L, with respect to D) exists, and it belongs to I.

Proof. Let C0 and C1 be maximal chains in ↓0I and ↑1I , respectively. Clearly, there
are a unique s ∈ BD

left(I) and a unique t ∈ BD
right(I) such that h(s) = h(t) = h(x).
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If we had that x ∈ BD
right(L), then the left-right dual of (5.3), applied to I and also

to L, would imply that x and t mutually on the right of each other, whence (5.2)
would yield that x = t ∈ BD

right(I), a contradiction. Hence x /∈ BD
right(L). Therefore,

in virtue of (5.4), the (unique) right neighbor y of x makes sense. Moreover, the
left-right dual of (5.3) together with x /∈ BD

right(I) implies that t is strictly on the
right of x. Consequently, y is on the left of t, whence y is on the left of the maximal
chain C0 ∪ BD

right(I) ∪ C1. On the other hand, s is on the left of x by (5.3), which
yields that s is on the left of y. This gives that y is on the right of C0∪BD

left(I)∪C1.
Finally, y ∈ I follows in virtue of (5.6). �

Proof of Proposition 3.2. In order to show that (i) ⇒ (ii), we assume (i). Let
D ∈ Diag(L) be a diagram witnessing that 3.1(iii) holds. Consider a pair (I, J) ∈
E
(
HHH

)
. By the assumptions, I ∩ J is a chain and, say, I ∩ J ⊆ BD

north(I) ∩BD
south(J).

Let F ∈ Diag(L) be another diagram. We already know from Lemma 5.5 that
I∩J ⊆ BF (I)∩BF (J). If we had an element x ∈ I∩J such that x ∈ BF (I)\BF

north(I),
then x would have at least two covers within I by (2.14), applied to F , but this
would contradict (2.13), applied to D. Hence I ∩J ⊆ BF

north(I). Similarly, if we had
an element x ∈ I ∩ J such that x ∈ BF (J) \ BF

south(J), then x would have at least
two lower covers within J by (2.15), applied to F , but this would contradict (2.13),
applied to D. Hence I ∩ J ⊆ BF

south(J). Thus I ∩ J ⊆ BF
north(I) ∩ BF

south(J), which
means that (ii) holds.

Next, to show that (ii) ⇒ (iv), we assume (ii). Let D ∈ Diag(L). By the
I-J symmetry, we can assume that I ∩ J ⊆ BD

north(I) ∩ BD
south(J). Assume for a

contradiction that I ∩ J 6⊆ BD
ne(I) and I ∩ J 6⊆ BD

nw(I). Then there are x, y ∈ I ∩ J
such that x ∈ BD

nw(I) \ BD
ne(I) and y ∈ BD

ne(I) \ BD
nw(I). Since I ∩ J is a chain, we

can assume by left-right symmetry that x ≤ y. Using (2.12) and Lemma 4.9(ii), we
obtain that 1I = w`

D(I)∨wr
D(I) ≤ x∨y = y ≤ 1I , which gives that y = 1I ∈ BD

nw(I),
a contradiction. This shows that

(7.1) I ∩ J ⊆ BD
nw(I) or I ∩ J ⊆ BD

ne(I).

The dual argument yields that

(7.2) I ∩ J ⊆ BD
sw(J) or I ∩ J ⊆ BD

se (J).

We can assume that the disjunction “or” is an exclusive disjunction both in (7.1)
and (7.2) since otherwise the desired 3.2(iiib) for D trivially holds. Hence, by the
left-right symmetry and keeping the targeted 3.2(iiib) in mind, we can assume for
a contradiction that

(7.3) I ∩ J ⊆ BD
nw(I), I ∩ J 6⊆ BD

ne(I), I ∩ J ⊆ BD
sw(J), and I ∩ J 6⊆ BD

se (J).

Firstly, we assume that there is a u ∈ (I ∩ J) \ {1I , 0J}. Then u /∈ BD
right(I) since

BD
nw(I) ∩ BD

right(I) = {1I}. Similarly, u /∈ BD
right(J) since BD

sw(J) ∩ BD
right(J) = {0J}.

Hence, by Lemma 7.1, the right neighbor v of u with respect to D exists, and it
belongs to I ∩J . However, then u ‖ v and u, v ∈ I ∩J is a contradiction since I ∩J
is a chain.

Secondly, we assume that there is no such u. By (7.3), we can select x, y ∈ I ∩ J
such that x ∈ BD

nw(I)\BD
ne(I) and y ∈ BD

sw(J)\BD
se (J). Notice that x /∈ BD

right(I) since
I ∩ J ⊆ BD

north(I), and y /∈ BD
right(J) since I ∩ J ⊆ BD

south(J). If we had x ≥ y, then
u := x (or u := y) would lead to the previous case. Hence we assume that x < y.
If we had x 6= 0J or y 6= 1I , then u := x or u := y would again lead to the previous
case. Hence x = 0J and y = 1I . We can also assume that 0J = x ≺ y = 1I since
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otherwise, using the convexity of I ∩ J , we could choose a u ∈ I ∩ J ∩ [x, y] \ {x, y},
which would lead to the previous case again. Let z be the unique atom of J that
belongs to BD

right(J). Similarly, let t be the unique coatom of I that belongs to
BD

right(I).
Extend BD

right(I) ∪ {s ∈ BD
left(J) : s ≥ y = 1I} to a maximal chain C of L. Since

h(0J ) = h(1I)−1 = h(t) ∈ BD
right(I) ⊆ C and 0J = x /∈ BD

right(I), we obtain from the
left-right dual of (5.3) that 0J is strictly on the left of t. Hence (5.1) yields that 0J

is strictly on the left of C. Similarly, 1I = y /∈ BD
right(J) together with the left-right

dual of (5.3) gives that z is strictly on the right of 1I = y ∈ C, whence (5.1) yields
that z is strictly on the right of C. However, then 0J ≺ z contradicts (2.5). Thus,
(7.3) leads to a contradiction, proving (ii) ⇒ (iv).

The implication (iii) ⇒ (i) is evident. So is (iv) ⇒ (iii) since L is planar. �

8. Patch lattices

We are not in the position of proving Theorem 3.4 yet. However, some of its
parts will be needed in the next sections. Therefore, now we prove a part of it.

Lemma 8.1. (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔ (vi) of Theorem 3.4 hold.

Proof. (ii) ⇒ (iii) is obvious.
By Lemma 6.1, it suffices to prove the implication (iii) ⇒ (iv) only for slim

semimodular lattices. Hence assume that L is a slim semimodular lattice and (iii)
holds. Let D ∈ Diag(L). We know from (2.4) that there is a double irreducible
element in BD

left(L) \ {0, 1}. In fact, there is a smallest one since BD
left(L) is a chain;

we denote it by a. Let b0 denote the smallest element of BD
right(L) \ ↓a, and let b−0

be the unique lower cover of b0 that belongs to BD
right(L). Let c := a ∨ b0. From

semimodularity and a = a ∨ b−0 we obtain that a ≺ c. Since BD
left(L) is a chain and

a ∈ BD
left(L) has exactly one cover in L, we conclude that c ∈ BD

left(L). Let b be the
largest element of BD

right(L) ∩ ↓c. Then c = a ∨ b since b0 ≤ b ≤ c and c = a ∨ b0.
Assume that z1, z2 ∈ ↓c ∩ ↑b = [b, c]. By (2.10), there are xi ∈ BD

left(L) and
yi ∈ BD

right(L) such that zi = xi∨yi, for i ∈ {1, 2}. By the definition of b and zi ≤ c,
we know that yi ≤ b. Hence zi = zi∨b = xi∨b, for i ∈ {1, 2}. Since x1, x2 ∈ BD

left(L)
are comparable, so are z1 and z2. This together with b ≤ c shows that ↓c ∩ ↑b is
a chain. Next, consider an arbitrary z ∈ L; we want to show that z ∈ ↓c ∪ ↑b.
By (2.10), z = x ∨ y for some x ∈ BD

left(L) and y ∈ BD
right(L). We can assume that

y < b since otherwise z ∈ ↑b. Then we can assume that c < x since otherwise
z = x ∨ y ≤ c ∨ b = c would mean that z ∈ ↓c. Therefore, b ≤ c < x ≤ x ∨ y = z,
that is, z ∈ ↑b. This shows that L = ↓c ∪ ↑b.

Thus, by (iii), either ↓c = L or ↑b = L. But b−0 < b0 ≤ b excludes the latter,
so ↓c = L, which means that c = 1. This shows that the smallest (and therefore
every) doubly irreducible element on the left boundary is a coatom. In particular,
there is exactly one left weak corner with respect to D; it is a coatom and it will
be denoted by w`

D. Similarly, there is exactly one right weak corner wr
D. Since L is

glued sum indecomposable, BD
left(L)∩BD

right(L) = {0, 1}. This yields that w`
D 6= wr

D.
Hence w`

D ∨wr
D = 1 since they are coatoms. If w`

D ∧wr
D = 0, then (iv) is clear.

Assume for a contradiction that ↓w`
D is not a chain. By Lemma 2.3, ↓w`

D

has a glued some indecomposable component A. Obviously, BD
left(A) ∩ BD

right(A) =
{0A, 1A}. Hence (2.4) yields an element s ∈ BD

left(A)\BD
right(A) such that s is doubly

irreducible within A. It is obvious by Lemma 2.3 that BD
right(A) ⊆ BD

right(↓w`
D) and,
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taking (5.5) into account, BD
left(A) ⊆ BD

left(↓w`
D) ⊆ BD

left(L). Hence we conclude that
s ∈ BD

left(L)\BD
right(↓w`

D). Moreover, s is doubly irreducible also within ↓w`
D. Let s+

denote the unique cover of s in BD
left(↓w`

D) ⊆ BD
left(L). Evidently, s is join-irreducible

not only in ↓w`
D but also in L. Since w`

D is the only doubly irreducibly element (that
is, a weak left corner) on the left boundary of L and s < 1A ≤ w`

D, we conclude
that s is meet-reducible in L. Therefore, s has a cover s′ ∈ L \ ↓w`

D. Notice that
s′ 6= s+. Hence (5.3) yields that s′ is strictly on the right of s+, and we obtain from
(5.1) that s′ is strictly on the right of the maximal chain BD

left(L) = BD
left(↓w`

D)∪{1}.
If s′ was on the left of the maximal chain C := Bright(↓w`

D) ∪ {1}, then (5.6) (with
0 and w`

D acting as u and v, respectively) would imply that s′ ∈ ↓w`
D. Therefore

(8.1) s′ is strictly on the right of C.

Let t ∈ BD
right(A) ⊆ BD

right(↓w`
D) ⊆ C be the unique element with h(t) = h(s). Then

s 6= t since s /∈ BD
right(A). It follows from (5.3) that s is strictly on the left of t.

Hence (5.1) gives that s is strictly on the left of C. However, this fact together with
(8.1) and s ≺ s′ contradicts (2.5), proving that ↓w`

D is a chain.
Therefore, ↓w`

D ⊆ BD
left(L) and, similarly, ↓wr

D ⊆ BD
right(L). Combining this with

the glued sum indecomposability of L, we conclude that w`
D ∧ wr

D ∈ BD
left(L) ∩

BD
right(L) = {0, 1}. This gives the desired w`

D ∧ wr
D = 0. Thus, (iv) holds, proving

the implication (iii) ⇒ (iv).
The implication (iv) ⇒ (v) is evident.
Assume (v). Then L has two coatoms whose meet is 0, whence (vi) follows easily

from Lemma 5.4. This proves that (v) ⇒ (vi).
To show (vi) ⇒ (ii), take a fixed planar diagram of L. Let a and b be the leftmost

and the rightmost coatoms of L, respectively. Assume that I is an ideal and F is a
filter of L such that L = I ∪F and I ∩F 6= ∅. We have to show that L ∈ {I, F}. If
a, b ∈ F , then F = L since 0 = a∧b ∈ F . If a, b ∈ I, then I = L since 1 = a∨b ∈ I.
Therefore, since {a, b} ⊆ L = I ∪ F , we can assume that, say, a ∈ I and b ∈ F .
Consider the smallest element of I ∩ F . Clearly, it is 0F . If 0F = 0, then F = L.
Hence we can assume that 0 < 0F . Since 0F ≤ a would lead to the contradiction
0 < 0F ≤ a∧ b = 0, we conclude that 0F 6≤ a. Hence 1 = a∨ 0F ∈ I, implying that
I = L. Thus, (vi) ⇒ (ii). �

9. Some properties of patch intervals

The lemmas of this section formulate some properties of patch intervals, also
called patches, of L. Eventually, these properties will be easy consequences of
Theorem 3.6. However, we have to prove them now since they will be used in the
proof of Theorem 3.6.

Lemma 9.1. Let I and J be patches of a slim semimodular lattice L such that
0J ∈ I \ Bnorth(I) = I \ {1I , w

`
I, w

r
I}. Then I ⊆ J or J ⊆ I. (By Lemma 4.9, the

choice of D ∈ Diag(L) is irrelevant.)

Proof. Assume that J 6⊆ I. Then {w`
J , w

r
J} 6⊆ I since otherwise 1J = w`

J ∨wr
J ∈ I

and the convexity of I would imply that J ⊆ I. Let, say, w`
J /∈ I. Applying

Lemma 5.1 to 0J < w`
J , we obtain an element x ∈ Bnorth(I) = BD

north(I) such that
0J ≤ x ≤ w`

J . In fact, we have that 0J < x < w`
J by the assumptions. There are

four cases to consider.
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Case 1. Assume that x = wr
I . Since 0J < x = wr

I and [0I, w
r
I ] = Bse(I) is a

chain by (2.11) and (2.12), 0J has a unique cover y1 in Bse(I) ⊆ Bright(I). By
(2.14), 0J has another cover y0 ∈ I, which is strictly on the left of y1. Since
y1 ∈ [0J , w

r
I ] ⊂ [0J , w

`
J ] ⊆ Bleft(J), (2.14) yields that 0J has a cover y2 ∈ Bright(J),

which is strictly on the right of y1. Their position shows that y0, y1 and y2 are
three distinct covers of 0J . Thus, the present case is excluded by (2.1).

Case 2. Assume that x = w`
I and wr

J ∈ I. Then w`
I < w`

J . This together with
w`

J 6≥ wr
J give that w`

I 6≥ wr
J . So w`

I < w`
I ∨ wr

J ∈ I yields that w`
I ∨ wr

J = 1I .
Since J 6⊆ I, we know that 1J 6= 1I. But 1I = w`

I ∨ wr
J ≤ w`

J ∨ wr
J = 1J , so

wr
J ≤ 1I < 1J . Combining this with wr

J ≺ 1J we obtain that wr
J = 1I . Hence

w`
I ≤ w`

J ∧ 1I = w`
J ∧wr

J = 0J and 0J ≤ x = w`
I give that 0J = w`

I , contradicting
the assumptions of the lemma. Thus, this case is excluded again.

Case 3. Assume that x = w`
I and wr

J /∈ I. Again, we know that w`
I < w`

J . Applying
Lemma 5.1 to 0J < wr

J , we obtain a y ∈ Bnorth(I) = {w`
I , w

r
I, 1I} such that 0J ≤

y ≤ wr
J . If we had that y ∈ {w`

I , 1I}, then w`
I ≤ y < wr

J together with w`
I < w`

J

would give that w`
I ≤ w`

J ∧wr
J = 0J ∈ I, implying 0J ∈ {w`

I , 1I}, a contradiction.
Hence y = wr

I , and we have that wr
I ≤ wr

J . By the definition of x and y, we know
that w`

I ∈ [0J , w
`
J ] and wr

I ∈ [0J , w
r
J ]. Hence 0J ≤ w`

I ∧wr
I ≤ w`

J ∧ wr
J = 0J , that

is, 0J = w`
I ∧wr

I = 0I . This and 1J = w`
J ∨wr

J ≥ w`
I ∨wr

I = 1I yields that I ⊆ J ,
as desired.

Case 4. Assume that x = 1I . Applying Lemma 5.1 to 0J < wr
J again, we obtain a

y ∈ Bnorth(I) = {w`
I , w

r
I , 1I} such that 0J ≤ y ≤ wr

J . The possibility y ∈ {w`
I , w

r
I}

belongs, apart from notation and left-right symmetry, to the scope of the previous
three cases. Hence we can assume that y = 1I . However, then 0J ≤ x ∧ y ≤
w`

J ∧wr
J = 0J implies that 0J = x∧y = 1I ∧1I = 1I , contradicting the assumptions

of the lemma. So this case is excluded. �

Lemma 9.2. Let I and J be maximal patches of a planar semimodular lattice L.
If they have the same top, then they coincide. Moreover, 0I is the intersection of
all lower covers of 1I.

Proof. Let us fix a planar diagram D of L, and keep Lemma 4.9(ii) in mind. Alter-
natively, no matter how D is fixed since the concept of a (maximal) patch interval
does not depend on D; this fact is due to (ii) or (iii) of Lemma 8.1, which clearly do
not depend on D. With respect to D, let a and b be the leftmost and the rightmost
lower cover of 1I = 1J , respectively, and let u := a ∧ b. Then a and b are the left-
most coatom and the rightmost coatom of K := [u, 1I]. By the (iv) ⇔ (v) part of
Lemma 8.1, we conclude that K ∈ PPP(L). Since w`

I , w
r
I, w

`
J , w

r
J ∈ K by Lemma 5.4,

0I = w`
I ∧wr

I and 0J also belong to K. Hence I, J ⊆ K. Therefore, I, J ∈ PPPmax(L)
yields that I = K = J . We have also obtained that 0I = 0K = a ∧ b. In virtue of
Lemma 5.4, this proves the second part. �

Lemma 9.3. Let I and J be maximal patches of a slim semimodular lattice L.
Then either I = J , or I and J are disjoint, or I ∩ J is a chain.

Proof. Let D ∈ Diag(L) be fixed. Let a, b ∈ I ∩ J such that a ‖ b; we have to show
that I = J . By Lemma 9.2, this is clear if 1I = 1J . Assume, by way of contradiction,
that 1I 6= 1J . Then, say, 1I 6≥ 1J . Lemma 5.1, applied to I and a, b ≤ 1J , yields
elements a′, b′ ∈ {w`

I, w
r
I , 1I} such that a ≤ a′ < 1J and b ≤ b′ < 1J .
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If 1I ∈ {a′, b′}, then 1I ≤ 1J . Otherwise, if we had a′ = b′ ∈ {w`
I , w

r
I}, then a and

b would belong to the same chain (in I) by (2.11) and (2.12), which would contradict
a ‖ b. Hence {a′, b′} = {w`

I , w
r
I}, which gives that 1I = w`

I ∨ wr
I = a′ ∨ b′ ≤ 1J .

Hence, in all cases, 1I ≤ 1J . So 1I < 1J since they are distinct. Therefore, the
convexity of J , a ∈ J and a ≤ 1I < 1J yield that 1I ∈ J \ {1J}.

Assume first that 1I ∈ B(J); then 1I ∈ B(J) \ {1J} = Bsouth(J). Let, say,
1I ∈ Bsw(J). Then a ‖ b belong to the same chain Bsw(J) of J by by (2.11) and
(2.12), a contradiction. Hence 1I is in the interior of J , whence its lower covers, w`

I

and wr
I , belong to J by (2.6) and (2.8). Consequently, 0I = w`

I ∧ wr
I ∈ J . Hence

0J ≤ 0I < 1I < 1J ∈ J yields that I ⊂ J , contradicting I, J ∈ PPPmax(L). �

Lemma 9.4. Let L be a slim semimodular lattice with a fixed D ∈ Diag(L), and
let I, J ∈ PPPmax(L) such that |I ∩J | = 1. Then, up to I-J and left-right symmetries,
either I ∩ J = {wr

D(I)} = {w`
D(J)}, or I ∩ J = {1I} = {0J}.

The direct square 32 of the three-element chain shows that both cases can occur.

Proof of Lemma 9.4. Let x denote the unique element of I ∩ J . There are several
cases to consider.

Case 1. Assume that x ∈ {0I , 1I, 0J , 1J}. Firstly, let x ∈ {1I, 1J}, say, x = 1I .
Since I contains all lower covers of x by Lemma 9.2 but none of these lower covers
are in J since |I ∩ J | = 1, we conclude that x = 0J , as desired. Secondly, let
x ∈ {0I , 0J}, say, x = 0I . By (2.1) and the definition of a patch lattice, x has
exactly two covers in L, and both covers of x belong to I. Since none of these
covers can belong to J by |I ∩ J | = 1, we obtain that x = 1J , as desired.

Case 2. Assume for a contradiction that x ∈ int(I)∪ int(J). Say, x ∈ int(J). Then,
by (2.6) and (2.8), all upper covers of x belong to J . But none of them can belong
to the singleton set I ∩ J , whence we obtain x = 1I . By the previous case, this
implies that 0J = x ∈ int(J), a contradiction.

Case 3. Next, assume for a contradiction that x ∈ Bsouth(J) \ {0J , w
`
D(J), wr

D(J)},
or the same holds for I. Then x has exactly two covers , x1 and x2, in J by (2.1)
and (2.14). Since {x1, x2}∩ I = ∅ by |I ∩J | = 1, (2.1) and the convexity of I imply
that x = 1I. Hence the first case we considered gives that x = 0J , a contradiction.

Case 4. Assume that x ∈ {w`
I, w

r
I , w

`
J , w

r
J}, where w`

I stands for w`
D(I), etc. We can

also assume that x ∈ {w`
I , w

r
I} ∩ {w`

J , w
r
J} since otherwise the situations belongs

to the scope of one of the previous cases. To complete the proof, we have to
exclude that x = w`

I = w`
J or x = wr

I = wr
J . Assume for a contradiction that, say,

x = w`
I = w`

J . We know from Lemma 9.2 that 1I is distinct from 1J . Clearly, both
of them cover x, whence they are the only covers of x by (2.1). Let, say, 1I on the
left of 1J . It follows from semimodularity that S = {x, 1I, 1J , 1I ∨ 1J} is a 4-cell
with Bleft(S) = {x, 1I, 1I ∨ 1J} and Bright(S) = {x, 1J , 1I ∨ 1J}. Let C0 and C1

be maximal chains of ↓x and ↑(1I ∨ 1J ), respectively. Let W = C0 ∪ Bleft(S) ∪ C1

and E = C0 ∪ Bright(S) ∪ C1. Since wr
I is strictly on the right of w`

I = x ∈ E and
h(wr

I) = h(w`
I), we conclude from the left-right dual of (5.1) that wr

I is strictly on
the right of E. Using 1J ∈ E and h(1J ) = h(x) + 1 = h(1I) similarly, we obtain
from (5.1) that 1I is strictly on the left of E. Thus, (2.5) applies to T and wr

I ≺ 1I ,
and we obtain a contradiction. �
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Lemma 9.5. For a slim semimodular lattice L with a fixed D ∈ Diag(L), let
I, J ∈ PPPmax(L) such that at least one of the following two conditions holds:

(i) |I ∩ J | ≥ 3;
(ii) J ∩ intD(I) is nonempty, or I ∩ intD(J) is nonempty.

Then I = J .

Proof. To prove part (i) by way of contradiction, we assume that I 6= J but |I∩J | ≥
3. We have that I ‖ J since they are maximal patches. Let x be the least element of
I ∩J . Since I ∩J is a chain by Lemma 9.3 and |I∩J | ≥ 3, x /∈ Bnorth(I) = BD

north(I)
and x /∈ Bnorth(J). It follows from Lemma 9.1 that x /∈ {0I, 0J}. First we consider
the case when x is meet-reducible. Then, by (2.1), x has exactly two covers. Both
of these covers belongs to I, either since x ∈ B(I) \ Bnorth(I) and (2.14) applies, or
since x ∈ int(I) and (2.8) together with (2.6) says so. By the same reason, both
covers of x belongs to J . But this is impossible since I ∩ J is a chain. Therefore,
x is in Mi(L), whence also in Mi(I) ∩Mi(J). This, x /∈ Bnorth(I), x /∈ Bnorth(J) and
(2.14) yield that x ∈ int(I)∩ int(J). By (2.6) and (2.8), all lower covers of x are in
I ∩ J . This contradicts the choice of x.

To prove part (ii) by way of contradiction, we assume that x ∈ int(I) ∩ J and
I 6= J . By Lemma 9.4, |I ∩ J | 6= 1. Hence |I ∩ J | = 2 by part (i). Since I ∩ J is a
convex sublattice, it is of the form {x, y}, where either x ≺ y, or y ≺ x.

Assume first that x ≺ y. If y belonged to Ji(I), which equals Bsouth(I) \ {0I} by
(2.10) and (2.13), then x would belong to Bsouth(I) by (2.12), which would contradict
x ∈ int(I). Hence y is join-reducible in I and y ∈ int(I)∪{1I}. Consequently, y has
at least two lower covers in I. All lower covers (taken in L) of y belong to I either
since y = 1I and Lemma 9.2 applies, or since y ∈ int(I) and (2.8) together with
(2.6) applies. Since |I ∩ J | = 2, y has only one lower cover (namely, x) in J . That
is, y ∈ Ji(J) = Bsouth(J) \ {0J} by (2.10) and (2.13). Hence x ∈ B(J) \ Bnorth(J)
by (2.12), and x has exactly two upper covers in J by (2.14) and (2.1). Both of
these upper covers belong also to I by (2.6) and (2.8) since x is in the interior of I.
Therefore, I ∩ J has at least three distinct elements, x and its upper covers, which
contradicts part (i) of the present lemma.

Secondly, we assume that y ≺ x. All lower covers of x belong to I by (2.6) and
(2.8). Hence y is the only lower cover of x in J since otherwise |I ∩ J | ≥ 3 would
contradict part (i) of the present lemma. Consequently, x ∈ Ji(J) = Bsouth(J)\{0J}
by (2.10) and (2.13). Hence y ∈ B(J) \ Bnorth(J) by (2.12). Moreover, y has
exactly two upper covers in J (and also in L) by (2.14) combined with (2.1). These
upper covers of y are x and, say, x′. Since x ∈ int(I), either y ∈ int(I), or
y ∈ B(I) \Bnorth(I). In both cases, either by (2.6) and (2.8), or by (2.14) combined
with (2.1), x, x′ ∈ I. Hence x, x′ and y are three distinct elements of I ∩ J , which
contradicts part (i) again. �

10. Proving the main results and their corollaries

Before accomplishing what is stated in the title of this section, we give the details
how Proposition 2.4 is extracted from previous results.

Proof of Proposition 2.4. Part (i) is [7, Lemma 22]. To prove part (ii), observe that
if we add forks to a fixed diagram, then the left and the right weak corners, and also
the principal filters they determine, do not change. Hence there is a D ∈ Diag(L)
such that G ∼= ↑w`

D(L) × ↑wr
D(L). Therefore, part (ii) follows from Lemma 4.9.



28 G. CZÉDLI AND E. T. SCHMIDT

Part (iii) is included in (the last sentence of) [7, Theorem 11]. Finally, the existence
in part (iv) follows from Proposition 2.1 and Lemma 6.1(ii), while Lemma 4.1 yields
the uniqueness. �

Proof of Theorem 3.6. First we deal with the particular case when L is a glued
sum indecomposable slim semimodular lattice. Fix a planar diagram D of L. Since
S ⊆ [0S, 1S] ∈ PPP(L) holds for all covering squares S of L, we conclude that 3.1(i)
holds in PPPmax(L). So does 3.1(ii) by Lemma 9.3. To show 3.1(iii), assume that
(I, J) ∈ E

(
PPPmax(L)

)
. Then 1 ≤ |I ∩ J | ≤ 2 by Lemma 9.5. Since 3.1(iii) clearly

holds by Lemma 9.4 if |I ∩ J | = 1, we assume that |I ∩ J | = 2. Then I ∩ J is of
the form {x ≺ y} since it is a convex sublattice. Lemma (5.5) or Lemma 9.5 yields
that x, y ∈ BD(I) ∩ BD(J).

Assume for a contradiction that y /∈ {1I, 1J}. Then y ∈ BD
south(I)∩BD

south(J) and
x belongs to both BD(I) \ BD

north(I) and BD(J) \ BD
north(J). Hence, by (2.14), x has

a cover y1 ∈ I \ {y}, and it also has a cover y2 ∈ J \ {y}. We have that y1 ∈ I \ J
and y2 ∈ J \ I since y is the largest element of I ∩ J . Hence y, y1 and y2 are three
distinct covers of x, which contradicts (2.1).

Therefore, up to the I-J symmetry, we can assume that y = 1J . This, x ≺ y and
{x, y} ⊆ BD(I) ∩ BD(J) imply that I ∩ J = {x, y} ⊆ BD

north(J). If we had y = 1I ,
then Lemma 9.2 would yield that I = J , contradicting (I, J) ∈ E

(
PPPmax(L)

)
. Hence,

taking {x, y} ⊆ BD(I)∩BD(J) into account, y belongs to BD(I) \ {1I} = BD
south(I),

which gives that I ∩ J = {x, y} ⊆ BD
south(I). This proves that PPPmax(L) satisfies

3.1(iii). Thus, Theorem 3.6 holds for the slim case.
Next, we drop the assumption that L is slim. Let L′ be the full slimming

sublattice of L with respect to a fixed planar diagram D. By Lemma 6.1(iv), L′ is
a glued sum indecomposable slim semimodular lattice. If we consider the intervals
I as pairs of elements (0I , 1I), then PPPmax(L) and PPPmax(L′) become the same by
Lemma 6.1(vii). Hence the already proven slim case of the theorem together with
Lemma 6.1(viii) completes the proof. �

Proof of Theorem 3.4. We already know from Lemma 8.1 that (ii) ⇔ (iii) ⇔ (iv)
⇔ (v) ⇔ (vi). Moreover, (iv) ⇒ (vii) follows from Theorem 2.4. Hence it suffices
to show that (vii) ⇒ (v), (v) ⇒ (i) and (i) ⇒ (iii).

Assume that (vii) holds. Let F be a diagram of the four-element rectangular
lattice S from which a diagram D of L is obtained first by adding forks, and then
by adding eyes. Then w`

F (S) is the leftmost coatom of F , wr
F (S) is its rightmost

coatom, and their intersection is 0. They remain the leftmost and the rightmost
coatoms of the actual diagram, respectively, if we add forks and eyes. Furthermore,
the least element of the lattice does not change. Hence w`

F (S) and wr
F (S) will

become the leftmost coatom and the rightmost coatom of D, and w`
F (S)∧wr

F (S) =
0S = 0L. This shows that (vii) ⇒ (v) holds.

Assume that (v) holds. Then there exists a diagram D ∈ Diag(L) such that for
the (unique) coatoms a ∈ BD

left(L) and b ∈ BD
right(L) we have that a ∧ b = 0. Notice

that a and b are the leftmost coatom and the rightmost coatom with respect to
D, respectively. Let HHH be a patchwork system for L. By Proposition 3.2, it is a
patchwork system for the diagram D. Let c be the right neighbor of a in D; it is
a coatom. Let S = [a ∧ c, a ∨ c = 1]; it is a 4-cell of D by [7, Lemma 13]. Hence
it is a covering square, and it is a subset of some I ∈ HHH by 3.1(i). Therefore,
there is an I ∈ HHH such that a ∈ I and 1I = 1L. Similarly, there is a J ∈ HHH
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such that b ∈ J and 1J = 1L. Assume for a contradiction that I 6= J . Then
(I, J) ∈ E

(
PPPmax(L)

)
since 1L ∈ I ∩ J shows that I ∩ J is nonempty. Hence 3.1(iii)

yields that 1 ∈ I ∩ J ⊆ BD
south(I) ∪ BD

south(J), which is a contradiction since 1K is
never on the southern boundary of a rectangular interval K. Hence I = J . Since
0L = a∧ b ∈ I and 1L ∈ I, we obtain that HHH = {I} by Remark 3.3(i). This proves
the implication (v) ⇒ (i).

Next, to show that (i) implies (iii), assume that (iii) fails. We have to show that
(i) also fails. We can assume that L is glued sum indecomposable since otherwise
(i) fails by definition. Fix a diagram D ∈ Diag(L). By the assumption, there are a
proper ideal I and a proper filter F such that L = I ∪F , and C := I ∩F is a chain.
We assume that I and F are chosen so that |C| is minimal. By (2.6), I and F are
planar lattices, and they are clearly semimodular. Let C = [a, b] = [0F , 1I ]. We
conclude that a < b since otherwise a = b would be comparable with all elements of
L, contradicting the glued sum indecomposability of L. Since I and F are proper
subsets, I 6= C 6= F and |I|, |F | ≥ 3. Assume for a contradiction that there is an
x ∈ I \{0, b} such that I = ↓x∪↑x. Then a ∈ ↑x would imply that F ⊆ ↑x, whence
L = ↑x ∪ ↓x would contradict the glued sum indecomposability of L. Therefore
a ∈ ↓x\↑x, that is, a < x < b. Since I = ↓x∪↑x = ↓x∪ [x, b] and [x, b] ⊆ F , we can
replace I by ↓x in the original decomposition. Then C = [a, b] is replaced by [a, x],
which contradicts the minimality of |C|. Hence there is no x with I = ↓x ∪ ↑x.
This together with |I| ≥ 3 implies that I is glued sum indecomposable. We have
not used semimodularity, so F is also glued sum indecomposable by duality.

Let a1 and b1 be the unique elements of C = [a, b] such that a ≺ a1 and b1 ≺ b.
Since F is glued sum indecomposable, a = 0F has a cover a2 distinct from a1. The
glued sum indecomposability of I yields that b = 1F has a lower cover b2 distinct
from b1. Since C = I ∩ F is a chain containing a1, we obtain that a2 /∈ C. But
a2 ∈ F , whence a2 ∈ F \ I. The dual consideration shows that b2 ∈ I \ F . If
a belonged to intD(I), then (2.8) together with (2.6) would imply that a2 ∈ I, a
contradiction. Hence a ∈ BD(I). Dually, we obtain that b ∈ BD(F ). Without loss
of generality, we can assume that a ∈ BD

left(I). Since BD
left(I) is a maximal chain in

I, we have that {x ∈ BD
left(I) : a ≤ x} is a maximal chain in [a, 1I] = [a, b] = C.

But C is itself a chain, whence

(10.1) C = {x ∈ BD
left(I) : a ≤ x} ⊆ BD

left(I).

Since now we cannot assume that b ∈ BD
right(F ), lattice duality yields only that

C ⊆ BD
left(F ) or C ⊆ BD

right(F ). However, we claim that

(10.2) C ⊆ BD
left(I) ∩ BD

right(F ).

In view of the previous observation, it suffices to exclude that C ⊆ BD
left(F ).

Assume for a contradiction that C ⊆ BD
left(F ), and keep (10.1) in mind. Let x ∈

BD
left(L) be the unique element with h(x) = h(b). We obtain from (5.3) that x is on

the left of b. On the other hand, x ∈ I or x ∈ F , and b ∈ C ⊆ BD
left(I) ∩ BD

left(F ).
Hence (5.3) (applied to I or F ) yields that b is on the left of x. Using (5.2) we
conclude that b = x ∈ BD

left(L). Hence we obtain from (5.5) that BD
left(I) ⊆ BD

left(L).
Let E1 := E∩↑b. It is a maximal chain in ↑b. Therefore, since BD

left(I) is a maximal
chain in ↓b = I, we obtain that E := BD

left(I) ∪E1 equals BD
left(L). Notice that E is

a maximal chain in L. Let W := Bright(I) ∪E1; it is also a maximal chain of L.
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Let y ∈ BD
right(I) denote the unique element with h(y) = h(a). Since a ∈ Bleft(I)\

{0I, 1I} and I is glued sum indecomposable, a /∈ BD
right(I). Hence (5.3) yields that

a is strictly on the left of y. So we obtain from (5.1) that

(10.3) a is strictly on the left of W .

Trivially (or it follows from (5.1) and (5.3)), we have that a2 is on the right of
E = BD

left(L). If a2 was on the left of W , then (5.6), applied for (0, b) instead of
(u, v), would imply that a2 ∈ I, which contradicts a2 ∈ F \ I. Therefore, a2 is
strictly on the right of W . This together with (10.3) and a ≺ a2 contradicts (2.5).
Thus, (10.2) is proved.

The restriction of D to I and F will be denoted by DI and DF , respectively.
By Theorem 3.6 and Proposition 3.2, PPPmax(I) and PPPmax(F ) are patchwork systems
for DI and DF , respectively. Let HHH := PPPmax(I) ∪ PPPmax(F ); we claim that it is a
patchwork system for D.

Assume for a contradiction that there is a covering square S = {u∧v, u, v, u∨v}
such that S 6⊆ I and S 6⊆ F . Then, say, u ∈ F \ I and v ∈ I \ F . Extend
C to a maximal chain C• of L. Clearly, u ∨ v ∈ F \ I. Since h(a) = h(0F ) ≤
h(u) = h(v) ≤ h(1I) = h(b), the chain C = [a, b] has a unique element x such that
h(x) = h(u) = h(v). Furthermore, v /∈ F gives that v < b, whence h(v) + 1 ≤ h(b).
Consequently, h(u ∨ v) = h(v) + 1 ≤ h(b), and there is an element y ∈ C with
h(y) = h(u ∨ v).

Using that v ∈ I and x ∈ C ⊆ Bleft(I), (5.3) yields that v is on the right of
x ∈ C•. This fact, v 6= x and (5.1) yield that v is strictly on the right of C•. Since
u ∨ v 6= y ∈ C ⊆ BD

right(F ), the left-right dual of (5.3) yields that u ∨ v is strictly
on the left of y. Hence (5.1) yields that u ∨ v is strictly on the left of C•. Thus,
v ≺ u∨v contradicts (2.5). This proves that each covering square is either a subset
of I or a subset of F . This implies that 3.1(i) holds for HHH.

Next, assume that (J,K) ∈ E
(
HHH

)
. If J,K ∈ PPPmax(I) or J,K ∈ PPPmax(F ),

then 3.1(ii) and 3.1(iii) clearly hold for (J,K). Hence we can also assume that
J ∈ PPPmax(I) and K ∈ PPPmax(F ). Since J ∩K ⊆ I ∩ F = C and C is a chain, 3.1(ii)
holds for (J,K).

Using that intD(J) ⊆ intD(I) by (2.9) and C ⊆ BD(I) by (10.2), we obtain that
intD(J)∩C = ∅. Hence J∩C =

(
intD(J)∩C

)
∪

(
BD(J)∩C

)
= BD(J)∩C ⊆ BD(J).

Assume for a contradiction that J ∩ C 6⊆ Mi(J). Then there is an x ∈ J ∩ C with
at least two covers in J . All these covers belong to C since F is a filter. This
is a contradiction since C is chain. Consequently, J ∩ C ⊆ Mi(J). Combining
this with J ∩ C ⊆ BD(J) and (2.14), we obtain that J ∩ C ⊆ BD

north(J). This
together with J ∩ K ⊆ C yields that J ∩ K ⊆ J ∩ K ∩ C ⊆ J ∩ C ⊆ BD

north(J).
Dualizing the above argument (in particular, replacing (2.14) by (2.15)) we obtain
that J ∩ K ⊆ J ∩ K ∩ C ⊆ K ∩ C ⊆ BD

south(K). Hence 3.1(iii) (with D) holds.
Therefore, HHH is a patchwork system for D. Since |HHH| = |PPPmax(I) ∪ PPPmax(F )| =
|PPPmax(I)| + |PPPmax(F )| ≥ 1 + 1 = 2, we conclude that (i) fails. This completes the
proof of the implication (i) ⇒ (iii). �

Proof of Corollary 3.5. By Herrmann [20] or [3, Lemma 6.1], the Hall-Dilworth
gluing (not only over chains) preserves semimodularity. By finiteness, the rest of
the statement follows from (iii) ⇔ (iv) of Theorem 3.4. �
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Proof of Corollary 3.8. As mentioned right before Corollary 3.7, only the second
part needs a proof. Since non-chain intervals of length 2 are atomistic, all we
have to show is that if I is an interval of length greater than 2, then I is not
atomistic. Assume the contrary, and let {a1, . . . , an} be a maximal independent
system of atoms of I. Then n is the length of I and these atoms generate a Boolean
sublattice B of length n, see Grätzer [12, Theorem IV.2.5] or [13, Theorem 381].
This is a contradiction since B is not planar for n ≥ 3. �
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