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Counting maximal antichains and independent sets

L. Ilinca, J. Kahn

Abstract

Answering several questions of Duffus, Frankl and Rödl, we give
asymptotics for the logarithms of (i) the number of maximal antichains
in the n-dimensional Boolean algebra and (ii) the numbers of maximal
independent sets in the covering graph of the n-dimensional hypercube
and certain natural subgraphs thereof. The results in (ii) are implied
by more general upper bounds on the numbers of maximal independent
sets in regular and biregular graphs.

We also mention some stronger possibilities involving actual rather
than logarithmic asymptotics.

1 Introduction

Write ma(P ) for the number of maximal antichains of a poset P and mis(G)
for the number of maximal independent sets in a graph G. (For “antichain”
and “independent set” see e.g. [5] and [2] respectively.) Denote by Bn the
Boolean algebra of order n (that is, the collection of subsets of {1, . . . , n}
ordered by containment); by Qn the “covering” (or “Hamming”) graph of
the n-cube (the graph with vertex set {0, 1}n and two vertices adjacent
if they differ in exactly one coordinate); and by Bn,k the subgraph of Qn

consisting of strings of weight k and k + 1 (where, of course, weight means
number of 1’s).

We are interested in estimating the logarithms of the quantities ma(Bn),
mis(Bn,k) and mis(Qn), all problems suggested by Duffus, Frankl and Rödl
in [3] and [4]. As they observe (cf. the paragraph following Conjecture 5.1
below), it is not hard to see that (with log = log2 throughout)

logma(Bn) ≥
( n−1
⌊n/2⌋

)

, log mis(Bn,k) ≥
(n−1

k

)

and logmis(Qn) ≥ 2n−2. (1)
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On the other hand they show

logma(Bn) < (1 + o(1))
(

n
⌊n/2⌋

)

, (2)

logmis(Qn) < (0.78 + o(1))2n−1

and
logmis(Bn,k) < (1.3563 + o(1))

(n−1
k

)

.

Note that logmis(Qn) ≤ 2n−1 and logmis(Bn,k) ≤ min{
(n
k

)

,
( n
k+1

)

} are triv-
ial (see Proposition 2.1(a)), while (2) is Kleitman’s celebrated bound [10] on
the total number of antichains in Bn. In particular (2) makes no use of max-
imality, and the authors of [4] say: “... the problem we are most interested
in solving is this: show there exists α < 1 such that log2ma(n) ≤ α

( n
n/2

)

”

(where their ma(n) is our ma(Bn)).
Here we settle all these problems, showing that the lower bounds in (1)

are asymptotically tight, viz.

Theorem 1.1. (a) logma(Bn) = (1 + o(1))
( n−1
⌊n/2⌋

)

;

(b) logmis(Qn) = (1 + o(1))2n−2;

(c) logmis(Bn,k) = (1 + o(1))
(n−1

k

)

(where o(1) → 0 as n → ∞). Note that, with Bn,k regarded as the poset
consisting of levels k and k + 1 of Bn, (c) also says logma(Bn,k) = (1 +
o(1))

(n−1
k

)

.

The results giving (b) and (c) are actually far more general:

Theorem 1.2. (a) For any d-regular, n-vertex graph G,

logmis(G) <

{

(1 + o(1))n4 if G is triangle-free,

(1 + o(1))n log 3
6 in general,

(3)

where o(1) → 0 as d → ∞.

(b) For any (r, s)-biregular, n-vertex (bipartite) graph G,

log mis(G) < (1 + o(1))
rsn

(r + s)2
,

where o(1) → 0 as max{r, s} → ∞.
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The first and third bounds are easily seen to imply (respectively) parts (b)
and (c) of Theorem 1.1. All three bounds are best possible at the level of
the asymptotics of the logarithm. (This is shown, for example, by (1) for
the first and third bounds, and by the graphs Hn described in Section 5 for
the second.)

The rest of the paper is organized as follows. Section 2 recalls what
little background we need, mainly a few known bounds on the parameter
“mis” plus Shearer’s entropy lemma. The proofs of Theorems 1.2 and 1.1(a)
are given (in reverse order because the former is easier) in Sections 3 and
4 respectively. Finally, Section 5 suggests a strengthening of Theorem 1.1
and fills in examples—possibly extremal—for the second bound in Theorem
1.2(a).

The proofs of the theorems turn out not to involve too much work once
one gets on the right track. In each case, seeking to identify an unknown
(maximal independent set or antichain) I, we show that one can, at the
cost of specifying a few small subsets of I and Ī , reduce determination of
I to determination of I ∩ Z for a relatively easily manageable subset Z of
our universe (i.e. V (G) or the ground set of Bn). Since the specified sets
are small, there are not many ways to choose them, so that possibilities for
I∩Z contribute the main term (plus part of the error) in each of our bounds.
Informally we tend to think of paying a small amount of “information” to
reduce specification of I to specification of I ∩ Z.

Our original arguments for Theorems 1.1 and 1.2 were based on a simple
but (we think) novel combination of random sampling and entropy. The
proof of Theorem 1.2 in Section 3 uses this approach. As we recently noticed,
there is an even simpler idea, due to Sapozhenko [13], that can substitute
for the sampling/entropy part of the original argument; this is explained
at the end of Section 3. We have retained the original proof, in the case
of Theorem 1.2 at least, because we think the approach is interesting and
potentially useful elsewhere; but in the case of Theorem 1.1, for brevity’s
sake, we have omitted the original and given only the “Sapozhenko version.”

2 Preliminaries

The assertions of Theorem 1.2 will reduce to the following known and/or
easy facts.

Proposition 2.1. (a) For G bipartite with bipartition A ∪B,

mis(G) ≤ 2min{|A|,|B|}.
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(b) For any n-vertex graph G,

mis(G) ≤ 3n/3,

with equality iff G is the disjoint union of n/3 triangles.

(c) For any n-vertex, triangle-free graph G,

mis(G) ≤ 2n/2,

with equality iff G is a perfect matching.

Here (a) is trivial; (b) was proved by Moon and Moser [12] in answer to a
question of Erdős and Moser; and (c) is due to Hujter and Tuza [8]. We will
not need the information about cases of equality. Note that the d-regularity
(with d large) in Theorem 1.2(a) multiplies the exponents in the bounds
directly implied by parts (b) and (c) of Proposition 2.1 by roughly 1/2.

We also need the following lemma of J. Shearer [1]. (See e.g. [11] for
entropy basics or [9] for a quicker introduction and another application of
Shearer’s Lemma.) We use H for binary entropy and, for a random vector
X = (X1, . . . ,Xn) and A ⊂ [n], set XA = (Xi : i ∈ A).

Lemma 2.2. Let X = (X1, . . . ,Xn) be a discrete random vector and A a
collection of subsets (possibly with repeats) of [n], with each element of [n]
contained in at least m members of A. Then

H(X) ≤ 1

m

∑

A∈A

H(XA).

(The statement in [1] is less general, but its proof gives Lemma 2.2.)

Finally, we write
( n
<t

)

for
∑

j<t

(n
j

)

, recalling that for t ≤ n/2 (see e.g.
[6, Lemma 16.19])

( n
<t

)

≤ 2H(t/n)n. (4)

3 Proof of Theorem 1.2

Notation. For G as in either part of the theorem, we use ∆ = ∆(G) for
maximum degree, “∼” for adjacency, Nx for the neighborhood of x, and
d(x) for |Nx|. For S, T ⊆ V = V (G) and x ∈ V : dS(x) = |Nx ∩ S|;
Γ(S) = (∪x∈SNx)∪S; E(S) is the sets of edges contained in S; and E(S, T )
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(used here only with S ∩ T = ∅) is the set of edges having one end in each
of S, T . We use M for the set of maximal independent sets of G.

Proof. We work with a parameter t to be specified below and set k = t2 log∆.
For I ∈ M, set CI = {x ∈ V : dI(x) ≥ t ln t}. We may associate with each
I ∈ M some I0 ⊆ I of size ⌈|I|/t⌉ with

|CI \ Γ(I0)| < n/t, (5)

existence of such an I0 being given by the observation that, for I0 chosen
uniformly from the ⌈|I|/t⌉-subsets of I,

E|CI \ Γ(I0)| =
∑

v∈CI

Pr(v 6∈ Γ(I0))

< n(1− 1/t)t ln t < n/t.

Let X = V \ (CI ∪ Γ(I0)), Y = {v ∈ X : dX(v) ≥ k}, J = I ∩ Y and
Z = X \ (Y ∪ Γ(J)). We may choose I ∈ M by specifying: (i) I0; (ii)
CI \ Γ(I0); (iii) J ; and (iv) I ∩ Z; so we just have to bound the numbers of
choices for these steps. First, by (4), the number of choices in each of (i),
(ii) is at most exp2[H(1/t)n]. Second, since J ⊆ Y satisfies

|J ∩Nv| < t ln t ∀v ∈ X, (6)

the log of the number of possibilities in (iii) is at most H(J), where J is
chosen uniformly from the collection of subsets J of Y satisfying (6). Here
Shearer’s Lemma (with X the indicator of J and A = {Nv ∩ Y : v ∈ X})
gives, using the definition of Y ,

H(J) ≤ k−1
∑

v∈X

H(J ∩Nv) ≤ k−1
∑

v∈X

log
( ∆
<t ln t

)

< (k−1t ln t log ∆)n = (n ln t)/t. (7)

It remains to bound the number of possibilities in (iv). Note that I ∩ Z
is a maximal independent subset of Z (since Z ∩ Γ(I \ Z) = ∅). The (easy)
point here is that the requirement

dZ(v) < k ∀v ∈ Z (8)

(implied by Z ⊆ X \ Y ) limits the size of Z (in (a)) or of the intersection of
Z with one of the parts of the bipartition (in (b)). We now consider these
cases separately.

5



(a) From (8) we have

d|Z| =
∑

v∈Z

d(v) = 2|E(Z)| + |E(Z, V \ Z)| < k|Z|+ d(n − |Z|),

whence (note we will have k < d)

|Z| < nd

2d− k
= (1/2 +O(k/d))n.

Parts (c) and (b) of Proposition 2.1 thus bound the log of the number
of possibilities for I ∩ Z by (1 + O(k/d))n/4 if G is triangle-free, and
by (1 + O(k/d))(log 3)n/6 in general. Combining this with our bounds
for (i)-(iii) and setting t = d1/3, we have Theorem 1.2(a) with o(1) =
O(max{(log t)/t, (t2 log d)/d}) = O(d−1/3 log d).

(b) Let the bipartition of G be A∪B, with d(x) = r for x ∈ A and, w.l.o.g.,
(∆ =) r ≥ s. Notice to begin that Proposition 2.1(a) gives

logmis(G) ≤ |A| = sn/(r + s) = (1 + s/r)rsn/(r + s)2. (9)

We will prove the statement in (b) with o(1) = O(min{r1/3s−2/3 log r, s/r}),
so in view of (9) may assume (to deal with a very minor detail below) that

r4/3 log r < s5/3. (10)

Let U = Z ∩A and W = Z ∩B. We have

r|U | =
∑

v∈U

d(v) =
∑

v∈U

dW (v) + |E(U,B \W )| < k|U |+ s(|B| − |W |),

whence r(1 − k/r)|U | + s|W | < rsn/(r + s), implying either |U | ≤ (1 −
k/r)−1rsn/(r+s)2 = (1+O(k/r))rsn/(r+s)2 or |W | ≤ rsn/(r+s)2 (where
we used (10) to say k < r). Proposition 2.1(a) now bounds the number of
possibilities for I ∩ Z by exp2[(1 +O(k/r))rsn/(r + s)2].

Finally, combining this with (9) and our earlier bounds for (i)-(iii), and
setting t = r2/3s−1/3, gives Theorem 1.2(b) with o(1) on the order of

min

{

max

{

(log t)(r + s)2

trs
,
k

r

}

,
s

r

}

= Θ

(

min

{

r1/3 log r

s2/3
,
s

r

})

.
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Sapozhenko’s method. As promised, we next show how the first two para-
graphs of the above argument (through (7)) can be replaced by a remarkably
simple idea of A. Sapozhenko (see [13, Theorem 6] or, for another descrip-
tion, [7, Lemma 2.3]).

We again work with a parameter, say b, whose value will be specified
below. For a given maximal independent set I, let X1 = V and repeat for
i = 1, . . . until no longer possible: choose xi ∈ Xi ∩ I with dXi

(xi) ≥ b, and
set Xi+1 = Xi \ ({xi}∪Nxi

). Let Y = Xq+1 be the final Xi, and notice that
Y = V \ Γ({x1, . . . , xq}) and

dY (x) < b ∀x ∈ Y ∩ I.

Set Z = {x ∈ Y : dY (x) < b} (⊇ Y ∩ I). We have

(i) q < n/b (trivially);

(ii) dZ(x) < b ∀x ∈ Z; and

(iii) I ∩ Z is a maximal independent subset of Z (since I ∩ (V \ Z) =
{x1, . . . , xq} 6∼ Z).

Now (ii) corresponds to (8), and the discussion under (a) and (b) above
(using (iii)) bounds the number of possibilities for I ∩Z as before, with the
k’s replaced by b’s. (For example, the main bound in (b) is now exp2[(1 +
O(b/r))rsn/(r + s)2)].)

Essentially optimal values for b are then (d log d)1/2 and rs−1/2
√
log r in

(a) and (b) respectively, yielding o(1)’s (as in the statement of the theorem)
on the order of d−1/2

√
log d in (a), and, in (b),

min

{

max

{

(log b)(r + s)2

brs
,
b

r

}

,
s

r

}

= Θ

(

min

{

√

log r

s
,
s

r

})

.

(So this also gives somewhat better error terms than the original argument,
though the errors are in any case not likely to be close to the truth.)

4 Proof of Theorem 1.1(a)

This requires a little more care than the proof of Theorem 1.2, though the
basic idea is similar. As noted earlier, we skip our original argument and
just give the one based on “Sapozhenko’s method.”

Notation. We write B for Bn (and follow a common abuse in using the same
symbol for a poset and its ground set). Elements of B (usually denoted
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x, y, z) may be thought of as either binary strings or subsets of [n] (so for
x ∈ B thought of as a string, |x| is the number of 1’s in x). Set (for
i ∈ {0} ∪ [n]) Li = {x ∈ B : |x| = i}, ℓi = |Li| (=

(n
i

)

) and, for S ⊆ B,
Si = S ∩ Li. We also set N = 2n and M =

( n
⌊n/2⌋

)

(= Θ(n−1/2N)).
For x ∈ B, Nx is the neighborhood of x in the comparability graph, say

G, of B (that is, the graph with x ∼ y iff x < y or x > y). Of course an
antichain of B is just an independent set of G, but in this case Theorem
1.2 gives only a weak bound on mis(G) = ma(B). We write (as usual)
x ·> y (x covers y) if x > y and there is no z with x > z > y, and set
d+S (y) = |{x ∈ S : x ·> y}| (S ⊆ B, y ∈ B). Also for S ⊆ B, we write Γ+(S)
for {y ∈ B \ S : ∃x ∈ S, x < y} and ma(S) for the number of maximal
antichains of S (more properly, of the restriction of B to S). Finally, we
recall that S ⊆ B is convex if x < y < z and x, z ∈ S imply y ∈ S.

Proof. Set b = n3/4
√
log n. Given a maximal antichain I, let X1 = B

and repeat for i = 1, . . . until no longer possible: choose xi ∈ I ∩ Xi with
|Nxi

∩Xi| ≥ b, and set Xi+1 = Xi \ ({xi}∪Nxi
). Let Y = Xq+1 be the final

Xi—so in particular d+Y (y) < b ∀y ∈ I∩Y—and set Z = {y ∈ Y : d+Y (y) < b}
(⊇ I ∩ Y ).

The number of possibilities for {x1, . . . , xq} is at most 2H(1/b)N (since
q < N/b), and we have

d+Z (x) < b ∀x ∈ Z, (11)

I ∩ Z is a maximal antichain of Z

(since I ∩ (B \ Z) = {x1, . . . , xq} 6∼ Z), and, we assert,

Z is convex. (12)

Proof of (12). Since Y = B\⋃i({xi}∪Nxi
) is obviously convex, (12) follows

from the observation that

Y \ Z is a downward-closed subset of Y .

For suppose that—now regarding elements of B as subsets of [n], for which
we prefer capitals—A ∈ Y and A ⊆ B ∈ Y \ Z. Since B 6∈ Z, there are
distinct i1, . . . , ib ∈ [n] \ B with B ∪ {ij} ∈ Y ∀j ∈ [b], whence, since Y is
convex (and A ∈ Y ), A ∪ {ij} ∈ Y ∀j ∈ [b]. But then A ∈ Y \ Z.
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Theorem 1.1(a) (with o(1) on the order of n−1/4
√
log n) thus follows from

the next two assertions (and the fact that M ≤ 2
( n−1
⌊n/2⌋

)

).

Claim 1. If Z ⊆ B is convex and satisfies (11), then

|Z| < (1 +O(b/n))M. (13)

Claim 2. If Z ⊆ B is convex, then ma(Z) ≤ 2|Z|/2.

(Note this does require convexity; e.g. it fails if Z is a 3-element chain.)

Proof of Claim 1. We may assume Z ⊆ Lr ∪ · · · ∪Ls, with (r, s) = (.4n, .6n)
(since the rest of B is too small to affect (13)). Let F = Γ+(Z), fi = |Fi| and
zi = |Zi|. The degree assumption (11) implies that, for any i ∈ {r, . . . , s},

(i+ 1)fi+1 ≥ ∂(Fi ∪ Zi, Fi+1) ≥ (n− i)fi + (n− i− b)zi

(where ∂(S, T ) := |{(x, y) : x ∈ S, y ∈ T, x < y}|), or, since (n− i)/(i+1) =
ℓi+1/ℓi,

fi+1 ≥
ℓi+1

ℓi
fi +

(

ℓi+1

ℓi
− b

i+ 1

)

zi ≥
ℓi+1

ℓi
[fi + (1− ε)zi], (14)

with ε = 2.5b/n. Composing the inequalities (14) (for i = r, . . . , s) gives

fs+1 ≥ (1− ε)
s
∑

j=r

ℓs+1

ℓj
zj ,

so that
|Z|
M

≤
s
∑

j=r

zj
ℓj

≤ (1− ε)−1 fs+1

ℓs+1
≤ (1− ε)−1.

Proof of Claim 2. This is an induction along the lines of (but easier than)
the argument of [8]. Set |Z| = m. If Z does not contain a chain of length 3,
then the comparability graph of Z is bipartite and we may apply Proposition
2.1(a). Otherwise there are x, y ∈ Z with x < y and |y| ≥ |x| + 2, whence,
since Z is convex, |Γ+(x) ∩ Z| ≥ 3. We may, of course, further require that
x be minimal in Z (so Z \ {x} is convex), and then induction gives

ma(Z) ≤ ma(Z \{x})+ma(Z \({x}∪Γ+(x))) ≤ 2(m−1)/2+2(m−4)/2 < 2m/2.

(Notice that ma(Z\({x}∪Γ+(x))) bounds the number of maximal antichains
of Z containing x, since for each such A, A\{x} is contained in some maximal
antichain A′ of Z \{x}, and is recoverable from A′ via A = (A′ ∪{x}) \{y ∈
Z : y ∼ x}.)
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5 A stronger conjecture

In closing we would like to suggest that it might be possible to give the actual
asymptotics (rather than just the asymptotics of the log) for the quantities
considered in Theorem 1.1. This does not look easy, but we can at least
guess what the truth should be:

Conjecture 5.1. (a) ma(Bn) =

{

(1 + o(1))n exp2[
(

n−1
(n−1)/2

)

] if n is odd,

(2 + o(1))n exp2[
(

n−1
n/2

)

] if n is even;

(b) mis(Qn) = (2 + o(1))n exp2[2
n−2];

(c) mis(Bn,k) = (1 + o(1))n exp2[
(

n−1
k

)

]

(where o(1) → 0 as n → ∞).

The easy lower bounds are based on the observation (from [3]) that for any
graph G and induced matching M of G, each of the 2|M | sets consisting of
one vertex from each edge of M extends to at least one maximal independent
set, and these extensions are all different. For example, the lower bound for
n odd in Conjecture 5.1(a) (other cases are similar) is obtained by noting
that, for each i ∈ [n], the set of pairs

{{x, xi} : x ∈ {0, 1}n, xi = 0, |x| = (n− 1)/2}
(where xi is gotten by flipping the ith coordinate of x) is an induced match-
ing in the comparability graph of Bn, and that there is only an insignificant
amount of repetition in the corresponding list of at least n exp2[

( n−1
(n−1)/2

)

]
maximal independent sets.

Finally we give the promised construction for the second bound in The-
orem 1.2(a). For d ≡ 2 (mod 3), let T be the disjoint union of (d − 2)/3
triangles; let H consist of two disjoint copies of T plus all edges between
them; and, for n divisible by 2(d− 2), let Hn be the union of n

2(d−2) disjoint

copies of H. Then Hn is d-regular with mis(Hn) = 2n/(2(d−2))3n/6, and it
seems not impossible that this is extremal:

Conjecture 5.2. For any d-regular, n-vertex G, mis(G) ≤ 2n/(2(d−2))3n/6.

This would be analogous to the fact—recently proved in spectacularly simple
fashion by Yufei Zhao [14] (but by reducing to the bipartite case proved a
little less simply in [9])—that the total number of independent sets in such
a G is at most (2d+1− 1)n/(2d), a value achieved by a disjoint union of Kdd’s
whenever 2d|n. One would, of course, hope to also have analogues for the
other parts of Theorem 1.2; but we don’t see good candidates for these, and
suspect that they do not have clean answers.
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