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Abstract

The (A, D) duality pairs play a crucial role in the theory of generahtieinal struc-
tures and in Constraint Satisfaction Problems. The caseandath sides are finite
is fully characterized. The case where both sides are iafg@ems to be very com-
plex. Itis also known that no finite-infinite duality pair isgsible if we make the
additional restriction that both classes are antichainsthis paper (which is the
first one of a series) we start the detailed study of the iwifirtite case.

Here we concentrate on directed graphs. We prove some diam@noperties
of the infinite-finite duality pairs, including lower and ugpbounds on the size
of D, and show that the elements df must be equivalent to forests it is an
antichain. Then we construct instructive examples, whaeestements of4 are
paths or trees. Note that the existence of infinite-finitécaain dualities was not
previously known.

Keywords: graph homomorphism; duality pairs; general relationalctres;
Constraint Satisfaction Problem; regular languages; emdhinistic finite
automaton;

1. Introduction

In this paper we considattirected graphs homomorphismbetween them, and
especiallyduality pairs We start with the definitions.

A directed graplG is a pair(V, E) with V' = V(G) the set of vertices anfl =
E(G) C V2 the set of (directed) edges. Unless stated otherwise “Yrajdrs to
finite directed graphs in this paper. Forgetting about tientaition of the edges one
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gets theunderlying undirected graphFor simplicity we drop the term “oriented”
when referring to (oriented)aths (oriented)treesand (orientedforests these are
(directed) graphs whose underlying undirected graphsaie prees, respectively
forests in the traditional sense. In particular, pathggr@nd forests have no loops
and no pair of vertices is connected in both directions. &ntyj when we call a
graphconnectedrefer to theconnected components the girth of a graph or to
acyclein a graph we mean the corresponding notion in the underlyimdirected
graph.

A homomorphisny between graph& and H is a mapf : V(G) — V(H)
satisfying that for every edger,y) € E(G) we have(f(z), f(y)) € E(H). We
write f : G — H to express thaf is a homomorphism frond’ to H and we write
G — H to express that such a homomorphism exists. This is cledrignsitive
and reflexive relation. We writ€' 4 H if no homomorphism frontz to H exists
and call a family of graphs aantichainif no homomorphism exists between any
two distinct members.

If both G — H and H — G hold for a pair of graphs we say¥ and H are
equivalent This is clearly an equivalence relation. In any equivaéenlass the
graph with the fewest vertices is unique up to isomorphisne. dall such a graph
a core and also thecore ofany graph in its equivalence class. It is easy to see
that a graph is a core if and only if every homomorphisih: G — G is an
isomorphism.

We say a graplG is minimal in a family A of graphs ifG € A and any
graphH € A satisfyingH — G is equivalent taG. We define the dual notion
of maximalin a family of graphs similarly, but with the homomorphisrmdition
reversed. Note that there are two-way infinite chains of lggapo infinite classes
do not always have minimal or maximal elements.

A duality pairis a pair(.A, D) of families of graphs satisfying that for every
graphG we have eithetd — G for someA € Aor G — D for someD € D
but not both. If(A4,D) is a duality pair we callD a dual of .A. Note, however,
that this relation is not symmetric. Duality pairs were firgtoduced in [6] and
investigated in detail in [7] for the special case whdn = 1.

Clearly, each graph inl andD in a duality pair(.A, D) can be replaced with
its core to obtain another duality pdidl’, D’) so we can (and often will) assume
that both sides of a duality pair consist of cores. Furthet ifs A’ with A # A’
andA, A’ € A we can removel’ from A without ruining the duality pair property.
This way, if A is finite we can replace it with the antichaid’ of its minimal
elements and the resulting pdid’, D) is still a duality pair. Similarly, ifD is
finite we can replace it with the s&’ of its maximal elements to obtain a duality
pair (A, D’) with D’ being an antichain. Note, however, that such transformatio
is not possible in general for infinite families.

It is a trivial observation that any famil/d has a dual seD, simply takeD =
{G |AA € A : A — G}. For any familyD of graphs one can similarly set
A ={G |AD € D : G — D} making (A, D) a duality pair. Because of this
abundance it is not reasonable to hope for a meaningful ctesization of all
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duality pairs. But characterization of restricted classieguality pairs have been
done successfully already.

Theorem 1.1 ([7]). Each treeT has a well-defined, unique (up to equivalence)
graph D(T') making({T'},{D(T)}) a duality pair. In all singleton duality pairs
({A},{D}) the graphA is equivalent to a tree.

Theorem 1.2 ([5]). For any given finite family4 of forests there exists a unique
(up to the equivalence) antichain duBi(.4) and it is finite. For any duality pair
(A, D) with both.A and D finite antichains all graphsA € A are equivalent to
forests.

We saw above that having antichains as the members of dyslity can be
considered as a relaxation of the finiteness condition. mfaeharacterized the
duality pairs with both sides finite it is natural to consitlas relaxation. We start
with quoting a result showing that there are probably too ynafinite-infinite
antichain duality pairs for a meaningful characterization

Theorem 1.3 ([1]). Each finite antichain4 of graphs that is not maximal can be
extended

(i) to a duality pair (B,C) such thatA C B and bothB and C are infinite
antichains;

(i) to a maximal infinite antichain, which is not a union of theesidf any duality
pair.

This naturally leads to the question of finding or charazieg antichain duality

pairs with one side finite while the other is an infinite angich Erdés and Soukup
[2] proved that no finite-infinite antichain duality pair et and asked if infinite-
finite ones do.

Theorem 1.4 ([2]). There exists no duality paif.A, D) with A finite andD an
infinite antichain.

In this paper we answer the question of Erdés and SoukupJiyggseveral
examples of infinite-finite antichain duality pairs and asady what families can
appear in the left side of such a duality pair. The final and@earharacterization
of such families) will follow from the upcoming paper [4] thstudies the problem
in the more general context of relational structures.

In Section 2 we limit the complexity of any graph appearingamantichain
with a finite dual: it must be equivalent to a forest. For firamgichains this is
implied by Theorem 1.2. We also show that such a family hasate bbounded
maximum degree and bounded number of components.

When the forests in a duality pair have only one componentraagimum
degree two we deal with families of paths. In Section 3 wel@kispecific infinite
antichains of paths, some with, and some without a finite.dual
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In Section 4 we give a simple transformation turning the idpalairs in Sec-
tion 3 into ones with non-path trees on the left side. Howeabmse trees are still
close to paths. We also give examples of infinite-singletoality pairs where the
left side consists of more complex trees constructed frdoitrary binary trees.
One of these examples has an antichain on the left side. lin@nexample of
an infinite-finite antichain duality pair the left side castsiof forests with several
components.

2. Why forests?

In this section we prove that all graphs in the left side ofrdmite-finite antichain
duality pair must be equivalent to forests. This is an extensf the corresponding
result for finite antichains in Theorem 1.2.

Theorem 2.1. Let (A, D) be a duality pair, whereD is finite and.A consists of
cores. Then for each grapA € A that is not a forest there exists another graph
B e AwithB — AbutA 4 B.

This result can be proved from the Directed Sparse Incorbpdyal emma, see
[1, 2]. We present a self contained proof instead.

Proof. Let A € A be a graph that is not a forest. Let,y) be an edge oA
contained in a cycle’. Let A’ be the graph obtained from by removing this
edge, adding a new vertex and the edgéz’, y). Notice that the map moving'
to = and fixing all other vertices is at’ — A homomorphism.

Let X be an arbitrary tournament with more vertices than any offingely
many) graphs irD. Let us consider the vertex sBt(X) (no edges yet) and dis-
joint copies A’ of A’ for every edg€u,v) € E(X). We obtain the graph” by
identifying the copy ofr in A/, with v and the copy of:’ in A, with v for all
(u,v) € B(X).

Note that the natural’ — A homomorphism can be applied to each copy
Al of A" as all the identified vertices are mappeditoThis gives us a natural
homomorphisny : Y — A.

As (A, D) is a duality pair we either have a graphe A with B — Y or a
graphD € D with Y — D. In the latter case we havw¥ (X)| > |V(D)|, so by
the pigeonhole principle we must hayéu) = f(v) for an edgg(u,v) € E(X).
But this means thaf restricted toA/,, is an A — D homomorphism, a clear
contradiction. This leaves the former possibility only. ¥few thatB € A with
B — Y satisfies the statement of the theorem.

Indeed we havés — Y — A. We will showA /4 Y and this impliesA 4 B.
In the degenerate case whdrconsists of a single loop edge 4 Y holds, since
Y is a tournament in this case. So we may assufrie not a loop and as it is a
core it does not even contain a loop. In particutaf y andC' has length at least
2. Assume for a contradiction that a homomorphismA — Y exists. AsA is a
core the homomorphisrfio g : A — A must be an automorphism. Modifying
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appropriately, one can assume without loss of generalitl/fthg is the identity, so
f(2) € g7 () for each vertex € V(A). We must havef (z) € g~ (z) = V(X)
andf(z) ¢ V(X) for any other vertex of A. The vertices of the cycl€' exceptx
itself must be mapped in a single connected componeXit\of (X)), in particular,
in a single copyA/,, of A’. The imagef (y) of y must be the copy af in A, so to
have(f(z), f(y)) € E(Y) we must havef(z) = v. This forces the image of the
other edge incident te in the cycleC outsideE(Y'). The contradiction finishes

the proof of the theorem. O

Note that this theorem implies that if we have antichaingiméinite-finite du-
ality pair of cores, then the left side contains forests oRlythermore, something
can be said without restricting attention to antichainst (L&, D) be an infinite-
finite duality pair of cores. We can remove frarhall the graphs which are not
forests but are “dominated” by one: the graphs A for which a forestB € A
exists withB — A, but A itself is not an forest. Clearly, the set of graphs to which
a homomorphism exists from a member of the remaining fapilglid not change,
so(A’, D) is still a duality pair. This duality pair may still containggaphA € A’
that is not a forest, but such a graph must hafaitely manydistinct graphs
B € A’ with B — A. Indeed, ifA has only finitely many such dominatirig, then
any minimal graph in this finite set would violate the preogdiheorem. From the
Directed Sparse Incomparability Lemma one can also shawftagraphA € A’
is imbalanced(containing a cycle with an unequal number of forward anerey
oriented edges), then the underlying undirected graphseofitaphsB € A’ have
unbounded girth.

In the following lemma we state the connection between hlpa@onnected
graphs on the left side of a duality pair and having a singbplgron the right
side. Recall that we call a gragonnectedf the underlying undirected graph is
connected and use the tenonnected componeint a similar way.

Lemma2.2. Let(.A, D) be an antichain duality pair witbd consisting of cores. If
agraphA € A hask connected components we hai > k. But if all graphs in
A are connected, thefD| = 1.

Proof. Take a grapMd € A. Let A4,..., A be the graphs obtained frow by
removing a single one of its components. For any < i < k we haved A A;
(sinceA is a core) furthermore we have — A, so asA is an antichain it contains
no graph that has a homomorphismAp As (A, D) is a duality pair eachl; has a
graphD; € D with A; — D;. Ifwe haveD; = D; for somel <i < j < kwe can
construct alMd — D; homomorphism by extending th& — D; homomorphism
to the missing component using the corresponding restniadf the A; — D;
homomorphism. Since we must hade/ D for D € D all graphsD; are distinct
and thugD| > k as claimed.

Now assume that everyt € A is connected but still we have two graphs
D1 # Dy inD. AsD is an antichain the disjoint unioP of D, and D, does not
have a homomorphism to any memberadf By the duality pair property we must



have a grapl € A such thatA — D. As A is connected this homomorphism
mapsA either toD; or to D, giving A — D1 or A — D, a contradiction. [

An immediate corollary of this lemma is that if an antichaasta finite dual its
members have a bounded number of components. For this wet deed the full
strength of the antichain condition, it is enough to assuma¢ we do not have a
homomorphism between two graphs.éfthat avoids an entire connected compo-
nent of the target graph. While replacing the left hand sideduality pair with an
equivalent antichain is not always possible, it is easy totkat replacing the left
hand side of a duality pair with an equivalent family satisfythis constraint is
always possible. If the right side is finite, then after thésformation the graphs
in the left side have a bounded number of components.

We end this section by showing that the maximum degree iskaisaded in
an antichain of core graphs that has a finite dual.

Lemma 2.3. Let (A, D) be a duality pair with4 an antichain consisting of cores
and D finite. Any vertex of any grapA € A has total degreéthis is the sum of
the in-degree and out-degreat mostdy = > . |V (D).

Proof. Let A € A andv € V(A) and suppose the total degréef v is larger
thandy. By Theorem 2.14 is a forest, s@ cuts its component afl into d parts.
Let us form the subgraphd,,..., A; of A by removing a single one of these
parts fromA. That is, eachd; is obtained fromA by removing an edge from

A that connect® to another vertexv (with either orientation) and also removing
the connected component affrom the resulting graph. Agl is an antichain of
cores no member oft has a homomorphism to any of these subgraphsso by
the duality pair property, there must be homomorphiginsA4; — D; from A; to
certain graphd); € D. Fromd > dy we must havd < i < j < dwith D; = D;
andf;(v) = f;(v). We construct aml — D; homomorphism by extending with
the restriction off; to the part ofA missing fromA;. The contradiction finishes
the proof. d

3. Antichainsof paths

In this section we give concrete examples of infinite anfithaf paths with or
without a finite dual. As paths are connected, Lemma 2.2uslthat when looking
for a finite dual it is always enough to consider duals coimgsdf a single graph.

To speak of (oriented) paths we use the natural correspoadsgtween them
and words over the binary alphaljet, —}. We use standard notation with respect
to these words, namely a word is a membef{ of —}* = Up>o{+, —}*, where
{+, —}* is the set of lengtl sequences from the alphabet. Roy € {+, —}*
andk > 0 we write zy for the concatenation of andy and z* for the word
obtained by concatenatirigcopies ofzx.

The correspondence is given by the mamapping{+, —}* to paths. For a
wordz = 1 ...2; € {+,—}"* let p(z) stand for the path consisting éfedges
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with thei’'th edge oriented forward if; = + and backward otherwise. A bit infor-
mally we will refer to the first and last vertices pfx) in their obvious meaning,
although formally the end vertices of the patlx) cannot be distinguished without
knowingx. We say that a homomorphisifh: p(z) — G mapsp(z) fromu to v if
the image of the first vertex @f(z) isu € V(G) and the image of the last vertex is
v € V(G). Note that although all (isomorphism classes of) pathsheilbbtained
as images in this map the correspondence is not onepameps up to two distinct
words to isomorphic paths (with the role of the first and lastices reversed), for
examplep(+ + —) andp(+ — —) are isomorphic.

3.1. Antichains without a finite dual

The following observation is trivial: Take any infinite agttain of paths (as we
will see such antichains are easy to find). The cardinalithefset of its subsets is
continuum, and no two can have the same set for dual. Thus hwamyno finite
dual, as the set of finite families of graphs is countable s Thrdinality argument
gives no explicit family without a finite dual. Here we set ¢oitconstruct such a
set.

Lemma 3.1. LetG be a graph withV(G)| < k and assume that for somee
{+, —}* we havep(z*) — G. Then for eactf > 0 we also havey(z*) — G.

Proof. There is nothing to prove if is the empty string. Otherwise, by considering
the homomorphism(z*) — G, one can find verticesy, . . . , v in G such that for
eachl < i < k asuitable restriction of the homomorphism mafs) fromv;_; to

v;. By the pigeonhole principle we fing = v; for some0 < i < j < k. Thus, we
can map thep(z/~%) to G with both endpoints mapping to the same vertex. This
closed walk can take the homomorphic image @f’) for any . O

Example 3.2. Let Q; = p((+(+—)¥)* + +) and consider any infinite family
A C{Qy | k > 1}. ThenA is an antichain of paths and has no finite dual.

Proof. To see thatA4 is an antichain observe that theightof a path defined as
the maximal difference between the number of forward edgestlae number of
backward edges in a sub-path cannot be decreased by a hoptosnor As the
height of Q. is k + 2 we haveQ, /4 Qq for £ < k. Butp(+(+—)* + 4)is a
sub-path of); and even this sub-path does not magXofor ¢ > k. A similar
argument also shows that d@Jl,, are cores: as deleting either the first or the last
edge ofQ; decreases its height any homomorphi&n — Q; must be onto and
thus an isomorphism.

Assume( A, D) is aduality pair. LeQ);, € A and conside®)), = p((+(+—)k)).
Clearly, @, — Qg, so we have), 4 Q). for ¢ # k by the antichain property
andQy, 4 Q) sinceQy is a core. So we must ha® € D with Q) — D.
We claim that|V(D)| > k. Indeed, otherwise by Lemma 3.1 we haVg —
p((+(+—)¥)**1) — D, a contradiction. AsA is infinite k£ could be chosen ar-
bitrarily large, soD must have arbitrarily large graphs and, thus, cannot befinit
O



3.2. Infinite antichains of paths with a finite dual

Our first infinite-finite antichain duality pair, the = 3 case of the next ex-
ample, is the smallest possible such example in the sensththdual is a single
graph on four vertices, while no graph or family of graphs ewdr vertices is a
dual of an infinite antichain.

Example 3.3. Let P§ = p(+%(—+*"1)*+) for s > 1, k > 0 and let D, be the
graph obtained from the transitive tournament®nl vertices by deleting the edge
connecting the source and the sink. TH¢®;, | £ > 0}, {D,}) is an antichain
duality pair of cores fors > 3.

Proof. To see that the infinite side is an antichain of cores we partit;’ into £+-2
parts, the first being the directed paify-*), the nextk parts beingy(—+*~1), the
last part being a single edge. In aRy — P/ homomorphism the first part af;
must not map to last edges ofP; because that would make the mapping of the
next part impossible. So it must be mapped identically tofils¢ part of P/ and
then the nexk parts of P must also map identically to the nekparts of P;. This
only works if¢ > k. Butif £ > k the last edge of; cannot be mapped anywhere.
So we must havé = ¢ and the homomorphism must be the identity.

To see thatD; is also a core it is enough to note that it is acyclic and has a
directed Hamiltonian path. Let us denote the vertices atbisgpath byvy, . . . , vs.

We showP; /4 D, similarly to the antichain property. Indeed, the first part
of P} (forming a directed path) has a single homomorphisnbtcending atv,.
Each of the nexk parts must map to the pathv,vs - - - vs. But asv is a sink, this
homomorphism cannot be extended to the last edgé’ of

Let G be an arbitrary graph. By the statement in the last paragregptannot
haveP; — G — D, foranyk > 0. So it remains to prove that eithé}; — G for
somek > 0 or we haveG — D,.

We call a vertexv € V(G) typei for 0 < ¢ < s if it is the image under a
homomorphism of the last vertex of a paitw-(+°~'—)¥4%) for somek > 0.
Note that fori > 1 a typei vertex is the image of the last vertex of the path-*)
soitis also a typé — 1 vertex.

If there is a types vertex inG we clearly haveP; — G for somek > 0 and
we are done.

If there is no types vertex inG we define¢ : V(G) — V(D;) by setting
¢(v) = v if vis nottype 0 and foi < i < s settingp(v) = v; if v is not typei
butwv is typei — 1.

We claim thatp is aG — D, homomorphism.

Let (u,v) be an edge ofr. This makesv the endpoint of an edge, so it is
type 0. Moreover, ifu is typei, then the pathp(+(+°~1—)*+?) mapping toG
and ending at. can be extended by the, v) edge, making a typei + 1 vertex.
Thus if ¢(u) = vj andg(v) = v;» we must havg < j'. It remains to prove that
o(u) = vy andp(v) = vy is impossible. Indeedp(v) = v, implieswv is type
s—1, soitis the image of the last vertex of a path-(+5~!—)*+5~1). Extending



this with the (u, v) edge we get that is the image of the last vertex of the path
p(4(+°~1=)k*1) makingu a type 0 vertex. This finishes the proof. O

3.3. Regularity

From the two examples considered so far one can notice tbearate of reg-
ular languages. Indeed, while the family of worgds®(—+*~1)k+ | k > 0} is
a regular language for any the family {+(+—)*)* + + | £ > 1} or any of its
infinite subfamilies are not regular. This connection waslihsis of our upcom-
ing paper [3] that establishes regularity as a necessargafidient condition for
having a finite dual in this case. We state the following edsseovation regarding
regularity to further motivate this connection.

Lemma 3.4. LetG be an arbitrary graph. The sdtx € {+, —}* | p(x) — G} is
a regular language.

Proof. We turn the grapld- into a nondeterministic finite automaton. The states of
the automaton are the vertices@fand each state is an initial and also a terminal
state. For each edde, v) of G we make the transition from to v possible for the
letter 4 and the transition from to « possible for the letter. It is straightforward

to see that this automaton accepts the language in the lemma. O

4. Antichains of trees

In this section we give infinite-finite antichain duality mawhere the infinite side
has trees that are not paths. The following lemma is instiéor this.

Lemma4.l. Let(.A, D) be a duality pair. Let us modify each € A by enriching

it with new vertices and edges: from each sinkdive start a new edge to a
separate new vertex . Let’ be the family of these modified graphs. Let us modify
each graphD € D by adding a single new vertex and edges to this vertex from
every vertex ofD. LetD’ be the family of these modified graphs. Tligth, D’)

is a duality pair. If A is an antichain so is4’, if D is an antichain, so i/,
furthermore ifA and D consist of cores so dd’ andD’.

Proof. Let A’ € A’ be the modification off € A andD’ € D’ be the modification
of D € D. If we have a homomorphisnfi : A’ — D’, then its restriction tod
must map taD as the single vertex @’ \ D is a sink inD’, but no vertex ofA is
a sink inA’. But the existence of ad — D homomorphism contradicts the fact
that (A, D) is a duality pair.

Let G’ be an arbitrary graph. We cannot hate— G’ — D’ for someA’ € A’
andD’ € D’ by the previous paragraph. It remains to show tifat> G’ for some
A" e A orG" — D' forsomeD’ € D'.

Let G be the subgraph @’ induced by the non-sink vertices. Agl, D) is a
duality pair we either havel — G for someA € A or G — D for someD € D.
In the former case we can extend the homomorphism G to a homomorphism



A" — G, whered’ € A’ is the modified version ofi. In the latter case we can
extend the homomorphis® — D to a homomorphisndé?’ — D', whereD’ € D’

is the modified version ab, by sending all vertices af’ \ G to the single vertex
in D'\ D.

To see that the antichain and core properties are inhentédtetmodified sets
consider two graphX andY from the same familyd or D and their modifications
X’ andY”’. Restricting a homomorphisti’ — Y’ to X we get a homomorphism
X — Y. Indeed, all vertices iy’ \ Y are sinks and no vertex iX is sink in
X'. So if the family was antichain, theki = Y and so the modified family is also
an antichain. IfX = Y is a core, then th&X — Y homomorphism must be an
isomorphism and it is easy to see that the origikial— Y’ homomorphism must
also be an isomorphism. O

Applying this lemma (possibly several times) to our eargamples of infinite-
finite antichain duality pairs we get several new such exasiplAlthough the
graphs on the left side of these pairs are no longer pathg atieestill very similar
to paths in structure.

The examples in the next lemma show better the complexityfémailies with a
finite dual can exhibit.

Let us consider the famil¥; of all finite rooted (undirected) binary trees sat-
isfying that each vertex is either a leaf (it has no childreni has two children: a
left child and a right child. Although these are “trees” ofremkind, they are not
in the category of finite directed graphs we study here and et apply ho-
momorphisms to these binary trees. To emphasize the differe/e denote these
binary trees by lower case letters as opposed to using tsfiitadirected graphs.
Note that the smallest memberff has a single vertex.

Let z,y,s,z € {+,—}* be words. We define the family of oriented trees
T(z,y, s,z) = {t(z,y,s,2) | t € Ty}, wheret(z,y,s, z) is an oriented tree
obtained from: by

(A) replacing each edge connecting a veriebo its left childv by a copy ofp(x)
fromu to v,

(B) replacing each edge connecting a verteto its right childw by a copy of
p(y) fromu tow,

(C) adding a patlp(s) from each leaf vertex af and

(D) adding a pathy(z) from the root oft.

Let G; andG» be the graphs depicted on Figures 1 and 2, furthermore let
Th=TH—,—+,——++) and To=T(+——,—+—,——,+++).

Theorem 4.2. (i) (71,{G1}) is a duality pair of core graphs.
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Figure 2: The grapld/s.

(i) (72,{G>}) is an antichain duality pair of core graphs.

Proof. We leave the simple proofs that all involved graphs are cares that
75 is an antichain to the diligent reader. Note thatis not an antichain: if
t € Ty andt’ is subtree oft containing the root, then(+—, —+, ——, ++) —
t'(+—,—+,——,++). As aresult (once (i) is proved) one also has {Hat (+—,
—+,——,++) | k > 100}, {G:}) is a duality pair ift;, € Ty is the depthk full
binary tree witte* leaves.

Assume for a contradiction that : ¢(+—, —+,——,++) — G;. We claim
that all vertices oft must map to the vertices or . This is certainly true for
the leaves because of the attached paths—) could not map ta=; otherwise.
Working with a bottom up induction assume that both the leét the right children
of the vertexu map toa or r. In this case the paths fromto its children must be
mapped td7; from f(u) to eithera or . Then we must havé(u) = a as from no
other vertex ofG; is there both a patp(+—) and a pattp(—+) to eithera or r.
So the root vertex must also be mapped twr » and the contradiction comes from
there being no place i@ for the pathp(++) attached to the root.

For (i) it is left to prove that for any grapX we either haved — X for an
A € T, or we haveX — G;. For this we define the “levelL; C V(X) to
consist of the vertices ok with a homomorphismP, — X ending atu but no
homomorphismP,,; — X ending atu. Here P, = p(+) is the directed path of
i edges and the levels), L, L, and L3 partition V' (z) or we haveP; — X and
we are done sincey € 7;.
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We construct the map : V(X) — V(G;) as follows:

(1) Set¢(u) = a for any vertexu € L, that has & € T and a homomorphism
f:t(+—,—+,——,¢) = X mapping the root of to a. Heree stands for the
empty word.

(2) Setp(u) = bfor any vertexu € Ly not yet mapped ta that either has an edge
(u,v) to a vertexv € Lg or two edgegu,v) and(w, v) with w € L; already
mapped taz.

(3) Setp(u) = ¢ for the remaining vertices € L.

(4) Setp(u) = z if u € Lo and there exists an edge, v) with ¢(v) = b.

)
(u)

(5) Setp(u) =y for the remaining vertices € Lj.
(u)

(6) Setp(u) = aif u € Ly and there is n@ € Ly with ¢(u) = a and(v,u) an
edge.

(7) Setp(u) = r for all remaining vertices iV (X).

If ¢ is a homomorphisnX — G we are done. Otherwise one of the steps above
made an edge iX map outsideX.

Steps 1-3 map the independent Betso they caused no problem. Step 4 can
create a problem if a vertex € L, has edge$u, v) and (u, w) with v,w € Ly,
¢(v) = band¢(w) = a. Butin this case the homomorphisms triggerit@) = b
and¢(w) = ain steps 2 and 1 can be combined (together withuthe path) with
a homomorphism triggering(v) = a in the first step, a contradiction.

Step 5 cannot cause trouble as b@tha) and(y, ¢) are edges it .

Steps 6 or 7 cause trouble if there is a vertex Lo U L with (v, u) an edge
from a vertexv € Ly with ¢(v) = x. But then there is a vertex € L; with (v, w)
an edge and(w) = b. Here again, the homomorphismygf+ + —+) to X ending
in the verticesuvw can be combined to the homomorphism triggerifg) = b
to obtain a homomorphism triggeringw) = a, a contradiction.

Finally in step 7 we can map both ends of(@nv) edge tor. This happens if
there exists an eddev, u) from a vertexw € L; with ¢(w) = a. This may indeed
happen, but then the homomorphism triggerifigy) = a can be combined to the
directed pathvuwv to getA — X for a treeA € 7;. This finishes the proof of part
().

(ii) The proof of this part is only slightly more complicated

Assume for a contradiction thgt: t(+ — —, — + —, ——, + + +) = G3. We
claim that all vertices of must map to the vertices, » or s. This can be shown
exactly like the corresponding statement in part (i). Satié vertex must also be
mapped ta: or . and the contradiction comes from there being no pladgsifior
the pathp(+ + +) attached to the root.
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Finally we assumg& is graph with naA — X homomorphism for anyl € 7s.
We construct the homomorphisi: X — Go similarly to part (i). We partition
V(X) into levelsL; as we did above. A$s € T, does not map toX, V(X) is
partitioned into the setq, L1, Lo, L3 and L.

(1) Set¢p(u) = a for any vertexu € L, that has & € T and a homomorphism
f:t(+—-—,—+—,——,¢) = X mapping the root of to a.

(2) Seto(u) = b for any vertexu € L; not yet mapped ta that has either a
homomorphism mapping(+ — — — —) to G5 from « or a homomorphism of
p(+ — —) to G2 from u to a vertexv € Ly with ¢(v) = a.

(3) Setp(u) = ¢ for the remaining vertices € L;.
x if u € Ly and there exists an edge, v) with ¢(u) = b.

(5) Setp(u) = y for the remaining vertices € Ly.

(u)
(4) Setg(u) =
(u) =
(6) Setp(u) = aif u € Ly and there is n@ € L, with ¢(u) = a and(v,u) an
edge.

(7) Setp(u) = r for all remaining vertices € Lo.

(8) Also setp(u) = r for verticesu € Ls with no edge(v,u) from a vertex
v € Ly with ¢(v) = 7.

(9) Setgp(u) = s for all remaining vertices: € V(X).

The proof thatp is indeed a homomorphism is almost identical to the cornedpo
ing argument in part (i). O

We finish the paper with a simple observation that shows hogotobine duality
pairs to obtain new pairs with several graphs on the righa.skbr simplicity we
restrict attention to combining two duality pairs with dimgyraphs on the right
hand side that are incomparable.

In the following proposition and examplé; U A, denotes the disjoint union
of the graphs4; and As.

Proposition 4.3. Let (A;,D;) and (A2, D) be duality pairs and let us partition
Aijinto A, ={AeA; |IBe€ A3_;: B— A}and A/ = A; \ Al fori=1,2.

(i) (A, D) is a duality pair, whereD = D;|JD; and A = {A; U Ay | A; €
./41, Ay € ./42}

(i) (A',D) is also a duality pair, whered’ = A} |JA,U{41 U A2 | A; €
,1/,142 S ./4,2/}
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(iii) If each.4; is an antichain andD;| = |Ds| = 1, then A’ can be made an
antichain by removing possible duplicates: leaving one bemonly from
each equivalent pair of graphs from; and A,.

Proof. For (i) it is enough to note that; U A, — B ifand only if A; — B and
A2 — B.

For (ii) take Ay € A}, and a grapi; € A; with 4] — As. As A; U Ay is
equivalent toA, we can putd; into the left side of the duality paitA4, D). But
then all graphs4’ U A, can be removed from there as maps to these graphs.
Doing this for all A, € A/, and similar changes for the graphs.4j one obtains
A’ and (ii) is proved.

To prove (iii) takeA € A" and consider the set§(A) = {B € A; | B — A}
fori = 1,2. For a graphA = A; U Ay with A; € A/, A, € A we have
S1(A) = {A;} andS2(A) = {As} since the graphs i, | A2 are connected
(Lemma 2.2), thus they map tif and only if they map tod; or A,. For A € Al
andi = 1 or 2 we haveS;(A) = {A}. SinceA — A’ implies S;(A) C S;(A’) for
A, A" € A andi = 1,2 the only possibility of such a map with # A’ is A € A
andA4’ € A, .. FromA € A we haveA” € A;_; with A” — A — A’. As A;_;
is an antichain we must haw#’ = A and thusA and A’ are equivalent. O

We can apply this lemma to combine any two of the several eleangf
infinite-finite duality pairs in this paper or even one suclareple with a sim-
ple duality with a single tree on the left hand side. We chdseduality pairs
({P}| k> 0},{D4}) from Example 3.3 an¢7z, {G2}) from Theorem 4.2. Note
that P is the directed path with five edges and it appear&ibut no homomor-
phism exist from a member @f to someP,;1 with £ > 1 or vice versa. Thus from
Lemma 4.3 we get the following

Example 4.4. The following is an antichain duality pair of core graphs:

{PYU{P UA k21,4 € T\ {Fy}} {Ds, Ga}).
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