
Output-polynomial enumeration of all fixed-cardinality ideals

of a poset, respectively all fixed-cardinality subtrees of a tree

Marcel Wild

Abstract

The N cardinality k ideals of any w-element poset (k ≤ w fixed) can be enumerated
in time O(Nw3). The corresponding bound for k-element subtrees of a w-element tree is
O(Nw5). An algorithm is described that by the use of wildcards displays all order ideals of
a poset in a compact manner, i.e. not one by one.

1 Introduction

An implication is a Boolean formula of type

(1) (a1 ∧ a2 ∧ · · · ∧ am)→ (b1 ∧ b2 ∧ · · · ∧ bn).

Each finite closure system C can be viewed as the set of models of a suitable family Σ of
implications, called an implicational base. Conversely, each

∑
triggers a closure system C. It

was known that from Σ one can enumerate C in output-polynomial time. Here we show that for
any fixed k the k-element members of C can be enumerated in output-polynomial time as well,
provided C satisfies some technical condition (Theorem 2). As Corollary 3 and Corollary 4 we
obtain the two results mentioned in the abstract.

Before we come to the section break up, let us give some background on Corollary 3. For an
arbitrary w-element poset (W,≤) we shall write N for the number of its (order) ideals, and Nk for
the number of k-element ideals (0 ≤ k ≤ w). Calculating N is a #P -complete problem, but for
special cases, such as 2-dimensional posets or interval orders, one can do it in w-polynomial time.
As to enumerating (= producing) all N ideals, obviously this can’t be done in w-polynomial
time since for general posets (e.g. antichains) N grows exponentially with w. However, it can
be done in output-polynomial∗ time. In fact Medina and Nourine [MN] enumerate the ideals in
time O(Nd) where d is the maximum number of covers of an element of W .

Let us turn to ideals of fixed cardinality k. Calculating Nk can be done in w-polynomial time
for interval orders [S], and for some posets explicite closed formulae for Nk are given in [C]. As
to enumerating the Nk ideals of cardinality k, for interval orders it was known to be doable in

∗Thus in time O(Ncwd) for some c, d ∈ Z+, as opposed to say O(N
√
w) or O(N logN) which are not output-

polynomial.

1

ar
X

iv
:1

20
8.

21
80

v2
 [

m
at

h.
C

O
]

 4
 A

pr
 2

01
3

Nk-linear time [HNS]. We show in Corollary 3 that Nk-linear time can be achieved for general
posets.

Sections 2 and 3 introduce the 0, 1, 2-algorithm which underlies the proof of Theorem 2 in Section
4. The 0, 1, 2-algorithm is convenient for that particular proof, but gets fine-tuned in Section 5
to the (a, b)-algorithm which however targets only singleton premise implications (so m = 1).
This kind of implication, which is intimately linked to posets, is the sole kind we are concerned
with in the remainder of the article. Applications to stable marriages, modular lattices, and
others are pointed out.

The number Nk of k-element ideals of a poset (W,≤) can be viewed as the k-th Whitney number
of the associated distributive lattice D. In Section 6 we pit the (a, b)-algorithm against a
straightforward recursive method to get the Whitney numbers. Section 7 investigates variations
of the (a, b)-algorithm, for instance whether it carries over from implications like a→ (b1∧b2∧b3)
to other kinds of “quasi-implications” such as a→ (b1 ∧ b2 ∧ b3).

2 The 0, 1, 2-algorithm by example

Rather than (1) we shall mostly adopt the set theoretic notation {a1, · · · , am} → {b1, · · · , bn}
for implications. If both the premise A = {a1, . . . , am} and conclusion B = {b1, . . . , bn} are
subsets of our universe W we say that X ⊆ W satisfies A → B if A ⊆ X implies B ⊆ X. In
other words, either A 6⊆ X or A ∪ B ⊆ X. Thus X corresponds to a model (= satisfying truth
value assignment) of formula (1). In the sequel we may assume that A ∩B = ∅ since A→ B is
equivalent to A→ (B\A).

We introduce the 0, 1, 2-algorithm on a toy example with W = [7] := {1, 2, . . . , 7}. Consider the
family of h = 4 implications

∑
:= {A1 → B1, A2 → B2, A3 → B3, A4 → B4}

= {{5} → {6, 7}, {6} → {3}, {1, 2, 3} → {7}, {3} → {4, 5}}.

In order to calculate the family Mod = Mod(
∑

) of all
∑

-models (i.e. those sets X ⊆ W that
are models of all (Ai → Bi) ∈

∑
) we represent subsets of W by their characteristic bitstrings

of length w = |W | = 7 but with the additional proviso of a don’t care symbol 2. Thus the
powerset P(W) is (2, 2, · · · , 2), and in general a {0, 1, 2}-valued row like r = (0, 2, 1, 2, 2, 0, 2) can
be viewed as an interval in P(W), i.e. r = {X ∈ P(W) : {3} ⊆ X ⊆ {2, 3, 4, 5, 7}}. Coupled to
each {0, 1, 2}-valued row are three obvious subsets of W , which for r above are zeros(r) = {1, 6},
ones(r) = {3}, twos(r) = {2, 4, 5, 7}.

Generally we put Mod0 := P(W) and for 1 ≤ i ≤ h let Modi be the family of all X ⊆ W that
satisfy the first i implication of

∑
. In particular Modh = Mod. Thus if

(2) Pi := {X ∈ P(W) : X satisfies Ai → Bi},

then Mod = P1 ∩ P2 ∩ · · · ∩ Ph. The main idea is to calculate Modi+1 from Modi by excluding

2

all X ∈ Modi that violate the (i + 1)-th implication. Such a principle of exclusion (POE) is
applicable in a wider context, see Section 3.

By “imposing” A1 → B1 upon r1 = (2, 2, 2, 2, 2, 2, 2) in an obvious way we get Mod1 = r1] r3
(Table 1) where] indicates disjoint union. Rather than imposing A2 → B2 on r2 and r3 we
keep focusing attention on the topmost row (here r2) of our working stack, i.e. we apply the well
known last in first out (LIFO) principle. LIFO entails recording for each row of the working
stack which implication is “pending” (e.g. the 2nd implication for r2 and the 3rd implication
for r5). Imposing A2 → B2 upon r2 again splits that row and results in the working stack (top
to bottom) {r4, r5, r3}. Imposing A3 → B3 upon r4 is more cumbersome because |A3| > 1.
Obviously r4 = S−] S+ where

S− := {X ∈ r4 : A3 6⊆ X} and S+ := {X ∈ r4 : A3 ⊆ X}.

One checks that S− = r6] r7] r8 where the disjointness of rows is noteworthy†. All X ∈ S−
satisfy A3 → B3 but not all X ∈ S+ satisfy it; for instance X = (1, 1, 1, 1, 0, 0, 0) ∈ S+ doesn’t.
However, it is clear that r9 ⊆ S+ comprises exactly the sets X ∈ S+ that satisfy A3 → B3.
Imposing A4 → B4 upon r6 results in the row (0, 2,0, 2, 0, 0, 2) since r6 has 0 on its fifth position.
All implications having been imposed that row becomes the bottom row of the final stack (Table
2). Similarly r7 gets its third component 2 switched to 0 and is put on the final stack. Further
r8 is put on the final stack unaltered but r9 must be deleted altogether since no X ∈ r9 satisfies
A4 → B4. As to r5, imposing the pending implication A3 → B3 is pointless since again no
X ∈ r5 satisfies A4 → B4, and so r5 must be deleted. The working stack now consists of r3
alone. Imposing the three pending implications on r3 results in (2, 2, 1, 1, 1, 1, 1) which becomes
the last row of our final stack. It follows that Mod is the disjoint union of the four {0, 1, 2}-valued
rows in Table 2, in particular |Mod| = 4 + 4 + 4 + 8 = 20.

†Had the first three components of r6, r7, r8 been (0, 2, 2), (2, 0, 2), (2, 2, 0) respectively, the union would not
have been disjoint.

3

1 2 3 4 5 6 7

r1 = 2 2 2 2 2 2 2 p. imp 1

r2 = 2 2 2 2 0 2 2 p. imp 2

r3 = 2 2 2 2 1 1 1 p. imp 2

r4 = 2 2 2 2 0 0 2 p. imp 3

r5 = 2 2 1 2 0 1 2 p. imp 3

r3 = 2 2 2 2 1 1 1 p. imp 2

r6 = 0 2 2 2 0 0 2 p. imp 4

r7 = 1 0 2 2 0 0 2 p. imp 4

r8 = 1 1 0 2 0 0 2 p. imp 4

r9 = 1 1 1 2 0 0 1 p. imp 4

r5 = 2 2 1 2 0 1 2 p. imp 3

r3 = 2 2 2 2 1 1 1 p. imp 2

r3 = 2 2 2 2 1 1 1 p. imp 2

2 2 1 1 1 1 1 → 4

1 1 0 2 0 0 2 → 4

1 0 0 2 0 0 2 → 4

0 2 0 2 0 0 2 → 8

Table 1 Table 2

3 Formal definition of the 0, 1, 2-algorithm and the avoidance of
row deletions

In each version of mentioned POE (more details below) one must show how a general row r that
satisfies the first i constraints (thus r ⊆ Modi) either gets deleted or gives rise, upon imposing
the (i+ 1)-th constraint, to proper sons r′1, · · · , r′s such that

r ∩ Modi+1 = r′1] r′2] · · ·] r′s.

Then LIFO can be applied as illustrated in Section 2 and yields Mod as a disjoint union of
rows (final stack). In the present article the constraints are implications and in order to impose
Ai+1 → Bi+1 on r we make a case distinction.

Case 1: For all X ∈ r the disjunction (Ai+1 6⊆ X or Bi+1 ⊆ X) is true. Then r carries over, i.e.
s = 1 and r′1 := r.

Case 2: The above disjunction fails for all X ∈ r. Then r gets deleted.

The remaining possibility is that (Ai+1 6⊆ X or Bi+1 ⊆ X) holds for some and fails for some
X ∈ r. We proceed according to the cardinality of the premise Ai+1.

Case 3: |Ai+1| = 1, say Ai+1 = {j}. Then the j-th entry αj of r cannot be αj = 0 and not all
components indexed by Bi+1 can be 1 (otherwise we’d be in Case 1).

Case 3.1: Some components of r indexed by Bi+1 are 0. Then αj = 2 (if αj was 1, we’d be in

4

Case 2), and so r′1 = r′s arises from r by switching αj to 0.

Case 3.2: All components of r indexed by Bi+1 are either 1’s or “anxious” 2’s (as if fearing for
their freedom). Subcase 1: αj = 2. Then r′1 is obtained by switching αj to 0. And r′2 = r′s is
obtained from r by switching αj to 1, along with the anxious 2’s. Subcase 2: αj = 1. Then only
one row r′1 = r′s arises, obtained from r by switching the anxious 2’s to 1.

Case 4: |Ai+1| > 1. Analogous to Case 3 all components of r indexed by Ai+1 are 1 or 2 and
not all components indexed by Bi+1 are 1.

Case 4.1: Some components of r indexed by Bi+1 are 0. Then not all components or r indexed
by Ai+1 are 1 (otherwise we’d be in Case 2). To fix ideas, assume without loss of generality
that r is as in Table 3 and Ai+1 → Bi+1 is {1, 2, 3, 4, 5, 6} → {8, 9}. Thus imagine the first two
symbols ∗ in r are 1, followed by four 2’s. Then Modi+1 ∩ r = {X ∈ r : Ai+1 6⊆ X} and the
latter is r′1] r′2] r′3] r′4, so s = 4. (Of course the symbols ∗ in every r′i have the same value as
the corresponding ∗ in r.) It is handy to call the boldface 4× 4 pattern in Table 3, or any t× t
pattern of this type, the Flag of Papua (New Guinea). As in the example of Section 3 where
t = 3, the purpose of the Flag of Papua is to keep the t concerned rows disjoint.

Case 4.2: All components of r indexed by Bi+1 are 1 or anxious 2’s .

Subcase 1: Not all components of r indexed by Ai+1 are 1. Say again the first two symbols ∗ in r
are 1, followed by four 2’s. However, now Modi+1∩r = S−]S+ with S− := {X ∈ r : Ai+1 6⊆ X}
and S+ := {X ∈ r : Bi+1 ⊆ X}. As before S− = r′1] r′2] r′3] r′4 but S+ = r′5. Subcase 2: All
components or r indexed by Ai+1 are 1. Then Modi+1 ∩ r reduces to S+ = r5. That concludes
the formal description of the 0, 1, 2-algorithm.

1 2 3 4 5 6 7 8 9

r = ∗ ∗ 2 2 2 2 ∗ ∗ ∗

r′1 = ∗ ∗ 0 2 2 2 ∗ ∗ ∗
r′2 = ∗ ∗ 1 0 2 2 ∗ ∗ ∗
r′3 = ∗ ∗ 1 1 0 2 ∗ ∗ ∗
r′4 = ∗ ∗ 1 1 1 0 ∗ ∗ ∗
r′5 = 1 1 1 1 1 1 ∗ 1 1

Table 3

However, the deletion‡ of rows (Case 2) precludes a theoretic assessment of it. Fortunately
Theorem 1 in [W2] tells us how an “old” version of the POE can be purged from row deletions
and thus be evaluated. In brief, it works whenever the existence of a model in a row can be
decided fast. Furthermore [W2, Thm.1] also handles the restriction to models of fixed cardinality.
We take the opportunity to sharpen [W2, Thm.1] in the form of Lemma 1 below, but need a
few preliminaries.

‡When speaking of row deletions we always mean “wasteful” deletions (such as r9 in Sec.2), as opposed to the
“harmless” deletions where rows give way to proper sons (such as r1 to r2, r3 in Sec.2).

5

Some versions of the POE employ additional symbols besides 0, 1, 2, say e, n, or a, b in Section
5 of the present paper. We then speak of multivalued rows. Generalizing Pi in (2) other set
families Pi ⊆ P(W) (1 ≤ i ≤ h), referred to as constraints, may be concerned. A multivalued
row r is feasible if it contains a model, i.e. r ∩ P1 ∩ · · · ∩ Ph 6= ∅. If k ∈ [w] is fixed, then r
is extra feasible if r contains a k-element model. The imposition of a constraint on r works as
follows. Row r splits into at most s candidate sons. some of which get killed or altered and the
remaining rows are the proper sons. Getting the cadidate sons is easier than the proper sons.
For instance, if the 0, 1, 2-algorithm is run on a family of implications

∑
then

(3) s = max{|A|+ 1 : (A→ B) ∈
∑
}.

Lemma 1: Let W be a set of cardinality w and let Pi ⊆ 2W be h constraints. Fix k ∈ [w].
Suppose some “old” version of POE can be employed to produce disjoint multivalued rows whose
elements are the N > 0 k-element models§. Further assume that for the functions f(h,w) and
f∗(k,w) the following holds:

(a) For each multivalued row r it costs O(f(h,w)) to decide whether it is extra feasible.

(b) For each multivalued row r it costs O(Card(r, k)f∗(k,w)) to list (in ordinary set notation)
the sets X ∈ r with |X| = k.

Then the old version can be adapted to a new one that avoids row deletions and takes time
O(Rhs(w+ f(h,w))) to deliver the set of k-element models as a disjoint union of R multivalued
rows. If the k-element models must be enumerated one by one (in ordinary set notation) the cost
is O(Nf∗(k,w) +Rhs(w+ f(h,w))). (In [W2] f∗(k,w) does not appear since it is unnecessarily
subsumed by f(h,w).)

Proof. Suppose the O(Rhs(w+f(h,w))) cost is established. Then it is easy to see that enumer-
ating the k-element models one by one costs an additional amount of O(Nf∗(k,w)). Namely, it
follows at once from (b) in view of the fact that the sum of the R numbers Card(r, k), when r
ranges over the R final rows, is N .

Showing the O(Rhs(w + f(h,w))) claim requires us to browse the proof of [W2, Theorem 1].
Its overall structure remaining the same, we merely identify two crisp spots where one can save
on time. First, in (13) of [W2] it is postulated that generating the candidate sons of a length w
row costs O(w2). However, in all instances of POE so far one has s ≤ w and hence can do with
O(sw). Correspondingly the cost O(w2) + sO(f(h,w)) of producing the proper sons of a row
(second last line in the proof of [W2, Thm.1]) becomes O(sw)+sO(f(h,w)) = O(s(w+f(h,w)).
Second, in [W2] it is assumed, merely for cosmetic reasons, that f(h,w) be “at least linear in
w.” The effect is that the cost of producing the proper sons simplifies to O(wf(h,w)). As
argued in [W2] there are at most Rh occasions where the proper sons of a row are produced.
Since no extra costs accumulate from row deletions, the overall cost of producing the R final
rows amounts to optionally O(Rh · wf(h,w)) (as in [W2]), or to O(Rh · s(w + f(h,w))) which
we here prefer.

§Here and in Sec.5 we prefer N over Nk to denote the number of k-element models. If N = 0 (whence R = 0)
the expression O(· · ·) in Lemma 1 becomes 0, despite the fact that it takes time to discover there are no k-element
models. We could have covered the N = 0 case by writing R + 1 for R and N + 1 for N within O(· · ·) but that
got too clumsy, particularly in the proof. Note that N + 1 fits better in Theorem 2, and in Corollary 3 and 4 one
always has N 6= 0.

6

4 The main results

For any family
∑

of implications Mod(
∑

) ⊆ P(W) is well known to be a closure system, i.e.
W ∈ Mod(

∑
and from X,Y ∈ Mod(

∑
) follows X ∩ Y ∈ Mod(

∑
). Conversely, given any

closure system C ⊆ P(W), there always are implicational bases
∑

in the sense that C = Mod(
∑

).
For any closure system C ⊆ P(W) and any set T ⊆W we write cl(T) for the closure of T , i.e. the
smallest X ∈ C with T ⊆ X. The length of an implication A→ B is |A|+ |B|, and for a family∑

of implications ||
∑
|| is the sum of the lengths of its members. Observe that ||

∑
|| ≤ w|

∑
|.

If C comes along with an implicational base
∑

, then by [RM, Thm.10.3] there is a O(||
∑
||+w)

algorithm for computing cl(T) for any T ⊆W .

For a family F of closure systems C with universes of unbounded cardinality w consider the
following disjoint extension property:

(4) There is c ≥ 1 such that for all C ∈ F , all Z0 ∈ C, all Y ⊆W and all k ≤ w, it can be
checked in time O(wc) whether there is Z ∈ C with Z0 ⊆ Z and |Z| = k and Y ∩Z = ∅.

(If already Y ∩ Z0 6= ∅ or if |Z0| > k, the answer is easy.)

We mention that one possibility for F to enjoy (4) is the following. Let F consist of convex
geometries C in the sense of [EJ] which additionally have this property: For every Z0 ∈ C and
every Y ⊆ W with Y ∩ Z0 = ∅ the set {Z ∈ C : Z ⊇ Z0, Y ∩ Z = ∅} has a largest member Z0,
and it can be found in time O(wc). The families F in Corollary 3 and 4 are of this kind.

Theorem 2: Let F be a family of closure systems that enjoys the disjoint extension
property. Then there is an algorithm A which for any C ∈ F , C ⊆ P([w]), that comes
equiped with an h-element implicational base

∑
, and any k ∈ [w], enumerates the N

many X ∈ C with |X| = k in output polynomial time O((N + 1)hs(hw + wc)).

Here s is as in (3). As to N + 1, see the footnote accompanying Lemma 1.

Proof. In order to use an enhanced 0, 1, 2-algorithm A for enumerating all X ∈ C with |X| = k
we first verify condition (a) in Lemma 1 for f(h,w) := hw + wc. So let r be a {0, 1, 2}-valued
row of length w. Compute Z0 := cl(ones(r)) in time O(||

∑
|| + w) = O(hw + w) = O(hw).

Obviously Z0 ⊆ X for each
∑

-model X ∈ r. Hence, if |Z0| > k, then r is not extra feasible.
If |Z0| ≤ k put Y := zeros(r). By the disjoint extension property we can test in time O(wc)
whether or not there is a k-element

∑
-model Z with Z ⊇ Z0 and Z ∩ Y = ∅. If yes, then r is

extra feasible since Z ∩ Y = ∅ implies Z ∈ r. Vice versa, if the answer is no, then r is not extra
feasible. The cost of this test is O(hw) +O(wc).

As to Lemma 1(b), putting β = |ones(r)| enumerating the k-element sets X ∈ r amounts to
enumerate the (k − β)-element members of the powerset P(twos(r)). This can be done in time
O(Card(r, k)), see e.g. Exercise 8 in [K, p.26]. Substituting f(h,w) = hw+wc and f∗(k,w) = 1
in Lemma 1 yields O(N +Rhs(hw + wc)) = O(Nhs(hw + wc)). �

7

Corollary 3: There is an algorithm A such that for any w-element poset (W,≤) and any
k ∈ [w] its N many k-element order ideals get enumerated by A in output polynomial time
O(Nw3).

Proof. Associated to each poset (W,≤) is the closure system C(W,≤) of all its ideals. We claim
that the family F of all closure systems C(W,≤) enjoys the disjoint extension property with
c = 2. So let Z0 be an ideal of (W,≤) and let Y ⊆W be disjoint from Z0. We may assume that
|Z0| ≤ k. If Y ′ ⊇ Y is the (order) filter generated by Y (which remains disjoint from Z0) then
each ideal disjoint from Y is contained in the ideal Z0 := W\Y ′. The set P := Z0\Z0 is convex
in the sense that (a < b < c and a, c ∈ P) implies b ∈ P . If |Z0|+ |P | < k, there is no k-element
ideal Z extending Z0. On the other hand, if |Z0|+ |P | ≥ k, we shell any k − |Z0| elements of P
from below. Because P is convex adding these k − |Z0| elements to Z0 yields a k-element ideal
Z. Calculating |P | costs O(w2), and so c = 2.

For any poset (W,≤) a natural implicational base
∑

=
∑

(W,≤) of C(W,≤) is provided by the
implications {p} → LC(p) where p ranges over W and LC(p) is the set of lower covers of p.
For convenience we admit the minimal elements p ∈ W , albeit they yield trivial implications
{p} → ∅. Calculating

∑
from (W,≤), say from a w × w incidence matrix of ≤, costs O(w2).

Applying Theorem 2 and noting that h = |
∑
| = w and s = 2, the overall cost of enumerating

the k-element ideals amounts to O(w2) +O(Nhs(hw+w2)) = O(Nw(w2 +w2)) = O(Nw3). �

It is an open question whether “k-element ideals” in Corollary 3 can be generalized to “ideals
of weight k” with respect to some weight function W → Z+. If the answer is affirmative,
that would entail (by considering the factor poset of strong components) that for any family
Σ of singleton-premise implications (possibly with directed cycles) the Σ-closed k-element sets
can be enumerated in output-polynomial time. We mention that finding one maximum weight
k-element ideal of a poset is NP-hard [FK].

Corollary 4: There is an algorithm A such that for any w-element tree T and any k ∈ [w]
the N many k-element subtrees of T get enumerated by A in time O(Nw5).

Proof. For convenience we identify T and all occuring (induced) subforests of T with their
underlying vertex sets. Associated to each tree T is the closure system C(T) of all its subtrees.
In order to show that the family F of all C(T) enjoys the disjoint extension property with c = 1,
let Z0 ⊆ T be a subtree and let Y ⊆ T be a set disjoint from Z0. Then F = V \Y is a subforest,
and there is a k-element subtree extending Z0 if and only if the connected component Z0 of F
containing Z0 has cardinality ≥ k. Finding the size of the connected component of a vertex in a
graph can be done in linear time with respect to the number of edges, hence in our case O(w).
This proves c = 1.

For any tree T an implicational base
∑

of C(T) is provided by the implications {a1, a2} →
{b1, · · · , bn} where a1, a2 are non-adjacent vertices of T and a1, b1, · · · , bn, a2 (n ≥ 1) is the
unique path from a1 to a2. One can construct

∑
in time O(w2). Applying Theorem 2 and

noting that h = O(w2) and s = 3, the overall cost of enumerating the k-element subtrees is
O(w2) +O(Nhs(hw + w)) = O(Nw2(w2w + w)) = O(Nw5). �

8

There is some literature on counting or enumerating various types of binary trees and their
subtrees. As for arbitrary trees T , all subtrees of T can be enumerated in output-polynomial
time [R] but Corollary 4 seems to be new. Observe that different from posets a maximum weight
k-subtree of T can be found [FK] in time O(w4).

5 The (a, b)-algorithm

In Section 2 imposing the implication {1, 2, 3} → {7} upon r4 = (2, 2, 2, 2, 0, 0, 2) resulted
in the Flag of Papua made up by r6, r7, r8 and the “1-filler” row (1, 1, 1, 2, 0, 0, 1). It seems
more economic to replace r6, r7, r8 by the single row (n, n, n, 2, 0, 0, 2), where by definition the
wildcard nnn means “at least one 0 here”. The resulting implication n-algorithm [W2] indeed
beats the 0, 1, 2-algorithm in practise but for the proof of Theorem 2 the 0, 1, 2-algorithm was
more convenient.

For singleton-premise implications the dichotomy (n, · · · , n) ↔ (1, · · · , 1) boils down to 0 ↔ 1
(hence nothing new), but there is another way to improve upon the 0, 1, 2-algorithm in this case.
In brief, we shall employ two new symbols a, b. Rather than imposing say {5} → {6, 7} on
(2, 2, 2, 2, 2, 2, 2) by splitting it in r2, r3 (Table 1), we replace r1 by a single row (2, 2, 2, 2, a, b, b)
which by definition represents the intended set system.

Before we embark on the ensuing algorithm, we formally define an {0, 1, 2, a, b}-valued row r as
a partition of [w] into four (possibly empty) parts zeros(r), ones(r), twos(r), implications(r),
such that if implications(r) 6= ∅, it is further partitioned as

implications(r) = prem[1] ∪ conc[1] ∪ · · · ∪ prem[t] ∪ conc[t] (t ≥ 1),

where all prem[i] are singletons, and all conc[i] are nonvoid (1 ≤ i ≤ t). A set X ⊆ [w] by
defintion belongs to r if and only if ones(r) ⊆ X and zeros(r) ∩X = ∅, and for all 1 ≤ i ≤ t it
holds that

prem[i] ⊆ X ⇒ conc[i] ⊆ X.

While this defintion reflects the author’s Mathematica-implementation of {0, 1, 2, a, b}-valued
rows in the upcoming a, b-algorithm, we shall use a more visual representation. Thus, up to
permutation of the entries, a typical {0, 1, 2, a, b}-valued row looks as follows:

(5) r = (0, 0, 1, 1, 2, 2, 2, a1, b1, b1, a2, b2, b2, b2, a3, b3).

For instance, prem(2) = {11}, conc(2) = {12, 13, 14}. It is clear that generally

(6) |r| = 2|twos(r)| ·
t∏
i=1

(1 + 2|prem(i)|)

(
where

0∏
i=1

(· · ·) = 1

)
.

Each family
∑

of singleton-premise implications corresponds to a directed graph D in the
obvious way. Let (W,≤) be the factor poset of the strong components of D. Since the

∑
-closed

sets correspond bijectively to the ideals of (W,≤), we henceforth restrict attention to posets.
Coupled to a poset (W,≤) we consider the natural implicational base

∑
=
∑

(W,≤) that we
encountered in the proof of Corollary 3. Upon relabelling we may assume that 1, 2, · · · , w is a

9

linear extension of (W,≤). The benefit is that when we impose Ai+1 → Bi+1 (say {j} → Bi+1)
upon a multivaled row r, the j-th entry αj of r will always be αj = 2 (as opposed to Case 3 in
Sec.3). Let us see in detail how {j} → Bi+1 is to be imposed on the {0, 1, 2, a, b}-valued row r.
Different from Section 3 we base our case distinction on the behaviour of B = Bi+1.

Case 1: B ∩ zeros(r) = ∅. Then the 2 at the jth position becomes 0.

Case 2: B ⊆ ones(r). Then r carries over unaltered.

Case 3: At least one B-position is 2 and the others, if any, are 1. Then the 2 at the jth position
becomes the symbol a and the 2’s indexed by B become symbols b. (Both a and the b’s get an
appropriate index to distinguish them from other such symbols potentially present in r.)

Case 4: There are no 0’s but symbols ai or bi within the range of B. A typical situation would
be:

r = (· · · , b1, b2, 0, b4, b2, a1, a2, b3, 2︸ ︷︷ ︸
B

, b3, a3, a4, 2︸︷︷︸
j

, 2, · · · , 2)

r′ = (· · · , b1, b2, 0, b4, b2, a1, a2, b3, 2, b3, a3, a4, 0, 2, · · · , 2)

r′′ = (· · · , 1, 1, 0, 1, 1, 1, 1, 1, 1, b3, a3, 2, 1, 2, · · · , 2)

One checks that the sets X ∈ r that satisfy {j} → B are precisely the ones in the disjoint union
of r′ and r′′. As to r′′, notice that putting one b3 = 1 in a3b3b3 results in a3b3, whereas putting
b4 = 1 in a4b4 results in 2. That concludes the formal definition of the (a, b)-algorithm.

Lemma 1 in Section 3 was formulated for k-element models but mutatis mutandis also holds for
models of cardinality ≤ k (see [W2]). In particular, if k = w, it is about enumerating all models.
This is the version we need for assessing the (a, b)-algorithm. Namely, due to the linear extension
ordering, all occuring rows are automatically feasible, and so f(h,w) = 0. Furthermore h = w
and s = 2. Hence the O(Rhs(w+f(h,w))) term in Lemma 1 becomes O(Rw(w+0)) = O(Rw2).
To summarize:

Theorem 5: The (a, b)-algorithm takes time O(Rw2) to compactly display the ideals
of a w-element poset as a disjoint union of R many {0, 1, 2, a, b}-valued rows.

As in all versions of POE, in theory R can only be bound by the total number N of models, yet
in practise (as in Table 4) often R � N . From the introduction recall the O(Nd) algorithm of
[MN]. While d is better than w2, this is outweighed by R� N .

Enumerating the ideals of a poset has applications in scheduling theory and other parts of
operations research [CLM]. As to applications in pure algebra, one concerns the calculation of
all submodules of a finite R-module from its join-irreducible submodules. In fact that’s only
one instance of calculating a finite modular lattice from its poset of join irreducibles p, and a
knowledge of its collinear triplets (p1, p2, p3) in the sense that p1∨p2 = p1∨p3 = p2∨p3. Here one
benefits from the flexibility of the (a, b)-algorithm to target only specific, further constrained
ideals. Albeit [SW] needs polishing, it provides the details. It is long known [GI] that all

10

“stable marriages” w.r. to given rank ordered preference lists constitute a distributive lattice,
and whence could be viewed as ideals of a poset and enumerated by the (a, b)-algorithm. Due
to the flexibility of the (a, b)-algorithm that approach is tempting when only particular stable
marriages are targeted, which do not yield to other methods. Another application [W3] is the
production of all pairwise nonisomorphic incidence algebras that share some common pattern.

6 Calculating Whitney numbers of distributive lattices

The number Nk of rank k elements of any ranked lattice L is called the k-th Whitney number
of L. Here we focus on the distributive lattice D(P) of all ideals X of a w-element poset
W = (W,≤), in which case the rank of X equals its cardinality. Thus Nk can be calculated in
time O(Nkw

3) (Corollary 3). We refer to the introduction for various special cases concerning
Nk. In practise the (a, b)-algorithm beats the 0, 1, 2-algorithm underlying Corollary 3. Even
more so when the issue is not enumeration but merely the calculation of Nk. But in order to
do so the (a, b)-algorithm needs a little update. Namely, given a {0, 1, 2, a, b}-valued row r, we
wish to efficiently calculate

(7) Card(r, k) := |{X ∈ r : |X| = k}|

for all k ∈ [w]. This is more subtle than (6). Associate with r a polynomial pol(r, x) with
indeterminate x that comes as a product as follows. Each symbol 1 contributes a factor x, and
each symbol 2 a factor 1 + x. Further, each pattern aibibi · · · bi with m = |prem(i)| contributes
a factor

1 +

(
m

1

)
x+

(
m

2

)
x2 + · · ·+

(
m

m

)
xm + xm+1.

It is easy to verify that Card(r, k) is the coefficient of xk in pol(r, x). For instance, r in (5) has

pol(r, x) = x2(1 + x)3(1 + 2x+ x2 + x3)(1 + 3x+ 3x2 + x3 + x4)(1 + x+ x2)

= x2 + 9x3 + 37x4 + 93x5 + · · ·+ 6x13 + x14

and thus e.g. Card(r, 5) = 93. The multiplying out of factors is achieved “fast” using the
Mathematica command Expand and we do not to delve into its theoretical complexity here (for
some e-algorithm handling hypergraph transversals this was done elsewhere). Summing up the
polynomials of all final rows yields the rank polynomial¶

RP (x,D) =
w∑
k=0

Nkx
k

of our distributive lattice D = D(W).

Let us present another, now recursive way, to calculate RP (x) = RP (x,D). For any a ∈ W let
a ↓= {p ∈W : p ≤ a} and a ↑= {p ∈W : p ≥ a} be the generated ideal respectively filter. Put

¶This is not to be confused with the order polynomial of (W,≤) whose coefficients count the number of
homomorphisms from W to chains.

11

T− = {X ∈ D : a 6∈ X} and T+ = {X ∈ D : a ∈ X}. One verifies that T− equals D(W \ a ↑),
and X 7→ X \ (a ↓) is a bijection from T+ onto D(W \ a ↓). It follows‖ that

(8) RP (x) = RP−(x) + xαRP+(x)

where RP−(x) and RP+(x) are the rank polynomials of D(W \a ↑) and D(W \a ↓) respectively,
and α = |a ↓ |.

Iterating (8) on the smaller posets W \ a ↓ and W \ a ↑ eventually yields RP (x) explicitely.
Here it pays to always pick a in such a way that |a ↓ | + |a ↑ | is maximum. Furthermore, for
n-element antichains we can dispense with (8) since their rank polynomials are obvious. (That’s
more generally true for disjoint unions of chains but they are hard to identify.)

In Table 4 below we pit the (a, b)-algorithm against the recursive method on some random
examples. Specifically the lattices D are the ideal lattices of posets W (m, `, t) which consist of
` levels Lev(i), all of cardinality m, in such a way that each a ∈ Lev(i) (2 ≤ i ≤ `) is assigned t
random lower covers in Lev(i− 1). �

Both algorithms were implemented with Mathematica 8.0, the implementation of the recursive
method being straightforward∗∗. In all cases both methods agreed upon RP (x,D), thus very
likely both are correct. Rather than RP (x,D) we record the total number N = RP (1, D) of
ideals, the respective times, as well as the parameters R and nsum. The former is the number
of final rows generated by the (a, b)-algorithm (matching the notation of Theorem 5), the latter
the number of final (i.e. coupled to antichains) summands constituting RP (x,D) when using
the recursive method. Depending on the type of poset one or the other algorithm prevails.
Recall that the (a, b)-algorithm has the additional benefit of delivering the ideals themselves in
a compact format.

(m, `, s) N R time-(a, b) nsum time-rec

(5, 28, 2) 30416508 8932 25 4827 7

(3, 28, 1) 66506610198 56256 61 595830 1070

(10, 15, 9) 15560 984 3 228 1

(15, 10, 6) 709150 25302 80 5870 6

(20, 2, 2) 500466940 1872 3 30205 49

(20, 3, 2) 27003561664 1041866 746 946439 1612

(20, 4, 2) 214942410560 1148952 1335 6713622 11892

Table 4

‖The recursion (8) has likely been discovered before but the author couldn’t pinpoint a reference. We mention
that a similar recurrence used in [BK, p.106] to count the antichains of (W,≤), in fact is the standard recurrence
to calculate the independence polynomial of a graph (in this case the comparability graph of (W,≤). Notice
that while antichains and order ideals of (W,≤) are in bijection, this is not the case for the respective k-element
objects.
∗∗It would be harder to set up and implement recursions for counting the k-element subtrees of a tree; cf.

Corollary 4.

12

7 About quasi-implications

Each singleton-premise implication, say {a} → {b1, b2, b3} properly speaking is the propositional
formula in (i) below. It serves as point of departure in our attempt to carry over the a, b-
algorithm to other kinds of (singleton-premise) quasi-implications. We investigate the eight
variations obtained from (i) by independently negating the premise a, respectively negating all
variables b1, b2, b3 of the conclusion, respectively switching ∧ to ∨. Since negating all variables
can’t deliver anything logically new (yet psycho-logically), we mainly focus on (i) to (iv) rather
than (i∗) to (iv∗):

(i) a→ (b1 ∧ b1 ∧ b3) (1, 1) implication

(ii) a→ (b1 ∨ b2 ∨ b3) (0, 0′) quasi-implication

(iii) a→ (b1 ∨ b2 ∨ b2) (1, 0′) quasi-implication

(iv) a→ (b1 ∧ b2 ∧ b3) (1, 0) quasi-implication

(i∗) a→ (b1 ∧ b2 ∧ b3) (0, 0) quasi-implication

(ii∗) a→ (b1 ∨ b2 ∨ b3) (1, 1′) quasi-implication

(iii∗) a→ (b1 ∨ b2 ∨ b3) (0, 1′) quasi-implication

(iv∗) a→ (b1 ∧ b2 ∧ b3) (0, 1) quasi-implication

As to (ii), this is equivalent to (b1∧b2∧b3)→ a. Such singleton-conclusion implications are more
powerful than singleton-premise implications since each implication, say (b1∧b2∧b3)→ (a1∧a2),
is equivalent to a conjunction of such implications (b1 ∧ b2 ∧ b3) → a1 and (b1 ∧ b2 ∧ b3) → a2.
The (a, b)-symbolism does not†† carry over to implications with premises of cardinality ≥ 1.

As to (iii), this is equivalent to the clause a ∨ b1 ∨ b2 ∨ b3. Also (ii) could have been written as
a∨ b1 ∨ b2 ∨ b3. By definition a conjunction of clauses with at most one positive literal, is called
a Horn formula. The Horn n-algorithm of [W2] extends the implication n-algorithm in obvious
ways. Having at most one negative literal per clause yields Anti-Horn formulae (cases (ii∗) and
(iii∗)).

As to (iv), consider the task to determine all independent sets of vertices (anticliques) in a
graph G. Obviously X being an anticlique amounts to the satisfisfaction of all clauses a ∨ b
where {a, b} ranges over the edges of G. Grouping together all edges incident with a fixed vertex
a this becomes (say)

(a ∨ b1) ∧ (a ∨ b2) ∧ (a ∨ b3) ≡ a ∨ (b1 ∧ b2 ∧ b3) ≡ a→ (b1 ∧ b2 ∧ b3)

This gives rise to the (a, b)-algorithm (work in progress) which bears a superficial resemblence
to the (a, b)-algorithm. However, (i) and (iv) are not duals in any sense, and also the technical
details differ considerably. For instance, there is no such thing as a linear extension for graphs.

††The author’s attempt to carry it over degenerated in a messy case distinction and thus spawned the implication
n-algorithm touched upon at the beginning of Section 5.

13

Apart from (i) to (iv) versus (i∗) to (iv∗), one can distinguish the quasi-implications that feature
∧ in their conclusions of fixed type (carrying tags (x, y)) from the ones that feature ∨ (carrying
tags (x, y′)). Acyclic families of quasi-implications invite conglomeration to rooted trees, and
this has indeed algorithmic benefits for type (x, y). Let us sketch the basic idea for type (1, 1).
The conjunction

(9) (1→ (2 ∧ 3 ∧ 4)) ∧ (2→ (5 ∧ 6)) ∧ (4→ 7) ∧ (5→ (8 ∧ 9))

of four implications gives rise to the (rooted) tree in Figure 2(a).

1

2 3 4

5 6 7

8 9

Figure 2 HaL

2 4

5 6 7

8 9

Figure 2 HbL

We wish to encode with appropriate symbols ∗ the set of all X ∈ P([9]) that satisfy (10)
as just one “tree-valued” row r = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗). Notice that {X ∈ r : 1 ∈ X} =
(1, 1, 1, 1, 1, 1, 1, 1, 1) whereas {X ∈ r : 1 6∈ X} = (0, ∗, 2, a, ∗, ∗, b, ∗, ∗) (see Figure 2(b)).
Details pending, the aim is to impose trees T upon tree-valued rows r′ by splitting r′ in r′1
and r′2 according to whether T ’s root is turned to 1 or 0. The resulting “tree-algorithm” would
comprise our (a, b)-algorithm as the special case where all occuring trees have height 1.

We indicated algorithms for handling all eight types individually, but what if some types occur
simultaneously? A case in point is [W1] where (i), (i∗), (iv), (iv∗) do just that. Here an ad hoc
algorithm of the 0, 1, 2-type is successful.

References

[BK] J. Berman, P. Köhler, Cardinalities of finite distributive lattices, Mittelungen Math. Sem.
Giessen, Heft 121 (1976) 103-124.

14

[C] A. Conflitti, On Whitney numbers of the order ideals of generalized fences and crowns,
Disc. Math. 309 (2009) 615-621.

[CLM] N. Caspard, B. Leclerc, B. Monjardet, Finite ordered sets, Encyclopedia Math. and Appl.
144, Cambridge University Press 2012.

[[EJ] P.H. Edelman, R.E. Jamison, The theory of convex geometries, Geom. Dedicata 19 (1985)
247-270.

[FK] U. Faigle, W. Kern, Computational complexity of some maximum average weight problems
with precedence constraints, Oper. Res. 42 (1994) 688-693.

[GI] D. Gusfield, R.W. Irwing, The stable marriage problem: Structure and algorithms, MIT
Press 1989.

[HNS] M. Habib, L. Nourine, G. Steiner, Gray codes for the ideals of interval orders, Journal of
Algorithms 25 (1997) 52-66.

[K] D. Knuth, The Art of Computer Programming, Vol.4, Fasc.3, 2009, Pearson Educ. Inc.

[MN] R. Medina, L. Nourine, Algorithme efficace de génération des ideaux d’un ensemble or-
donné, C.R. Acad. Sci. Paris Sér. I Math. 319 (1994) 1115-1120.

[R] F. Ruskey, Listing and counting subtrees of a tree, SIAM J. Comput. 10 (1981) 141-150.

[RM] H. Mannila, K.J. Räihä, The design of relational databases, Addison-Wesley 1992.

[S] G. Steiner, On estimating the number of order ideals in partial orders, with some applica-
tions, J. Stat. Planning and Inference 34 (1993) 281-290.

[SW] Y. Semegni, M. Wild, Lattices freely generated by posets within a variety. Part II: Finitely
generated varieties, arXiv:1007.1643.

[W1] M. Wild, Revisiting the enumeration of all models of a Boolean 2-CNF, arXiv: 1208.2559

[W2] M. Wild, Compactly generating all satisfying truth assignments of a Horn formula, Journal
of Satisfiability, Boolean Modeling and Computation, 8 (2012) 63-82.

[W3] M. Wild, Incidence algebras that are uniquely determined by their zero-nonzero matrix
pattern, Lin. Alg. and Appl. 430 (2009) 1007-1016.

15

http://arxiv.org/abs/1007.1643

	1 Introduction
	2 The 0,1,2-algorithm by example
	3 Formal definition of the 0,1,2-algorithm and the avoidance of row deletions
	4 The main results
	5 The (a,b)-algorithm
	6 Calculating Whitney numbers of distributive lattices
	7 About quasi-implications

