
ar
X

iv
:1

40
1.

35
76

v1
  [

m
at

h.
L

O
] 

 1
5 

Ja
n 

20
14

Unification and Projectivity

in De Morgan and Kleene Algebras

Simone Bova and Leonardo Cabrer

Abstract

We provide a complete classification of solvable instances of the equa-
tional unification problem over De Morgan and Kleene algebras with re-
spect to unification type. The key tool is a combinatorial characterization
of finitely generated projective De Morgan and Kleene algebras.

1 Introduction

A De Morgan algebra is a bounded distributive lattice with an involution satis-
fying De Morgan laws; that is, a unary operation satisfying x = x′′ and x∧ y =
(x′ ∨ y′)′. A Kleene algebra is a De Morgan algebra satisfying x ∧ x′ ≤ y ∨ y′.
In [11], Kalman shows that the lattice of (nontrivial) varieties of De Morgan
algebras is a three-element chain formed by Boolean algebras (Kleene algebras
satisfying x ∧ x′ = 0), Kleene algebras, and De Morgan algebras, and these
variety are locally finite; that is, finite, finitely presented, and finitely generated
algebras coincide.

In a variety of algebras, the symbolic (equational) unification problem is the
problem of solving finite systems of equations over free algebras. An instance of
the symbolic unification problem is a finite system of equations, and a solution
(a unifier) is an assignment of the variables to terms such that the system holds
identically in the variety. The set of unifiers of a solvable instance supports
a natural order, and the instances are classified depending on the properties
of their maximal unifiers. In this paper, we provide a complete (first-order,
decidable) classification of solvable instances of the unification problem over De
Morgan and Kleene algebras with respect to their unification type.

The key tool towards the classification is a combinatorial (first-order, decid-
able) characterization of finitely generated projective De Morgan and Kleene
algebras, motivated by the nice theory of algebraic (equational) unification in-
troduced by Ghilardi [9]. In the algebraic unification setting, an instance of the
unification problem is a finitely presented algebra in a certain variety, a uni-
fier is a homomorphism to a finitely presented projective algebra in the variety,
and unifiers support a natural order that determines the unification type of the
instance, in such a way that it coincides with the unification type of its finite
presentation, viewed as an instance of the symbolic unification problem.

Even if projective Boolean algebras have been characterized in [3, 15], a
complete characterization of projective De Morgan and Kleene algebras lacks
in the literature. In this note, also motivated by an effective application of the
algebraic unification framework, we initiate the study of projective De Morgan
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and Kleene algebras, and relying on finite duality theorems [7], we provide a
combinatorial characterization of finitely generated projective algebras, and we
exploit it to classify all solvable instances of the equational unification problem
over De Morgan and Kleene algebras with respect to their unification type;
in particular, we establish that De Morgan and Kleene algebras have nullary
equational unification type (and avoid the infinitary type).

The paper is organized as follows. In Section 2, we collect from the literature
the background on projective algebras, duality theory, and unification theory
necessary for the rest of the paper. For standard undefined notions and facts
in order theory, universal algebra, category theory, and unification theory, we
refer the reader to [8], [13], [12], and [2] respectively. In Section 3, we intro-
duce the characterization of finite projective De Morgan and Kleene algebras.
In Section 3, we introduce the characterization of finite projective De Morgan
and Kleene algebras (respectively, Theorem 11 and Theorem 12). In Section 4,
we provide complete classification with respect to unification type of all solv-
able instances of the equational unification problem over bounded distributive
lattices, Kleene algebras, and De Morgan algebras (respectively, Theorem 15,
Theorem 22, and Theorem 30). The distributive lattices case tightens previous
results by Ghilardi [9], and outlines the key ideas involved in the study of the
more demanding cases of Kleene and De Morgan algebras.

2 Preliminaries

Let P = (P,≤) be a preorder, that is, ≤ is reflexive and transitive. If x and
y are incomparable in P, we write x ‖ y. Given X,Y ⊆ P , we write X ≤
Y iff x ≤ y for all x ∈ X and y ∈ Y ; we freely omit brackets, writing for
instance x ≤ y, z instead of {x} ≤ {y, z}. If X ⊆ P , we denote by (X ] and
[X) respectively the downset and upset in P generated by X , namely (X ] =
{y ∈ P | y ≤ x for some x ∈ X} and [X) = {y ∈ P | y ≥ x for some x ∈ X}; if
X = {x} we freely write (x] and [x). If x, y ∈ P , we write [x, y] = {z ∈ P |
x ≤ z ≤ y}. A set X ⊆ P is directed if for all x, y ∈ X there exists z ∈ X
such that x, y ≤ z. We denote minimal elements in P by min(P) = {x ∈ P |
y ≤ x implies x ≤ y for all y ∈ P}. Similarly we denote maximal elements in P

by max(P). Let P = (P,≤) and Q = (Q,≤) be preorders. A map f : P → Q is
monotone if x ≤ y implies f(x) ≤ f(y).

2.1 Projective Algebras

Let V be a variety of algebras and κ be an arbitrary cardinal. An algebra B ∈ V
is said to have the universal mapping property for κ if there exists X ⊆ B such
that |X | = κ and for every A ∈ V , and every map f : X → A there exists
a (unique) homomorphism g : B → A extending f (any x ∈ X is said a free
generator, and B is said freely generated by X). For every cardinal κ, there
exists a unique algebra with the universal mapping property freely generated
by a set of cardinality κ, called the free κ-generated algebra in V , and denoted
by FV(κ).

Since the varieties of De Morgan and Kleene algebras, in symbols M and K
respectively, are generated by single finite algebras [11], they are locally finite,
that is, finitely generated and finite algebras coincide.
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Example 1. By direct computation, FM(1) is the bounded distributive lattice
over {0, x ∧ x′, x, x′, x ∨ x′, 1} shown in Figure 1.

0

x′x

1

x ∨ x
′

x ∧ x
′

Figure 1: FM(1).

Let V be a variety of algebras. An algebra A ∈ V is said to be projective if
for every pair of algebras B,C ∈ V , every surjective homomorphism f : B → C,
and every homomorphism h : A → C, there exists a homomorphism g : A → B

such that f ◦ g = h.
We exploit the following characterization of projective algebras [10].

Theorem 2. Let V be a variety, and let A ∈ V. Then, A is projective in V iff
A is a retract of a free algebra FV(κ) in V for some cardinal κ, that is, there
exist homomorphisms r : FV(κ) → A and f : A → FV(κ) such that r ◦ f = idA.

2.2 Finite Duality

We recall duality theorems for the categories of finite bounded distributive lat-
tices, Df , finite De Morgan algebras, Mf , and finite Kleene algebras, Kf .

First, we present Birkhoff duality between finite bounded distributive lattices
and finite posets [6]. The category Pf of finite posets has finite posets (P,≤) as
objects, and monotone maps as morphisms.

Define the map J : Df → Pf as follows: For every A in Df , let

J(A) = ({x | x join irreducible in A},≤),

where ≤ is the order inherited from the order in A. For every h : A → B in Df ,
let J(h) : J(B) → J(A), be the map defined by

J(h)(x) =
∧

{y | h(y) ≥ x},

for all x ∈ J(B).
Define the map D : Pf → Df as follows: For every P = (P,≤) ∈ Pf , let

D(P) = ({X ⊆ P | (X ] = X},∩,∪, ∅, P ).
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For every f : P → Q in Pf , let D(f) : D(Q) → D(P) be the map defined by

D(f)(X) = f−1(X)

for all X ∈ D(Q).

Theorem 3 (Birkhoff, [6]). J and D are well defined contravariant functors.
Moreover, they determine a dual equivalence between Df and Pf .

Building on the duality for bounded distributive lattices developed by Priest-
ley [14], in [7, Theorem 2.3 and Theorem 3.2] Cornish and Fowler present a
duality for De Morgan and Kleene algebras. We rely on Theorem 3, to restrict
such duality to finite objects.

Definition 4 (Finite Involutive Posets, PMf and PKf ). The category PMf

of finite involutive posets is defined as follows:

Objects : Structures (P,≤, i), where (P,≤) is a finite poset, and i : P → P is
such that x ≤ y implies i(y) ≤ i(x) and i(i(x)) = x.

Morphisms : Maps f : (P,≤, i) → (P ′,≤′, i′) such that x ≤ y implies f(x) ≤′

f(y) and f(i(x)) = i′(f(x)).

The category PKf is the full subcategory of PMf whose objects (P,≤, i) are
such that i(x) is comparable to x for all x ∈ P .

The map JM : Mf → PMf is defined by: For every A = (A,∧,∨,′ , 0, 1) in
Mf , let

JM(A) = (J(A,∧,∨, 0, 1), i),

where i(x) =
∧

(A \ {a′ | a ∈ [x)}) for each x ∈ J(A,∧,∨, 0, 1). Moreover,
JM(h) = J(h) for every h : A → B in FM.

The map DM : PMf → Mf is defined by: For every P = (P,≤, i) ∈ PMf ,

DM(P) = A = (A,∧,∨,′ , 0, 1)

where (A,∧,∨, 0, 1) = D(P,≤), and X ′ = P \ i(X). Moreover, DM(f) = D(f)
for every f : P → Q in PMf .

We will denote JK : Kf → PKf and DK : PKf → Kf the restrictions of the
functors JM and DM to the categories Kf and PKf respectively.

Theorem 5 (Cornish and Fowler). JM and DM (respectively, JK and DK) are
well defined contravariant functors. Moreover, they determine a dual equivalence
between the categories Mf and PMf (respectively, Kf and PKf ) .

Let D = (D,≤, i) ∈ PMf be as in Figure 2. In light of Example 1,
JM(FM(1)) and D are isomorphic via the map x ∧ x′ 7→ 2, x 7→ 0, x′ 7→ 1,
1 7→ 3.

Let P = (P,≤, i) ∈ PMf . By [7, Theorem 2.4], the product of n copies of
P in the category PMf , denoted by

Pn = (Pn,≤n, in),

is the finite poset over Pn with the order and the involution defined coordinate-
wise, that is for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Pn, x ≤n y iff xi ≤ yi
for all i = 1, . . . , n, and in(x) = (i(x1), . . . , i(xn)).
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3

Figure 2: JM(FM(1)) ≃ D. Curved edges depict the map i : D → D.

Proposition 6. JM(FM(n)) ≃ Dn.

Proof. FM(n) is the coproduct of n copies of FM(1). Therefore, by Theorem 5,
JM(FM(n)) ≃ JM(FM(1))n ≃ Dn, the product of n copies of JM(FM(1)).
The statement follows.

22

02 20 21 12

23 32 1001

30 31

33

13

1100

03

Figure 3: JM(FM(2)) ≃ D2.

Let P = (P,≤, i) ∈ PMf . By [1], subobjects of P are subsets X ⊆ P
with the inherited order such that X = i(X). By Theorem 5, subobjects of P
correspond exactly to quotients on DM(P). For each P in PMf , let Pk be the
largest subobject of P lying in the subcategory PKf , that is, Pk is the subobject
of P (possibly empty) such that each element x of Pk is comparable with i(x).
Therefore, DM(Pk) is the largest quotient of DM(P) lying in Kf .

Proposition 7. JK(FK(n)) ≃ (Dn)k.

Proof. FK(n) is the largest quotient of FM(n) that is a Kleene algebra. By
Proposition 6, JM(FM(n)) ≃ Dn. Then by the mentioned correspondence be-
tween quotients and subobjects under the duality [1], JK(FK(n)) = JM(FK(n))
arises as the largest subobject of Dn lying in PKf .
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Figure 4: JK(FK(2)) ≃ (D2)k.

2.3 Unification Theory

Let P = (P,≤) be a preorder. A µ-set for P is a subset M ⊆ P such that x ‖ y
for all x, y ∈ M such that x 6= y, and for every x ∈ P there exists y ∈ M such
that x ≤ y. It is easy to check that if P has a µ-set, then every µ-set of P has
the same cardinality.

We say that P has type:

nullary if P has no µ-sets (in symbols, type(P) = 0);

infinitary if P has a µ-set of infinite cardinality (type(P) = ∞);

finitary if P has a finite µ-set of cardinality greater than 1 (type(P) = ω);

unitary if P has a µ-set of cardinality 1 (type(P) = 1).

We prepare for later use some easy consequences of the definitions.

Lemma 8. The set {0, ω,∞, 0} carries a natural total order 1 ≤ ω ≤ ∞ ≤ 0.
If P is a preorder and Q ⊆ P be an upset of P and Q denotes the preorder with
universe Q and relation inherited from P, then type(Q) ≤ type(P).

Lemma 9. Let P = (P,≤) be a directed preorder. Then, type(P) = 0 or
type(P) = 1.

The algebraic unification theory by Ghilardi [9] reduces the traditional sym-
bolic unification problem over an equational theory to the following:

Problem Unif(V).

Instance A finitely presented algebra A ∈ V .

Solution A homomorphism u : A → P, where P is a finitely presented projec-
tive algebra in V .

A solution to an instance A is called an (algebraic) unifier for A, and A is
called solvable in V if A has a solution.
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Let A ∈ V be finitely presented, and for i = 1, 2 let ui : A → Pi be a unifier
for A. Then, u1 is more general than u2, in symbols, u2 ≤ u1, if there exists
a homomorphism f : P1 → P2 such that f ◦ u1 = u2. For A solvable in V , let
UV(A) be the preorder induced by the generality relation over the unifiers for
A. We define the type of A as the type of the preordered set UV(A), in symbols
typeV(A) = type(UV(A)).

We say that the variety V has type:

nullary if {typeV(A) | A solvable in V} ∩ {0} 6= ∅;

infinitary if ∞ ∈ {typeV(A) | A solvable in V} ⊆ {∞, ω, 1};

finitary if ω ∈ {typeV(A) | A solvable in V} ⊆ {ω, 1};

unitary if {typeV(A) | A solvable in V} = {1}.

3 Finite Projective Algebras

We provide first-order decidable characterizations of the finite involutive posets
corresponding to finite projective De Morgan (Theorem 11) and Kleene (Theo-
rem 12) algebras.

Definition 10 ([5]). Let κ be a cardinal. A poset (P,≤) is κ-complete if,
whenever X ⊆ P is such that all Y ⊆ X with |Y | < κ have an upper bound,
then

∨

X exists in (P,≤).

Theorem 11 (De Morgan Projective). Let A ∈ Mf . Then A is projective in
M iff JM(A) = (P,≤, i) ∈ PMf satisfies the following:

(M1) (P,≤) is a nonempty lattice;

(M2) for all x ∈ P , if x ≤ i(x), then there exists y ∈ P such that x ≤ y = i(y);

(M3) {x ∈ P | x ≤ i(x)} with inherited order is 3-complete.

Proof. There exists n ∈ N such that JM(A) = (P,≤, i) = P is a subobject of
JM(FM(n)) = Dn = (Dn,≤, i) ∈ PMf by Proposition 6. That is, it is possible
to display P as a subset of Dn with inherited order and involution. Combining
this together with Theorem 2 and Theorem 5, A is projective iff there exists
an onto morphism r : Dn → P in PMf such that r ◦ r = r, that is r|P = idP,
where r|P denotes the restriction of r to P . Therefore, it is sufficient to show
that conditions (M1)-(M3) are necessary and sufficient for the existence of such
a map r.

Below, Z = {z ∈ Dn | z = i(z)} = {0, 1}n and Y = Z ∩ P .

(⇒) Let r : Dn → P be a morphism in PMf such that r|P = idP. We show
that P satisfies (M1), (M2), and (M3).

For (M1): In particular, r is a poset retraction of Dn onto P. Since Dn is a
nonempty lattice, it follows straightforwardly that P is a nonempty lattice.

For (M2): Let y ∈ P be such that y ≤ i(y). Then y ∈ {2, 0, 1}n. Let z ∈ Z
be such that for i = 1, . . . , n, if yi ∈ {0, 1} then zi = yi and zi = 0 otherwise.
Then y ≤ z ≤ i(y), and y = r(y) ≤ r(z) = r(i(z)) = i(r(z)).

For (M3): Observe that r((Z]) = (Y ]P , because if x ≤ z for x ∈ Dn and z ∈
Z, then r(x) ≤ r(z) ∈ Y . Then the restriction of r to (Z] is a poset retraction
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of (Z] onto (Y ]P . Since (Z] = {2, 0, 1}n is 3-complete, by [5, Corollary 2.6]
r((Z]) = (Y ]P is 3-complete.

(⇐) Assume that P satisfies (M1), (M2), and (M3). We show that there
exists a morphism r : Dn → P in PMf such that r|P = idP.

To define the retraction r : Dn → P , we first introduce the following nota-
tion. For all x ∈ Dn, let Lx = {z ∈ P | z ≤ x} and Ux = {z ∈ P | x ≤ z}. Since
i is an order reversing involution,

i(Lx) = Ui(x), (1)

for each x ∈ Dn.
If x ∈ Z, then there exists y ∈ Y is such that

∨

P Lx ≤ y ≤
∧

P Ux. In fact, if
z1, z2 ∈ Lx, then z1, z2 ≤ x ≤ i(z1), i(z2). By (M1), z1 ∨P z2 ≤ i(z1) ∧P i(z2) =
i(z1 ∨P z2). Combining this with (M3), we have

∨

P Lx ≤ i(
∨

P Lx). Now, by
(M2), there exists y ∈ Y such that

∨

P Lx ≤ y. Finally by (1) and the fact that
x = i(x),

∨

P Lx ≤ y = i(y) ≤ i(
∨

P Lx) =
∧

P i(Lx) =
∧

P Ui(x) =
∧

P Ux, as
desired.

For each x ∈ Z, we fix r(x) ∈ Y such that

∨

P Lx ≤ r(x) ≤
∧

P Ux. (2)

If x ∈ Dn \ Z, then let m be the smallest number in {1, . . . , n} such that
xm ∈ {2, 3}. We define,

r(x) =

{

∨

P Lx, if xm = 2;
∧

P Ux, if xm = 3.
(3)

The map r : Dn → P is well defined. Also, r(x) = x for all x ∈ P because
x ∈ Ux ∩ Lx.

Claim 1: For each x ∈ Dn, r(i(x)) = i(r(x)).
If x ∈ Z, then r(i(x)) = i(r(x)) holds because r(x) ∈ Y . Let x ∈ Dn \ Z,

and m be the smallest number in {1, . . . , n} such that xm ∈ {2, 3}. If xm = 2
and (i(x))m = 3, then r(x) =

∨

P Lx and r(i(x)) =
∧

P Ui(x). Then by (1),

r(i(x)) =
∧

P Ui(x) =
∧

P i(Lx)

= i (
∨

P Lx)

= i(r(x)).

The case xm = 3 and (i(x))m = 2 reduces to the previous case, which concludes
the proof of the claim.

Claim 2: r is monotone.
Let x, y ∈ Dn such that x < y. Then Lx ⊆ Ly, Uy ⊆ Ux. Therefore,

∨

P Lx ≤
∨

P Ly ≤
∧

P Uy, (4)

and
∧

P Ux ≤
∧

P Uy. (5)

If x ∈ Z, observe that y ∈ {0, 1, 3}n \ {0, 1}n. By (2), (3) and (5), r(x) ≤
∧

P Ux ≤
∧

P Uy = r(y). A similar argument proves that r(x) ≤ r(y) if y ∈ Z.
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If x, y ∈ Dn \ Z. If r(x) =
∨

P Lx, then r(x) ≤ r(y) by (4) and (3). If
r(x) =

∧

P Ux, then by (3), letting m be the smallest number in {1, . . . , n} such
that xm = 3 since x ≤ y it follows that yk ∈ {0, 1, 3} for every k < m, and
ym = 3. Again by (3), r(y) =

∧

P Uy. Therefore, r(x) ≤ r(y) by (5), which
concludes the proof of the claim.

By Claim 1 and Claim 2, r : Dn → P is the required retraction, so that A
is a retract of FM(n) in Mf , that is, it is projective in Mf .

Since (P,≤) is a finite lattice by (M1), condition (M3) reduces to the fol-
lowing first-order statement: x ∨ y ∨ z ≤ i(x ∨ y ∨ z), for all x, y, z such that
x ∨ y ≤ i(x ∨ y), x ∨ z ≤ i(x ∨ z), and y ∨ z ≤ i(y ∨ z).

Theorem 12 (Kleene Projective). Let A ∈ Kf . Then A is projective in K iff
JK(A) = (P,≤, i) ∈ PKf satisfies conditions (M2), (M3) in Theorem 11 and
the conditions:

(K1) {x ∈ P | x ≤ i(x)} with inherited order is a nonempty meet semilattice;

(K2) every x, y ∈ P such that x, y ≤ i(y), i(x) have a common upper bound
z ∈ P such that z ≤ i(z).

Proof. There exists n ∈ N such that JK(A) = (P,≤, i) = P is a subobject of
JK(FK(n)) = (Dn)k = ((Dn)k,≤, i) ∈ PKf by Proposition 7. Combining Theo-
rem 2 and Theorem 5, A is projective iff there exists a morphism r : (Dn)k → P

in PKf such that r|P = idP. Therefore, it is sufficient to show that conditions
(K1), (K2), (M2), and (M3) are necessary and sufficient for the existence of
such a map r.

Below, Z = {z ∈ (Dn)k | z = i(z)} = {0, 1}n and Y = Z ∩ P .

(⇒) Let r : (Dn)k → P be a morphism in PKf such that r|P = idP.
The proof that P satisfies (M2) and (M3) follows by the same argument

used in the proof of Theorem 11.
For (K1): First observe that r(Z) = Y and r((Z]) = (Y ]P . Then the

restriction of r to (Z] is a poset retraction of (Z] onto (Y ]P . Since (Z] is a
nonempty meet semilattice, (Y ]P is a nonempty meet semilattice [5, Lemma 2.4].

For (K2): Let x, y ∈ P , be such that x, y ≤P i(x), i(y). Then there does not
exist i ∈ {1, . . . , n} such that xi = 0 and yi = 1 (otherwise, x ‖P i(y)), which
proves that x ∨Dn y ∈ {2, 0, 1}n = (Z] ⊆ Dn

k . Then z = r(x ∨Dn y) ∈ (Y ]P .
Therefore, x, y ≤ z ≤ i(z), as desired.

(⇐) Let P be a subset of (Dn)k with inherited order and involution satisfying
(K1), (K2), (M2) and (M3). We define a morphism r : (Dn)k → P in PKf such
that r|P = idP.

SinceP ∈ PKf , by (M2) we have that P = (Z]∪[Z) = (Z]∪i((Z]). Moreover,
since Z is an antichain, (Z]∩ [Z) = Z. For all x ∈ (Z], let Lx = {z ∈ P | z ≤ x}.
Observe that Lx ⊆ (Y ]P by (M2). Also, if v, w ∈ Lx, then v, w ≤ x ≤ i(v), i(w),
and combining (K1) and (K2), we obtain that v ∨P w ∈ (Y ]P for all v, w ∈ Lx.
Therefore,

∨

P Lx ∈ (Y ]P by (M3).
For all x ∈ Z, we define r(x) ∈ Y such that,

∨

P Lx ≤ r(x), (6)
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whose existence is ensured by condition (M2). And for all x ∈ (Z]\Z, we define,

r(x) =
∨

P Lx, (7)

r(i(x)) = i(r(x)). (8)

The map r : (Dn)k → P is well defined. We prove that r is the desired
retraction. Clearly, if x ∈ P , then r(x) = x. By definition, r commutes with
i. We check monotonicity. Let x, y ∈ (Dn)k be such that x < y. If x, y ∈ (Z],
then Lx ⊆ Ly, then

r(x) =
∨

P Lx ≤
∨

P Ly ≤ r(y),

where the last inequality always holds by (6) and (7). If x ∈ (Z] and y ∈ [Z),
then there exists z ∈ Z such that x ≤ z ≤ y, so that i(y) ≤ z. Then
r(x), r(i(y)) ≤ r(z) by the previous case, but r(i(y)) = i(r(y)) by commuta-
tivity of r, so that r(z) = r(i(z)) = i(r(z)) ≤ r(y) by the properties of i and
commutativity of r. If x, y ∈ [Z), then i(x), i(y) ∈ (Z] and i(y) ≤ i(x), then
r(i(y)) ≤ r(i(x)), then i(r(y)) ≤ i(r(x)), and so r(x) ≤ r(y).

Observe that the conditions (K1), (K2) are first-order conditions on the set
{x ∈ P | x ≤ i(x)}.

4 Classification of Unification Problems

We obtain a complete, decidable, first-order classification of unification problems
over bounded distributive lattices (Theorem 15), Kleene algebras (Theorem 22)
and De Morgan (Theorem 30) algebras with respect to unification type. In
particular, we establish that unification over the varieties of De Morgan and
Kleene algebras is nullary.

For the sake of presentation, we introduce the following notion. An alphabet
Σ is a set of letters. A word over Σ is a finite sequence of letters in Σ. A formal
language over Σ is a subset of words over Σ.

4.1 Distributive Lattices

We classify all solvable instances of the unification problem over bounded dis-
tributive lattices with respect to their unification type (Theorem 15), thus tight-
ening the nullarity result by Ghilardi in [9]. This case study prepares the tech-
nically more involved cases of Kleene and De Morgan algebras.

In [4], Balbes and Horn characterize projective bounded distributive lattices.
In the finite case, the characterization states that a finite bounded distributive
lattice L ∈ Df is projective iff the finite poset J(L) ∈ Pf is a nonempty lattice.
Thus, combining the algebraic unification theory developed by Ghilardi [9] and
the finite duality by Birkhoff (Theorem 3), a unification problem over bounded
distributive lattices reduces to the following combinatorial question:

Problem Unif(DL).

Instance A finite poset P.

Solution A monotone map u : L → P, where L is a finite nonempty lattice.

10
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Figure 5: Subposet of Q in Lemma 14.

Let P = (P,≤) ∈ Pf , and for i = 1, 2 let ui : Li → P be unifiers for
P. Then u1 is more general than u2, in symbols, u2 ≤ u1, iff there exists a
monotone map f : L2 → L1 such that u1 ◦ f = u2. Let UDL(P) denote the
preordered set of unifiers of P. Then, the unification type of P is defined as
usual, typeDL(P) = type(UDL(P)). By the duality in Theorem 5, UDL(P) and
UDL(D(P)) are equivalent (as categories). Then, typeDL(P) = typeDL(D(P)).

Remark 13. An instance P = (P,≤) of Unif(DL) is solvable iff P 6= ∅.

We now embark in the proof of the main result of this section. The structure
of the proof is the following: using a slight modification of [9, Theorem 5.7], we
identify a sufficient condition for an instance of the unification problem to have
nullary type (Lemma 14), and then we prove that the identified condition is
indeed necessary for nullarity (Theorem 15).

Lemma 14. Let Q = (Q,≤) ∈ Pf be an instance of Unif(DL). If there exist
x, a, b, c, d, y ∈ Q such that:

(i) x ≤ a, b ≤ c, d ≤ y;

(ii) there does not exist e ∈ Q such that a, b ≤ e ≤ c, d;

then typeDL(Q) = 0 (see Figure 5).

Proof. SinceQ is a finite poset, we assume without loss of generality x ∈ min(Q)
and y ∈ max(Q). By (ii), we have a 6= b and c 6= d. Let,

V = {u : P → Q ∈ UDL(Q) | x, y ∈ u(P )}.

Since V is an upset of UDL(Q), by Lemma 8, it is enough to prove that
type(V ) = 0 to conclude that type(UDL(Q)) = typeDL(Q) = 0. We first
observe that V is directed. Indeed, if u1 : R1 → Q and u2 : R2 → Q in V ,

11
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Figure 6: T5 in Lemma 14.

define P = (P,≤) by adjoining a fresh bottom ⊥ and a fresh top ⊤ to the
disjoint union of R1 and R2. It is easy to check that P is a lattice. Define
u(y) = uj(y) iff y ∈ Rj for j = 1, 2, u(⊥) = x and u(⊤) = y. Since x and y are
minimal and maximal in Q respectively, u is a monotone map from P into Q

and u ∈ V . For j = 1, 2, let fj : Rj → P in Pf be the injection of Rj into P.
Then uj = u ◦ fj for j = 1, 2, which proves that V is directed.

Since V is a directed preordered set with the inherited order of UDL(Q), by
Lemma 9, type(V ) ∈ {0, 1}. We show that type(V ) 6= 1. For every n ∈ N, we
define a unifier un : Tn → Q in V as follows. For Tn = (Tn,≤) ∈ Pf we let

Tn = {⊥,⊤, 1, . . . , n, j · k | j < k in {1, . . . , n} and j + k is odd};

here, Tn is a formal language over the alphabet {⊥,⊤, ·, 1, . . . , n}. The partial
order over Tn is defined by the following cover relation, where j, k ∈ {1, . . . , n}:

⊥ ≺ j;

j, k ≺ j · k for all j · k ∈ Tn;

j · k ≺ ⊤ for all j · k ∈ Tn;

where j, k ∈ {1, . . . , n}.
Then Tn is a lattice. See Figure 6 for the Hasse diagram of T5.
We define un : Tn → Q as follows, where j, k ∈ {1, . . . , n}:

un(⊥) = x and un(⊤) = y;

un(j) = a and un(j · k) = c, for all j, j · k ∈ Tn with j odd;

un(j) = b and un(j · k) = d, for all j, j · k ∈ Tn with j even.

Since for each n ∈ {1, 2, . . .}, un : Tn → Q is a monotone map, Tn is a
lattice and x, y ∈ un(Tn), then un is a unifier for Q in V .
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Let u : P → Q be a unifier in V . We show that un ≤ u implies |P | ≥ n. Let
un = u ◦ f . We claim that f(j) 6= f(k) for all j < k with j, k ∈ {1, . . . , n}. The
claim is clear of j and k have different parity. If j and k have the same parity,
without loss of generality assume j and k are both odd, then let l be even such
that j < l < k. By construction j, l ≤ j · l, then we have f(j), f(l) ≤ f(j · l).
Since P is a lattice,

f(j), f(l) ≤ f(j) ∨ f(l) ≤ f(j · l).

Similarly,
f(l), f(k) ≤ f(l) ∨ f(k) ≤ f(l · k).

Assume for a contradiction that f(j) = f(k). Then,

f(j) = f(k), f(l) ≤ f(j) ∨ f(l) = f(l) ∨ f(k) ≤ f(j · l), f(l · k),

and applying u through, since un = u ◦ f ,

a, b ≤ u(f(l) ∨ f(k)) ≤ c, d,

contradicting (ii). Therefore, a most general unifier u : P → Q has |P | ≥ n for
every n ∈ N, impossible because P is finite. Thus, type(V ) 6= 1.

Then type(V ) = 0 and by Lemma 8, typeDL(Q) = 0, as desired.

Theorem 15. Let P = (P,≤) ∈ Pf be a solvable instance of Unif(DL). Then:

typeDL(P) =



















1, iff P is a lattice;

ω, iff P is not a lattice,

but [x, y] is a lattice for all x ≤ y in P;

0, otherwise.

Proof. If P is a lattice, then typeDL(P) = 1 because idP is a most general
unifier for P.

Suppose that P is not a lattice and [x, y] is a lattice for all x ≤ y in P.
Define, for every x, y ∈ P such that x ≤ y, x ∈ min(P), and y ∈ max(P), the
(inclusion) unifier ux,y : [x, y] → P by ux,y(z) = z for all z ∈ [x, y]. Clearly,
there are finitely many unifiers of the form ux,y with x ≤ y in P, because P
is finite. We claim that they form a µ-set in UDL(P). Since x ∈ min(P), and
y ∈ max(P), any two unifiers of the type ux,y and ux′,y′ are comparable iff
x = x′ and y = y′. Now let u : L → P be a unifier for P. Now, L is bounded,
with bottom ⊥ and top ⊤. Let x ∈ min(P) and y ∈ max(P) be such that
x ≤ u(⊥) ≤ u(⊤) ≤ y. Then u(L) ⊆ [x, y] and ux,y ◦ u = u, so that ux,y is more
general than u. Thus typeDL(P) ∈ {1, ω}.

Since P is not a lattice but for each x ≤ y in P, [x, y] is a lattice, then
P cannot be bounded. Assume that x1 6= x2 are minimal points in P (the
argument is similar for maximal points). Then let L = ({p},≤), for i = 1, 2
let ui : L → P be the unifier such that ui(p) = xi. Suppose for a contradiction
that there exists a unifier u : M → P such that u1, u2 ≤ u. For i = 1, 2, let
u ◦ fi = ui be a factorization of ui where u : M → P. Then by monotonicity
u(f1(p) ∧ f2(p)) ≤ u(f1(p)), u(f2(p)), and since x1 ‖ x2, we have u(f1(p) ∧
f2(p)) < x1, x2 which contradicts the minimality of x1 and x2. Thus u1 and u2
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have no common upper bound in UDL(P), and typeDL(P) 6= 1. This concludes
the proof that typeDL(P) = ω.

Finally, let x ≤ y in P be such that [x, y] is not a lattice. Then there exist
a, b, c, d ∈ P such that x ≤ a, b ≤ c, d ≤ y and there does not exist e ∈ P such
that a, b ≤ e ≤ c, d. By Lemma 14, it follows that typeDL(P) = 0.

4.2 Kleene Algebras

We provide a complete classification of solvable instances of the unification prob-
lem over Kleene algebras (Theorem 22). Combining the algebraic unification
theory by Ghilardi [9], Theorem 12, and Theorem 5, the unification problem
over Kleene algebras reduces to the following combinatorial question:

Problem Unif(K).

Instance Q = (Q,≤, i) ∈ PKf .

Solution A morphism u : P → Q in PKf , where P satisfies (K1), (K2), (M2),
and (M3).

Remark 16. An instance Q = (Q,≤, i) of Unif(K) is solvable iff {x ∈ Q |
x = i(x)} 6= ∅. Indeed, if P ∈ PKf satisfies (K1) and (M2), and Q admits a
morphism from P, then Q is {x ∈ Q | x = i(x)} 6= ∅. Conversely, if Q is such
that {x ∈ Q | x = i(x)} 6= ∅, then Q admits a morphism from P = (P,≤, i)
where P = {x}, and i(x) = x; clearly, P satisfies (K1), (K2), (M2), and (M3).

Given a solvable instanceQ of Unif(K), we let UK(Q) denote the preordered
set of unifiers of Q, which is defined as in Section 4.1.

We now embark in the proof of the main result of this section. The structure
of the proof is the following: we identify two sufficient conditions for an instance
of the unification problem to have nullary type (Lemma 18 and Lemma 19), and
then we prove that the identified conditions are indeed necessary for nullarity
(Theorem 22).

We first establish the following fact for later use.

Lemma 17. Let Q = (Q,≤, i) ∈ PKf be an instance of Unif(K) and x ∈ Q be
a minimal element of Q. Then

V = {u : P → Q ∈ UK(Q) | x ∈ u(P )} (9)

is a directed upset in UK(Q).

Proof. Clearly, V is an upset in UK(Q). If V is empty, directedness is trivial.
Otherwise, there exists y ∈ Q such that x ≤ y = i(y), which proves that
x ≤ i(x). Let u1 : R1 → Q and u2 : R2 → Q in V , with Rj = (Rj ,≤j, ij) for
j = 1, 2. Define P = (P,≤, i) by adjoining a fresh bottom ⊥ and a fresh top ⊤
to the disjoint union of R1 and R2, and by letting i(⊥) = ⊤, i(⊤) = ⊥, and
i(y) = ij(y) iff y ∈ Rj for j = 1, 2. Since R1 and R2 satisfy (K1), (K2), (M2),
and (M3), so does P. Let u : P → Q be the map defined by: u(y) = uj(y) iff
y ∈ Rj for j = 1, 2, u(⊥) = x and u(⊤) = i(x). It follows that u ∈ V . For
j = 1, 2, let fj : Rj → P in PKf be the injection of Rj into P. Then u = uj ◦fj
for j = 1, 2, as desired.
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Figure 7: Subposet of Q in Lemma 18.

Lemma 18. Let Q = (Q,≤, i) ∈ PKf be an instance of Unif(K). If there exist
x, a, b, c, d, y, z ∈ Q such that:

(i) x ≤ a, b ≤ c, d;

(ii) c ≤ y = i(y); d ≤ z = i(z);

(iii) there does not exist e ∈ Q such that a, b ≤ e ≤ c, d;

then typeK(Q) = 0 (see Figure 7).

Proof. Since Q is a finite poset, we assume without loss of generality x ∈
min(Q). By (iii), we have a 6= b and c 6= d. Let,

V = {u : P → Q ∈ UK(Q) | x ∈ u(P )}.

By Lemma 17 V is an directed upset of UK(Q). By Lemma 8, to prove that
type(UK(Q)) = 0 it is enough to prove that type(V ) = 0. Since V is directed,
by Lemma 9, type(V ) ∈ {0, 1}. We show that type(V ) 6= 1. For every n ∈ N,
we define a unifier un : Tn → Q in V as follows. For Tn = (Tn,≤, i) ∈ PMf

we let

Tn = {⊥,⊥, j, j, j · k, j · k, j ⋄ k | j < k in {1, . . . , n} and j + k is odd};

here, Tn is a formal language over the alphabet A ∪ {s | s ∈ A}, with A =
{⊥, ·, ⋄, 1, . . . , n}. The map i : Tn → Tn is defined as follows, where j, k ∈
{1, . . . , n} and y ∈ {⊥, j, j · k | j < k in {1, . . . , n} and j + k is odd} ⊆ Tn:

i(j ⋄ k) = j ⋄ k for all j ⋄ k ∈ Tn;

i(y) = y and i(y) = y for all y, y ∈ Tn.

The partial order over Tn is defined by the following cover relation, for all
j, k ∈ {1, . . . , n}:
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⊥

1 2

3 · 42 · 31 · 4

1 · 2 3 · 4

⊥

1 · 4 2 · 3

1 · 2

1 ⋄ 4 2 ⋄ 31 ⋄ 2 3 ⋄ 4

34

3421

Figure 8: T4 in Lemma 18.

⊥ ≺ j and i(j) ≺ i(⊥), for all j ∈ Tn

j, k ≺ j · k and i(j · k) ≺ i(j), i(k), for all j, k, j · k ∈ Tn.

It is easy to check that Tn satisfies (K1), (K2), (M2), and (M3). Figure 8
provides the Hasse diagram of T4.

For j, k ∈ {1, . . . , n}, we define un : Tn → Q by putting,

un(⊥) = x;

un(j) = a, un(j · k) = c, un(j ⋄ k) = y, for all j, j · k, j ⋄ k ∈ Tn with j odd;

un(j) = b, un(j ·k) = d, un(j ⋄k) = z, for all j, j ·k, j ⋄k ∈ Tn with j even;

and, for all y ∈ {⊥, j, j · k, j ⋄ k | j < k in {1, . . . , n} and j + k is odd} ⊆ Tn,

un(i(y)) = i(un(y)).
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It follows by a straightforward computation that un : Tn → Q is a morphism in
PKf . Therefore un is a unifier for Q in V for each n ∈ N.

Let u : P → Q be a unifier for Q. We show that un ≤ u implies |P | ≥ n.
Let un = u ◦ f . We claim that f(j) 6= f(k) for all j < k with j, k ∈ Tn. If
j + k is odd, it is straightforward. If j + k is even, without loss of generality
assume j, k both odd. Then let l be an even number such that j < l < k. By
construction j, l ≤ j · l ≤ i(j · l), then we have f(j), f(l) ≤ f(j · l) ≤ i(f(j · l)).
By (K1), f(j) ∨ f(l) exists in P and it satisfies:

f(j) ∨ f(l) ≤ i(f(j) ∨ f(l)).

Then,
f(j), f(l) ≤ f(j) ∨ f(l) ≤ f(j · l).

Similarly, f(l) ∨ f(k) exists in P and it satisfies:

f(l) ∨ f(k) ≤ i(f(l) ∨ f(k)).

Then,
f(l), f(k) ≤ f(l) ∨ f(k) ≤ f(l · k).

By way of contradiction assume f(j) = f(k), then

f(j) = f(k), f(l) ≤ f(j) ∨ f(l) = f(l) ∨ f(k) ≤ f(j · l), f(l · k),

and applying u through, since un = u ◦ f ,

a, b ≤ u(f(l) ∨ f(k)) ≤ c, d,

which contradicts (iii). Therefore, |P | ≥ n.
This proves that type(V ) 6= 1. Then type(V ) = 0. By Lemma 8, typeK(Q) =

0, as desired.

Lemma 19. Let Q = (Q,≤, i) be an instance of Unif(K). If there exist
x, a, b, c, d, e, f, y, z, w ∈ Q such that:

(i) x ≤ a, b, c; a ≤ d, e; b ≤ d, f ; c ≤ e, f ;

(ii) d ≤ y = i(y); e ≤ z = i(z); f ≤ w = i(w);

(iii) there does not exist g ∈ Q such that a, b, c ≤ g ≤ i(g),

then typeK(Q) = 0 (see Figure 9).

Proof. Since Q is a finite poset, we assume without loss of generality that x ∈
min(Q). By (i) and (iii), we have |{a, b, c}| = |{d, e, f}| = 3. Let,

V = {u : P → Q ∈ UK(Q) | x ∈ u(P )}.

By Lemma 17, V is an directed upset in UK(Q). Then Lemma 9, proves
type(V ) ∈ {0, 1}. We show that type(V ) 6= 1. For every n ∈ N, we define a
unifier un : Tn → Q in V as follows. Let Tn = L ∪ I ∪ L where,

L ={⊥, j, j · k, j ◦ j · k | j 6= k in {1, . . . , n}} ∪

{j · k ◦ k · j | j < k in {1, . . . , n}},

L ={v | v ∈ L},

I ={j ⋄ j · k | j 6= k in {1, . . . , n}} ∪ {j · k ⋄ k · j | j < k in {1, . . . , n}};

here, Tn is a formal language over A∪{s | s ∈ A} with A = {⊥, ◦, ⋄, ·, 1, . . . , n}.
The map i : Tn → Tn is defined by:
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Figure 9: Subposet of Q in Lemma 19 and Lemma 27.

i(v) = v for all v ∈ I;

i(v) = v and i(v) = v for all v ∈ L.

The partial order over Tn is defined by the cover relation containing the covers
listed below, where j, k ∈ {1, . . . , n}:

⊥ ≺ j, j · k for all j, j · k ∈ Tn;

j, j · k ≺ j ◦ j · k for all j, j · k, j ◦ j · k ∈ Tn;

j · k, k · j ≺ j · k ◦ k · j for all j · k, k · j ∈ Tn;

j ◦ j · k ≺ j ⋄ j · k for all j ◦ j · k, j ⋄ j · k ∈ Tn;

j · k ◦ k · j ≺ j · k ⋄ k · j for all j · k ◦ k · j, j · k ⋄ k · j ∈ Tn;

and, for each x ≺ y in the list, the cover

i(y) ≺ i(x).

It is easy to check that Tn satisfies (M1), (M2), and (M3). Notice that (M1)
implies (K1) and (K2). Figure 10 provides the Hasse diagram of T2.

We define un : Tn → Q as follows, where j, k ∈ {1, . . . , n}:

un(⊥) = x;

un(j) = a for all j ∈ Tn;

un(j · k) = b for all j · k ∈ Tn with j < k;

un(j · k) = c for all j · k ∈ Tn with k < j;

un(j ◦ j · k) = d for all j ◦ j · k ∈ Tn with j < k;
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1 · 2 ◦ 2 · 1

1 1 · 2

⊥

2

22 · 1

⊥

1 1 · 2 2 · 1

1 ◦ 1 · 2 2 ◦ 2 · 1

1 ⋄ 1 · 2 1 · 2 ⋄ 2 · 1

1 ◦ 1 · 2 2 ◦ 2 · 11 · 2 ◦ 2 · 1

2 ⋄ 2 · 1

Figure 10: T2 in Lemma 19.
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un(j · k ◦ k · j) = e for all j · k ◦ k · j ∈ Tn with j < k;

un(j ◦ j · k) = f for all j ◦ j · k ∈ Tn with k < j;

un(j ⋄ j · k) = y for all j ⋄ j · k ∈ Tn with j < k;

un(j · k ⋄ k · j) = z for all j · k ⋄ k · j ∈ Tn with j < k;

un(j ⋄ j · k) = w for all j ⋄ j · k ∈ Tn with k < j;

and, for all y ∈ L ∪ I ⊆ Tn,

un(i(y)) = i(un(y)).

It is easy to check that un : Tn → Q is a unifier for Q in V .
Let u : P → Q be a unifier for Q in V , where P = (P,≤, i). We show that

un ≤ u implies |P | ≥ n. Let un = u ◦h. We claim that h(j) 6= h(k) for all j < k
in {1, . . . , n}. Let j < k in {1, . . . , n}. By construction,

j, j · k ≤ j ◦ j · k ≤ i(j ◦ j · k) ≤ i(j), i(j · k),

then

h(j), h(j · k) ≤ h(j ◦ j · k) ≤ i(h(j ◦ j · k)) ≤ i(h(j)), i(h(j · k)),

and by (K1), h(j) ∨ h(j · k) exists in P and

h(j) ∨ h(j · k) ≤ i(h(j) ∨ h(j · k)),

so that
h(j), h(j · k) ≤ h(j) ∨ h(j · k) ≤ h(j ◦ j · k).

Similarly,

h(j · k), h(k · j) ≤ h(j · k) ∨ h(k · j) ≤ h(j · k ◦ k · j),

and
h(k · j), h(k) ≤ h(k · j) ∨ h(k) ≤ h(k ◦ k · j).

If we assume the contrary, that is, h(j) = h(k), then

h(j) ∨ h(l) = h(l) ∨ h(k);

and applying (M3) to h(j), h(j · k), h(k · j), we have

h(j), h(j · k), h(k · j) ≤ h(j) ∨ h(j · k) ∨ h(k · j) ≤ i(h(j) ∨ h(j · k) ∨ h(k · j)).

Applying u through, recalling that un = u ◦ h, we have

a, b, c ≤ u(h(j) ∨ h(j · k) ∨ h(k · j)) ≤ i(u(h(j) ∨ h(j · k) ∨ h(k · j))),

which contradicts clause (iii) in the statement.
This proves that type(V ) 6= 1. Then type(V ) = 0. Now, by Lemma 8

typeK(Q) = 0, as desired.

The proof of the main result in this section (Theorem 22) relies on the
following notion.
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Definition 20 (Kleene Unification Core). Let Q = (Q,≤, i) ∈ PKf . The
Kleene unification core of Q is the structure Q′ = (Q′,≤′, i′) ∈ PKf where:

(i) Q′ = {x, i(x) ∈ Q | x ≤ z = i(z) for some z ∈ Q};

(ii) x ≤′ y iff, x ≤ y and either of the following three cases occurs:

(a) x ≤ i(x) and y ≤ i(y);

(b) i(x) ≤ x and i(y) ≤ y;

(c) x ≤ z = i(z) ≤ y for some z ∈ Q;

(iii) i′(x) = i(x) for all x ∈ Q′.

The following lemma justifies the terminology introduced.

Lemma 21. Let Q = (Q,≤, i) ∈ PKf and Q′ ∈ PKf be its Kleene unification
core.

(i) If u : P → Q is a unifier for Q, then u(P ) ⊆ Q′ and u : P → Q′ is a
unifier for Q′.

(ii) UK(Q) ≃ UK(Q
′).

(iii) Q′ = (Q′,≤′, i′) ∈ PKf satisfies (M2) and (K2).

Proof. (i) Let u : P → Q in PKf be a unifier for Q, with P = (P,≤P , iP ).
We show that u(P ) ⊆ Q′. Let x ∈ P . Without loss of generality, we may

assume x ≤ iP (x). By (M2) there exists z ∈ P such that x ≤ z = iP (z). Then
u(x) ≤ u(z) = i(u(z)), concluding that u(x) ∈ Q′.

We show that u : P → Q′ is a unifier for Q′. For all x ∈ P , we have
u(iP (x)) = i(u(x)) = i′(u(x)) by part (i) and Definition 20(iii). For mono-
tonicity, let x ≤P y. If u(x) ≤ i(u(x)) and u(y) ≤ i(u(y)), or i(u(x)) ≤ u(x)
and i(u(y)) ≤ u(y), then u(x) ≤′ u(y) by Definition 20(ii). Otherwise, assume
that u(x) ≤ i(u(x)), i(u(y)) ≤ u(y), and there not exists w ∈ Q′ such that
u(x) ≤ w = i(w) ≤ u(y). Then, u(x) < i(u(x)) = u(iP (x)) and u(iP (y)) =
i(u(y)) < u(y), which implies x <P iP (x) and iP (y) <P y. Since x ≤P y by
hypothesis, we have x, iP (y) ≤P iP (x), y. By (K2), there exists z ∈ P such that
x ≤P z =P iP (z) ≤ y. But then, u(x) ≤ u(z) = i(u(z)) ≤ u(y), a contradiction.

(ii) It follows from part (i) and the fact that the inclusion map from Q′ into
Q is a morphism in PKf .

(iii) The statement holds by Definition 20. In details, if x ≤′ i′(x) = i(x),
either x = i(x) or there exists y ∈ Q such that x ≤ y = i(y) ≤ i(x), so that
(M2) holds in Q′. For (K2), let x, y ∈ Q′ be such that x, y ≤′ i′(y), i′(x). We
want to show that there exists z ∈ Q′ such that x, y ≤′ z ≤ i′(z). Since i′ is the
restriction of i to Q′, x, y ≤′ i(y), i(x). If x = i(x) or y = i(y) the result follows
straightforwardly. If x < i(x) and y < i(y), since x ≤′ i(y) by (c) there exists
z ∈ Q such that x ≤ z = i(z) ≤ i(y). Then x, y ≤′ z = i′(z), and the result
follows.

21



Theorem 22. Let Q = (Q,≤, i) ∈ PKf be a solvable instance of Unif(K) and
Q′ ∈ PKf be the Kleene unification core of Q. Then:

typeK(Q) =



















1, iff Q′ satisfies (K1) and (M3)

ω, iff Q′ does not satisfy (K1)

but [x, i(x)]Q′ satisfies (K1) and (M3) for each x ∈ Q′;

0, otherwise.

Proof. Assume first that Q′ satisfies (K1) and (M3). By Lemma 21(iii), Q′ sat-
isfies (M2) and (K2). Then DK(Q

′) is projective by Theorem 12 and typeK(Q
′) =

1. Now by Lemma 21(ii) typeK(Q) = typeK(Q
′) = 1.

Suppose that Q′ does not satisfy (K1) and [x, i(x)]Q′ satisfies (K1) and (M3)
for all x ≤ i(x) in Q′. Since Q′ satisfies (M2) and (K2), it follows that [x, i(x)]Q′

satisfies (M2) and (K2) for all x ≤ i(x) inQ′. Thus, define for every x ∈ min(Q′)
the (inclusion) unifier ux : [x, i(x)]Q′ → Q′ by ux(z) = z for all z ∈ [x, i(x)]Q′ .
Clearly, there are finitely many unifiers of the form ux in Q′, because Q′ is
finite, and at least one such unifier because Q′ is nonempty. We claim that the
above unifiers form µ-set in UK(Q

′). Clearly, if x 6= y are minimal points in Q′

then ux ‖ uy. Now, let u : P → Q′ be a unifier for Q′. Now, P is bounded, with
bottom ⊥ let x ∈ min(Q′) such that x ≤ u(⊥) then so that u(P ) ⊆ [x, i(x)]Q′

via the inclusion (monotone) map f , but then ux ◦ f = u so that ux is more
general than u. Thus, typeK(Q

′) ∈ {1, ω}. We claim that typeK(Q
′) 6= 1,

that is, there exist two distinct unifiers for Q′ with no common upper bound in
UK(Q

′). In fact, Q′ is not bounded, otherwise if Q′ is bounded by ⊥ and ⊤,
then ⊥ ≤ i(⊥) = ⊤ and then [⊥, i(⊥)]Q′ = Q′ satisfies (K1). Hence, there are
two distinct minimal points in Q′, x1 6= x2, so that ux1

6= ux2
are two distinct

maximals in UK(Q
′). Finally by Lemma 21(ii), typeK(Q) = typeK(Q

′) = ω.
Suppose now that there exists x ≤ i(x) in Q′ such that [x, i(x)]Q′ does not

satisfy (K1). Then {z ∈ Q′ | x ≤′ z ≤′ i(z)} with restricted order is not a meet
semilattice, that is, there exist x, a, b, c, d, y, z ∈ Q′ such that x ≤ a, b ≤ c, d,
c ≤ y = i(y), d ≤ z = i(z) but there does not exist e ∈ Q′ such that a, b ≤ e ≤
c, d. By Lemma 18, typeK(Q

′) = 0. Thus, by Lemma 21(ii), typeK(Q) = 0.
Finally suppose that for all x ≤ i(x) in Q′ the interval [x, i(x)]Q′ satisfies

(K1), but there exists x ≤ i(x) in Q′ such that [x, i(x)]Q′ does not satisfy (M3);
this case includes the case where Q′ satisfies (K1) and does not satisfy (M3).
Then there exist x, a, b, c, d, e, f, y, z, w ∈ Q′ such that: x ≤ a, b, c; a ≤ d, e;
b ≤ d, f ; c ≤ e, f ; d ≤ y = i(y); e ≤ z = i(z); f ≤ w = i(w); there does not
exist g ∈ Q′ such that a, b, c ≤ g ≤ i(g). By Lemma 19, typeK(Q

′) = 0. Finally
by Lemma 21(ii), typeK(Q) = 0.

Using Lemma 18 and Lemma 19, it is easy to construct examples of Kleene
unification problems having nullary type, which proves that the variety of Kleene
algebras has nullary equational unification type.

4.3 De Morgan Algebras

We provide a complete classification of solvable instances of the unification
problem over De Morgan algebras (Theorem 30). Using [9], Theorem 5, and
Theorem 11, the problem reduces to the following:
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Figure 11: Subposet of Q in Lemma 25.

Problem Unif(M).

Instance Q = (Q,≤, i) ∈ PMf .

Solution A morphism u : P → Q in PMf , where P satisfies (M1)-(M3).

This section follows a similar structure than the previous on. We first identify
three sufficient conditions for an instance of the unification problem to have
nullary type (Lemma 25, Lemma 26, and Lemma 27), and then we prove that
the identified conditions are indeed necessary for nullarity (Theorem 30).

Remark 23. An instance Q = (Q,≤, i) of Unif(M) is solvable iff {x ∈ Q |
x = i(x)} 6= ∅. The proof follows as in Remark 16.

Given a solvable instance Q of Unif(M), we let UM(Q) denote the pre-
ordered set of unifiers of Q, which is defined as in Section 4.1.

Lemma 24. Let Q = (Q,≤, i) ∈ PMf be an instance of Unif(M) and x ∈ Q
be a minimal element of Q. Then

V = {u : P → Q ∈ UM(Q) | x ∈ u(P )} (10)

is a directed upset in UM(Q).

Proof. Along the lines of Lemma 17.

Lemma 25. Let Q = (Q,≤, i) ∈ PMf be an instance of Unif(M). If there
exist x, a, b, c, d, y ∈ Q such that:

(i) x ≤ a, b ≤ c, d;

(ii) x ≤ y = i(y);

(iii) there does not exist e ∈ Q such that a, b ≤ e ≤ c, d;

then typeM(Q) = 0 (see Figure 11).
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Figure 12: T3 in Lemma 25.

Proof. Since Q is a finite poset, we assume without loss of generality x ∈
min(Q). Notice that by (iii), we have a 6= b and c 6= d. Let,

V = {u : P → Q ∈ UM(Q) | x ∈ u(P )}.

By Lemma 24, V is an directed upset in UM(Q). By Lemma 8, to prove that
type(UM(Q)) = 0 it is enough to prove that type(V ) = 0. Since V is directed,
by Lemma 9, type(V ) ∈ {0, 1}. We show that type(V ) 6= 1.

For every n ∈ N, we define a unifier un : Tn → Q in V as follows. For
Tn = (Tn,≤, i) ∈ PKf we let

Tn = {⊥,⊥, 0, j, j, j · k, j · k | j < k in {1, . . . , n} and j + k is odd}.

The map i : Tn → Tn is defined by:

i(0) = 0;

i(y) = y and i(y) = y for all y ∈ Tn \ {0}.

The partial order over Tn is defined by the following cover relation, for all
j, k ∈ {1, . . . , n}:

⊥ ≺ j and i(j) ≺ i(⊥);

⊥ ≺ i(j · k) and j · k ≺ i(⊥) if j < k;

j ≺ j · k and i(j · k) ≺ i(j) if j < k;

j ≺ k · j and i(k · j) ≺ i(j) if k < j.

It is easy to check that Tn satisfies (M1)-(M3). Figure 12 provides the Hasse
diagram of T3. We define un : Tn → Q as follows, where j, k ∈ {1, . . . , n}:

un(⊥) = x;

un(j) = a and un(j · k) = c, for all j, j · k ∈ Tn with j odd;
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un(j) = b and un(j · k) = d, for all j, j · k ∈ Tn with j even;

un(0) = y;

and, for all y ∈ {⊥, 0, j, j · k | j < k in {1, . . . , n} and j + k is odd} ⊆ Tn,

un(i(y)) = i(un(y)).

It is easy to check that un : Tn → Q is a unifier for Q in V .
Let u : P → Q be a unifier for Q such that u ∈ V . We show that un ≤ u

implies |P | ≥ n. Let un = u ◦ f . We claim that f(j) 6= f(k) for all j < k with
j, k ∈ {1, . . . , n}. If j and k have a different parity, then it is clear. If j and k
have the same parity, without loss of generality assume that both are odd, then
let l be even such that j < l < k. Since by construction j, l ≤ j · l, we have
f(j), f(l) ≤ f(j · l). By (M1),

f(j), f(l) ≤ f(j) ∨ f(l) ≤ f(j · l).

Similarly,
f(l), f(k) ≤ f(l) ∨ f(k) ≤ f(l · k).

Assume f(j) = f(k) for a contradition. Then

f(j) = f(k), f(l) ≤ f(j) ∨ f(l) = f(l) ∨ f(k) ≤ f(j · l), f(l · k),

and applying u through recalling that un = u ◦ f ,

a, b ≤ u(f(l) ∨ f(k)) ≤ c, d,

contradicting clause (iii) in the statement.
This proves that type(V ) 6= 1. Then type(V ) = 0. Therefore, typeM(Q) =

0, as desired.

Lemma 26. Let Q = (Q,≤, i) ∈ PMf be an instance of Unif(M). If there
exist x, a, b ∈ Q such that:

(i) x ≤ a, b;

(ii) a ≤ i(a); b = i(b);

(iii) there does not exist c ∈ Q such that a ≤ c = i(c);

then typeM(Q) = 0 (see Figure 13).

Proof. Since Q is a finite poset, we assume without loss of generality x ∈
min(Q). Let,

V = {u : P → Q ∈ UM(Q) | x ∈ u(P )}.

By Lemma 24, V is an directed upset in UM(Q). By Lemma 8, to prove that
type(UK(Q)) = 0 it is enough to prove that type(V ) = 0. Since V is directed,
by Lemma 9, type(V ) ∈ {0, 1}. We show that type(V ) 6= 1.

For every odd n ∈ N, let

Tn = {0, 1}n ∪ {d}.

The map i : Tn → Tn is defined by:
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Figure 13: Subposet of Q in Lemma 26.
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(0, 0, 0)

d

Figure 14: T3 in Lemma 26.

i(d) = d;

i(e1, . . . , en) = (f1, . . . , fn) where fj = 0 iff ej = 1 for j = 1, 2, . . . , n.

The partial order over Tn is defined by:

(e1, . . . , en) ≤ (f1, . . . , fn) if ej ≤ fj for j = 1, 2, . . . , n;

(0, . . . , 0) ≤ d ≤ (1, . . . , 1).

It is easy to check that Tn satisfies (M1), (M2), and (M3). Figure 14 provides
the Hasse diagram of T3.

For each n odd we define un : Tn → Q by:

un(0, . . . , 0) = x and un(1, . . . , 1) = i(x);

un(d) = b;
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un(e1, . . . , en) = a if 1 ≤ e1 + · · ·+ en < n/2;

un(e1, . . . , en) = i(a) if n/2 < e1 + . . .+ en ≤ n− 1.

It follows straightforwardly that un : Tn → Q is morphism in PMf , and there-
fore a unifier for Q in V .

Let u : P → Q be a unifier for Q such that u ∈ V . We show that un ≤ u
implies |P | ≥ n. Let un = u ◦ h. We claim that h(e) 6= h(f) for all e 6= f in Tn

such that e1 + · · · + en = f1 + · · · + fn = 1. Suppose for a contradiction that
h(e) = h(f). By construction, e ≤ i(f), therefore

h(e) ≤ h(i(f)) = i(h(f)) = i(h(e));

since P satisfies (M2), there exists z ∈ P such that

h(e) ≤ z = i(z) ≤ i(h(e));

but applying u:
a ≤ u(z) = i(u(z)) ≤ i(a),

in clear contradiction with clause (iii) in the statement.
This proves that type(V ) 6= 1. Then type(V ) = 0. Therefore, typeM(Q) =

0, as desired.

Lemma 27. Let Q = (Q,≤, i) ∈ PMf be an instance of Unif(M). If there
exist x, a, b, c, d, e, f, y, z, w ∈ Q such that:

(i) x ≤ a, b, c; a ≤ d, e; b ≤ d, f ; c ≤ e, f ;

(ii) d ≤ y = i(y); e ≤ z = i(z); f ≤ w = i(w);

(iii) there does not exist g ∈ Q such that a, b, c ≤ g ≤ i(g);

then typeM(Q) = 0 (see Figure 9).

Proof. Observe that conditions (i)-(iii) above are exactly conditions (i)-(iii)
in Lemma 19. Moreover, as observed in Lemma 19, the structure Tn satisfies
(M1)-(M3). Therefore, un is a unifier for Q in PMf for all n ∈ N, and the
argument in Lemma 19 applies.

Definition 28 (De Morgan Unification Core). Let Q = (Q,≤, i) ∈ PMf . The
De Morgan unification core of Q in PMf is the structure Q′ = (Q′,≤′, i′) ∈
PMf defined by:

(i) Q′ = {x, i(x) ∈ Q | y ≤ z, x, i(x) for some y, z ∈ Q such that z = i(z)};

(ii) x ≤′ y iff x ≤ y;

(iii) i′(x) = i(x) for all x ∈ Q′.

Lemma 29. Let Q′ = (Q′,≤′, i′) be the De Morgan unification core of Q =
(Q,≤, i). Then:

(i) If u : P → Q is a unifier for Q, then u(P ) ⊆ Q′ and u : P → Q′ is a
unifier for Q′.

(ii) UM(Q) ≃ UM(Q′).
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Proof. (i) We claim that u(P ) ⊆ Q′. Indeed, let x ∈ P . If x ≤P iP (x),
then by (M2) there exists z ∈ P such that z = iP (z) and x ≤P z. Then
u(x) ≤ u(z) = i(u(z)) ≤ i(u(x)), so that u(x) ∈ Q′ by Definition 28(i). If
x ‖P iP (x), then by (M1), there exists x∧i(x) and it satisfies x∧i(x) ≤ i(x∧i(x)).
By (M2), there exists z ∈ P such that z = iP (z) and x ∧ i(x) ≤P x, iP (x), z.
Then u(x ∧ i(x)) ≤ u(x), i(u(x)), u(z), so that u(x) ∈ Q′ by Definition 28(i).

(ii) It follows from part (i) and the fact that the inclusion Q′ ⊆ Q is in
PMf .

Theorem 30. Let Q = (Q,≤, i) ∈ PMf be a solvable instance of Unif(M),
and Q′ = (Q′,≤′, i′) ∈ PMf be the De Morgan unification core of Q. Then:

typeM(Q) =



















1, iff Q′ satisfies (M1), (M2), and (M3)

ω, iff Q′ does not satisfy (M1), but for every x ∈ Q′

with x ≤′ i(x), [x, i(x)]Q′ satisfies (M1), (M2), and (M3);

0, otherwise.

Proof. If Q′ satisfies (M1)-(M3), DM(Q′) is projective by Theorem 11, and
typeM(Q′) = 1. Therefore, typeM(Q) = 1 because typeM(Q) = typeM(Q′)
by Lemma 29(ii).

Suppose that Q′ does not satisfy (M1) and [x, i(x)]Q′ satisfies (M1), (M2),
and (M3) for all x ≤′ i(x) in Q′. Along the lines of the second part of the proof
of Theorem 22, it follows that typeM(Q) = ω.

Now suppose that there exist x ≤′ i(x) in Q′ such that [x, i(x)]Q′ does
not satisfy (M1); without loss of generality, x ∈ min(Q′). Then [x, i(x)]Q′

with restricted order is not a lattice, that is, there exist a, b, c, d ∈ Q′ such that
x ≤′ a, b ≤′ c, d ≤ i(x) but there does not exist e ∈ Q′ such that a, b ≤′ e ≤′ c, d.
Moreover, by minimality of x and Definition 28(i), there exists y ∈ Q′ such
that x ≤ y = i(y). Therefore, by Lemma 25, typeM(Q′) = 0. Thus, by
Lemma 29(ii), typeM(Q) = 0.

Next suppose that for all x ≤′ i(x) in Q′ the interval [x, i(x)]Q′ satisfies
(M1), but there exists x ≤′ i(x) in Q′ such that [x, i(x)]Q′ does not satisfy (M2);
without loss of generality, x ∈ min(Q′). This case includes the case where Q′

satisfies (M1) and not (M2). Then there exists a ≤ i(a) in [x, i(x)]Q′ such that
there does not exist c ∈ [x, i(x)]Q′ satisfying a ≤ c = i(c). By minimality of x
and Definition 28(i), there exists b = i(b) in Q′ such that x ≤ b. Therefore by
Lemma 26, typeM(Q′) = 0. Thus, by Lemma 29(ii), typeM(Q) = 0.

Finally suppose that for all x ≤′ i(x) in Q′ the interval [x, i(x)]Q′ satisfies
(M1) and (M2), but there exists x ≤′ i(x) in Q′ such that [x, i(x)]Q′ does not
satisfy (M3); this case includes the case where Q′ satisfies (M1) and (M2) but
not (M3). Then there exist x, a, b, c, d, e, f, y, z, w ∈ Q′ such that: x ≤′ a, b, c;
a ≤′ d, e; b ≤′ d, f ; c ≤′ e, f ; d ≤′ y = i(y); e ≤′ z = i(z); f ≤′ w = i(w); there
does not exist g ∈ Q′ such that a, b, c ≤′ g ≤ i(g). Therefore, by Lemma 27,
typeM(Q′) = 0. Thus, by Lemma 29(ii), typeM(Q) = 0.

Lemma 25, Lemma 26, and Lemma 27 yield examples of De Morgan uni-
fication instances having nullary type, proving that De Morgan algebras have
nullary unification type.
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