Erdős-Szekeres Tableaux

Shaun V. Ault, Benjamin Shemmer*
Department of Mathematics and Computer Science
Valdosta State University
Valdosta, GA, 31602, USA.
Department of Mathematics
Fordham University
Bronx, New York, 10461, USA.

Abstract

We explore a question related to the celebrated Erdős-Szekeres Theorem and develop a geometric approach to answer it. Our main object of study is the Erdős-Szekeres tableau, or EST, of a number sequence. An EST is the sequence of integral points whose coordinates record the length of the longest increasing and longest decreasing subsequence ending at each element of the sequence. We define the Order Poset of an EST in order to answer the question: What information about the sequence can be recovered by its EST?

Keywords: Monotone Subsequence, Erdős-Szekeres Tableau, Total and Partial Order
2010 MSC: 06A05, 06A06

1. Introduction

There is a well-known result of Erdős and Szekeres [3] that states:
Theorem 1 (Erdős-Szekeres). Given a sequence of n distinct real numbers, if $n>r s$, there exists a monotonically decreasing subsequence of length at least $r+1$ or a monotonically increasing subsequence of length at least $s+1$.

The original appears in the context of a geometric problem: Can one find a function $N(n)$ such that any set containing $N(n)$ distinct points in the plane has a subset of n points that form a convex polygon? Thus, Theorem 1 may be considered a work of combinatorial geometry, roughly defined as "using combinatorics to solve a problem of geometry." We would like to contribute to the reverse direction of study, exploring what geometry may tell us about certain problems in combinatorics. For recent work related to the Erdős-Szekeres theorem, see [5, 4, 2].

1.1. Sequences and Monotone Subsequences

We provide Seidenberg's proof of Theorem 1 in order to introduce the main geometric construct with which we will be concerned. See 7] for alternate proofs.

Theorem 1 (Seidenberg [6])

Proof. Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a sequence of distinct real numbers. To each a_{i} assign a pair of numbers $\left(a_{i}^{+}, a_{i}^{-}\right)$, where a_{i}^{+}, resp. a_{i}^{-}, is the length of the longest increasing, resp. decreasing, subsequence in A that ends at a_{i}. We first show that for $i<j$, the pairs $\left(a_{i}^{+}, a_{i}^{-}\right)$and $\left(a_{j}^{+}, a_{j}^{-}\right)$must be distinct. Indeed, if $a_{i}<a_{j}$, then $a_{j}^{+} \geq a_{i}^{+}+1$, while if $a_{i}>a_{j}$, then $a_{j}^{-} \geq a_{i}^{-}+1$. This implies that there are n distinct pairs. Now suppose that $n>r s$, for some natural numbers r and s. If it were the case that all decreasing

[^0]subsequences had length at most r and all increasing subsequences had length at most s, then at most $r s$ of the pairs $\left(a_{i}^{+}, a_{i}^{-}\right)$could be distinct. Therefore, there is at least one index i such that either $a_{i}^{-} \geq r+1$ or $a_{i}^{+} \geq s+1$.

1.2. The Erdős-Szekeres Tableau

The geometric object of study in this paper is the sequence of the points $\left\{\left(a_{i}^{+}, a_{i}^{-}\right)\right\}_{i \leq n}$ defined in the proof of Theorem 11 Henceforth, the term point will always refer to a first-quadrant lattice point $(x, y) \in\left(\mathbb{Z}^{+}\right)^{2}$.

Definition 2. Given a sequence $A=\left(a_{1}, \ldots, a_{n}\right)$ of distinct numbers, the Erdős-Szekeres tableau (or, EST) of A is the sequence $T(A)=\left(t_{i}\right)_{i \leq n}$ where $t_{i}=\left(a_{i}^{+}, a_{i}^{-}\right)$and a_{i}^{+}, resp. a_{i}^{-}, is the length of the longest increasing, resp. decreasing, subsequence in A that ends at a_{i}. An EST may be visualized as the set of points $\left\{\left(a_{i}^{+}, a_{i}^{-}\right) \mid 1 \leq i \leq n\right\}$ together with arrows or number labels that indicate their order in the sequence. Given an EST $T=\left(t_{i}\right)_{i \leq n}$ and a number $m \leq n$, the subsequence $\left(t_{i}\right)_{i \leq m}$ is called a sub-EST of T and denoted T_{m}.

The points of an EST must be distinct, as discussed in the proof of Theorem 1 ,
Example 3. Let $A=(1,3,8,5,7,4,6,2)$. Then $T(A)=((1,1),(2,1),(3,1),(3,2),(4,2),(3,3),(4,3),(2,4))$ (see Fig. (1).

Figure 1: EST for $A=(1,3,8,5,7,4,6,2)$.

Definition 4. The set of all ESTs of size n will be denoted \mathcal{T}_{n}.
As evidenced by Example 3, the structure of a typical EST is interesting and non-trivial. In what follows, we will give a concrete description of which sequences of points constitute a valid EST, and conversely, which number sequences $A=\left(a_{i}\right)_{i \leq n}$ can produce a given EST. The correspondence $A \rightarrow T(A)$ is not one-to-one. For example, both $A=(2,1,4,3)$ and $B=(3,1,4,2)$ have the same EST. Our primary goal is to determine a necessary and sufficient set of relations among the elements of A such that $T(A)$ is determined and to classify all sequences B such that $T(B)=T(A)$. A secondary goal is to understand the size of \mathcal{T}_{n}.

Certain structures in an EST prove to be important indicators of which sequences of points are, in fact, ESTs. The following terms will apply to any sequence of points, whether it corresponds to an EST or not.

Definition 5. Let $T=\left(t_{i}\right)_{i \leq n}=\left(\left(x_{i}, y_{i}\right)\right)_{i \leq n}$ be a sequence of distinct points.

1. The column above t_{i} is defined by $\operatorname{Col}\left(t_{i}\right)=\operatorname{Col}\left(x_{i}, y_{i}\right)=\left\{\left(x_{i}, y\right) \mid y>y_{i}\right\}$.
2. The row beyond t_{i} is defined by $\operatorname{Row}\left(t_{i}\right)=\operatorname{Row}\left(x_{i}, y_{i}\right)=\left\{\left(x, y_{i}\right) \mid x>x_{i}\right\}$.
3. The shadow of T is the set of points, $S(T)=\bigcup_{i \leq n}\left(\left\{\left(x, y_{i}\right) \mid x \leq x_{i}\right\} \cup\left\{\left(x_{i}, y\right) \mid y \leq y_{i}\right\}\right)$.
4. The wall of T is the set of points, $W(T)=(S(T)+\{(1,0),(0,1)\}) \backslash S(T)$, if $|T|>0$, and $\{(1,1)\}$ if $|T|=0$.
5. An edge point of T is a member of the set, $E(T)=\{t \in T \mid \operatorname{Col}(t) \cap T=\emptyset \vee \operatorname{Row}(t) \cap T=\emptyset\}$.
6. A corner point of T is a member of the set,

$$
C(T)=\{(x, y) \in E(T) \mid(x+1, y) \notin S(T) \wedge(x, y+1) \notin S(T)\} .
$$

When applied to T_{i}, we use the convenient notation: $S_{i}=S\left(T_{i}\right), W_{i}=W\left(T_{i}\right)$, etc.
Example 6. Consider the Erdős-Szekeres tableau $T=T(A)$ of Example 3. The sets $S(T), W(T)$ and $C(T)$ are depicted in Fig. 22 The shadow is represented by the light gray region (although only the points with positive integer coordinates within that region are part of the shadow), the wall by the dark gray regions (again, only the integral points), the edge points by large dots, and the corner points (which are also edge points) by large open dots.

Figure 2: $S(T), W(T), E(T)$ and $C(T)$ for $T=T((1,3,8,5,7,4,6,2))$.
The following results follow from the definitions and will become useful in later sections. The proofs are left as an exercises for the reader.

Lemma 7. For any $T \in \mathcal{T}_{n}$,
(a) $T_{1} \subset T_{2} \subset \cdots \subset T_{n}$ and $S_{1} \subset S_{2} \subset \cdots \subset S_{n}$
(b) $C_{n} \subseteq E_{n} \subseteq E_{n-1} \cup\left\{t_{n}\right\} \subseteq T_{n} \subseteq S_{n}$
(c) $S_{n} \cap W_{n}=\emptyset$.
(d) $\left|W_{n}\right|=\left|E_{n}\right|+1$.

Furthermore, there is a natural duality relationship concerning sequences and their ESTs. Let $A=\left(a_{i}\right)_{i \leq n}$ be a sequence of real numbers, and define the dual of A by $A^{*}=\left(-a_{i}\right)_{i \leq n}$. If we specialize to sequences in $\{1,2, \ldots, n\}$, then we may define $A^{*}=\left(n+1-a_{i}\right)_{i \leq n}$. This is the same type of duality as Myers uses in [5].
Definition 8. Given $T=T(A)$, the dual EST of T is $T^{*}=T\left(A^{*}\right)$.
It should be clear that T^{*} is obtained by reflecting the points of T across the diagonal line $y=x$, thus rows are exchanged with columns and vice versa.

1.3. The Order Poset

In this note, we do not concern ourselves with the actual numeric values of a_{i} in a sequence $A=\left(a_{i}\right)_{i \leq n}$. Indeed, we only are concerned with the relative order of the a_{i}. That is, we regard a sequence A as a linear order on the set of indices, $\left([n],<_{A}\right)$, in which $i<_{A} j$ if and only if $a_{i}<a_{j}$ (here, $\left.[n]=\{1,2, \ldots, n\}\right)$. It is natural to ask what order information is preserved in $T(A)$. We define an equivalence relation on the set of sequences (linear orders of $[n]$) by $\{(A, B) \mid T(A)=T(B)\}$. For $T \in \mathcal{T}_{n}$, define $[T]=\{A: T(A)=T\}$. Thus, to answer what information about A is preserved in $T(A)$, we should examine the order relations common to all $B \in[T(A)]$.

Definition 9. Let $T \in \mathcal{T}_{n}$. Define a partial order $P(T)=\left([n],<_{P(T)}\right)$ by $i<_{P(T)} j$ if and only if $i<_{A} j$ for all sequences $A \in[T]$. The poset $P(T)$ is called the order poset of T.

Certain relations in $P(T)$ are immediate from the configuration of points of T. It may come as no surprise that rows and columns of an EST provide information about the order of the sequence that generated the EST.

Lemma 10 (Row and Column Relations). Let $A=\left(a_{i}\right)_{i \leq n}$ be any sequence and $T(A)=\left(t_{i}\right)_{i \leq n}$.
(a) (Row Relation) If $t_{j} \in \operatorname{Row}\left(t_{i}\right)$, then $a_{i}<a_{j}$.
(b) (Column Relation) If $t_{j} \in \operatorname{Col}\left(t_{i}\right)$, then $a_{i}>a_{j}$.

Proof. We need only prove the row relation, as the column relation would follow by duality in T^{*}. Suppose that $a_{i}>a_{j}$. Since $t_{j} \in \operatorname{Row}\left(t_{i}\right)$, we have $a_{i}^{+}<a_{j}^{+}$and $a_{i}^{-}=a_{j}^{-}$. Now if a_{j} precedes a_{i} (that is, $j<i$), then by appending a_{i} to the longest increasing subsequence ending at a_{j}, we find $a_{i}^{+}>a_{j}^{+}$, a contradiction. On this other hand, if a_{i} precedes a_{j} (that is, $i<j$), we may append a_{j} to the longest decreasing subsequence ending at a_{i}, which would imply $a_{j}^{-}>a_{i}^{-}$, another contradiction. Thus, $a_{i}<a_{j}$ is forced.

The following result generalizes the row and column relations. Because these relations may involve a turn around an empty column or row, they are given the suggestive names hook and slice.

Lemma 11 (Hook and Slice Relations). Let $A=\left(a_{i}\right)_{i \leq n}$ be any sequence and $T=T(A)$. Write $T=\left(t_{i}\right)=$ $\left(\left(x_{i}, y_{i}\right)\right)$.
(a) (Hook Relation) Suppose $i<j$. If there is a number x such that $x_{i} \leq x \leq x_{j}$ and $\operatorname{Col}\left(x, y_{i}\right) \cap T_{j}=\emptyset$, then $a_{i}<a_{j}$.
(b) (Slice Relation) Suppose $i<j$. If there is a number y such that $y_{i} \leq y \leq y_{j}$ and $\operatorname{Row}\left(x_{i}, y\right) \cap T_{j}=\emptyset$, then $a_{i}>a_{j}$.

Proof. Suppose $i<j$ and we have a point $\left(x, a_{i}^{-}\right)$such that $a_{i}^{+} \leq x \leq a_{j}^{+}$and $\operatorname{Col}\left(x, a_{i}^{-}\right) \cap T_{j}=\emptyset$. Suppose that $a_{i}>a_{j}$. Let $\left(a_{k_{1}}, a_{k_{2}}, \ldots, a_{j}\right)$ be an increasing subsequence ending at a_{j} of length a_{j}^{+}. Since $x \leq a_{j}^{+}$, we have $k_{x} \leq j$. Suppose that $a_{k_{x}}$ preceded a_{i}. Then, since $a_{k_{x}} \leq a_{j}<a_{i}$, we have $a_{i}^{+}>a_{k_{x}}^{+}=x$, a contradiction. Thus a_{i} must precede $a_{k_{x}}$. But then $a_{k_{x}}^{-}>a_{i}^{-}$, which puts $a_{k_{x}} \in \operatorname{Col}\left(x, a_{i}^{-}\right) \cap T_{j}$, another contradiction. Hence the statement $a_{i}>a_{j}$ is false. The slice relation follows from the hook relation in T^{*} by duality.

For example, in Fig. [1 t_{2} hooks t_{4} since $\operatorname{Col}(2,1) \cap T_{4}=\emptyset$ (the point $t_{8}=(2,4)$ belongs to T_{8}, not T_{4}, so the column is considered empty in T_{4}). Therefore, $b_{2}<b_{4}$ for any sequence B that generates this EST. Also, t_{4} slices t_{6} since $\operatorname{Row}(3,3) \cap T_{6}=\emptyset$. This implies $b_{4}>b_{6}$ for any B. Moreover, t_{4} hooks t_{5} since $\operatorname{Col}(3,3) \cap T_{5}=\emptyset$, implying $b_{4}<b_{5}$, which illustrates that the hooks and slices do in fact generalize the row (and column) relations.

Corollary 12. Let $T \in \mathcal{T}_{n}$, and $P=P(T)$ be its order poset. If t_{i} hooks t_{j}, then $i<_{P} j$. If t_{i} slices t_{j}, then $i>_{P} j$.

2. Statement of the Main Theorems

In this section we state some theorems regarding the structure of ESTs. Proofs are deferred to Sections35. The first theorem classifies the configuration of ESTs, and answers the question, Under what conditions is a sequence of points an EST?

Theorem 13 (EST Structure Theorem). A sequence of points, $T=\left(t_{i}\right)_{i \leq n}$, is an EST if and only if for each $1 \leq i \leq n, t_{i} \in W\left(T_{i-1}\right)$.

Now suppose $T \in \mathcal{T}_{n}$, and we find its order poset $P=P(T)$. Consider a linear extension A of P, and consider its EST, $T^{\prime}=T(A)$. A priori, it may not be the case that $T=T^{\prime}$, however the following theorem will prove that this is indeed the case. For a poset $P=\left(X,<_{P}\right)$, let $L(P)$ be the set of all linear orders on the set X that extend $<_{P}$.

Theorem 14 (Linear Extension Theorem). For any $T \in \mathcal{T}_{n},[T]=L(P(T))$.
Next we strengthen Cor. 12 by showing that the hook and slice relations are sufficient to generate $P(T)$.
Theorem 15. Given $T \in \mathcal{T}$, the order poset $P(T)$ is equal to the transitive closure of the hook and slice relations determined by T.

Finally, towards understanding the number of ESTs of size n, we find asymptotic bounds on $\left|\mathcal{T}_{n}\right|$.
Theorem 16. $\left|\mathcal{T}_{n}\right|=n^{n(1-o(1))}$.

3. EST Structure

In this section, we examine the geometric structure of an EST, leading to a proof of Theorem 13, In what follows we assume $A=\left(a_{i}\right)_{i \leq n}$ is a sequence of distinct numbers, and $T=T(A)=\left(t_{i}\right)_{i \leq n}=\left(\left(a_{i}^{+}, a_{i}^{-}\right)\right)_{i \leq n}$ is its EST. The first geometric result, which we call No-Backwards-Placement simply states that higher-index points cannot be in the shadow of lower-index points of the EST.

Lemma 17 (No-Backward-Placement). If $i<j$, then $t_{j} \notin S_{i}$.
Proof. If $t_{j} \in S_{i}$, then there exists $t_{k} \in T_{i}$ such that either $\left(a_{j}^{+}<a_{k}^{+}\right) \wedge\left(a_{j}^{-}=a_{k}^{-}\right)$, or $\left(a_{j}^{-}<a_{k}^{-}\right) \wedge\left(a_{j}^{+}=a_{k}^{+}\right)$. It is sufficient to consider only the first case, as duality would take care of the second. Since t_{j} is to the left of t_{k} in the same row, we have $a_{j}<a_{k}$. However, considering the subsequence obtained by appending a_{j} to the longest decreasing subsequence ending at a_{k}, we find that $a_{j}^{-} \geq a_{k}^{-}+1$, a contradiction.

We now prove Theorem 13

Proof. The only if direction is proven by cases. The case $n=0$ is clear by definitions. It remains to show that for $n \geq 1$ we have $t_{n} \in W_{n-1}$. By No-Backward-Placement, $t_{n} \notin S_{n-1}$, so it suffices to show either $\operatorname{Row}\left(a_{n}^{+}-1, a_{n}^{-}-1\right) \cap T_{n} \neq \emptyset$ or $\operatorname{Col}\left(a_{n}^{+}-1, a_{n}^{-}-1\right) \cap T_{n} \neq \emptyset$. It is clear that if $a_{n}<a_{i}$ for all $i<n$, then t_{n} must occupy the extreme upper left point of W_{n-1}. Dually, if $a_{n}>a_{i}$ for all $i<n$, then $t_{n} \in W_{n-1}$ at the extreme lower right point. Now suppose that $a_{n}^{+}>1$ and $a_{n}^{-}>1$. This implies there is some $i<n$ such that $a_{n}^{+}=a_{i}^{+}+1$ (take a_{i} to be the penultimate element of the longest increasing subsequence ending at a_{n}), and j such that $a_{n}^{-}=a_{j}^{-}+1$ (take a_{j} analogously in the longest decreasing subsequence ending at a_{n}). Suppose $\operatorname{Col}\left(a_{i}^{+}, a_{j}^{-}\right) \cap T_{n}=\emptyset$. Then it must be the case that $a_{j}^{+} \geq a_{n}^{+}$, since otherwise $a_{j}<a_{n}$ by Lemma 11, a contradiction. Thus $t_{j} \in \operatorname{Row}\left(a_{i}^{+}, a_{j}^{-}\right) \cap T_{n}$. Analogously, if we assumed that $\operatorname{Row}\left(a_{i}^{+}, a_{j}^{-}\right) \cap T_{n}=\emptyset$, then $\operatorname{Col}\left(a_{i}^{+}, a_{j}^{-}\right) \cap T_{n} \neq \emptyset$ is forced. In either case, $t_{n} \in W_{n-1}$.

For the if direction, use induction on n. Suppose T_{n-1} is the EST of the sequence $A^{\prime}=\left(a_{i}\right)_{i<n}$, and let $t \in W_{n-1}$. We wish to show that there is a number a_{n} such that the $n^{t h}$ point of $T(A)$ is t, where $A=\left(a_{i}\right)_{i \leq n}$. If t is in the extreme upper left of W_{n-1}, then choose $a_{n}<a_{i}$ for all $i<n$; dually, if t is in the extreme lower right, then choose $a_{n}>a_{i}$ for all $i<n$. Now if a_{n} is any number, and a_{n} is increased slightly so that it swaps position relative to only one value a_{i}, then a_{n}^{+}either remains the same or increases by one, and a_{n}^{-}either remains the same or decreases by one (each case depending on whether a_{i} was included in the longer monotone subsequence). Thus, the point t_{n} of the EST would either remain unchanged, move to the right one unit, move down one unit, or move diagonally down and right one unit each. We have shown above that t_{n} must always be in the wall of T_{n-1}, therefore as the value of a_{n} varies from lesser than all a_{i} to greater than all a_{i}, every point of W_{n-1} must be visited. Thus, there exists a value a_{n} so that the given point t is the $n^{t h}$ point of the EST $T(A)$.

4. Order Poset Structure

4.1. The Edge Chain

Let $A=\left(a_{i}\right)_{i \leq n}$ be a sequence of distinct numbers. In order to prove Theorem 14, we develop an inductive method of constucting both the EST $T(A)$ and its order poset $P(T(A))$. Along the way, we find that the two structures are in one-to-one correspondence.

Lemma 18. The placement of points in $T=T_{n}$ defines a total order $<_{T_{n}}$ on the set of points $E_{n-1} \cup\left\{t_{n}\right\}$ such that $t_{i}<_{T_{n}} t_{j} \Rightarrow i<_{P(T)} j$.
Proof. The proof is by induction. We may assume a total order $<_{T_{n-1}}$ on $E_{n-2} \cup\left\{t_{n-1}\right\}$. By Lemma 7(b), $E_{n-1} \subseteq E_{n-2} \cup\left\{t_{n-1}\right\}$ so E_{n-1} inherits the total order $<_{T_{n-1}}$. As part of the inductive hypothesis, assume that the ordering of E_{n-1} is the clockwise order of points. By "clockwise order", we mean that we follow the path of wall points starting from upper left to lower right, listing the edge points corresponding to each wall point, and in the event that two edge points correspond to a single wall point (i.e., the wall point at which the wall changes direction from down to right), then follow the rule, upper-left before lower-right. As an example, the clockwise order of edge points in Fig. 1 is $(1,1),(2,4),(3,3),(4,3),(4,2),(3,1)$. Let A be any sequence such that $T_{n}=T(A)$, and write $A=A^{\prime} \cup\left\{a_{n}\right\}$. Observe $T_{n-1}=T\left(A^{\prime}\right)$. By Theorem 13, $t_{n}=\left(a_{n}^{+}, a_{n}^{-}\right) \in W_{n-1}$. We extend the relation $\left(E_{n-1},<_{T_{n-1}}\right)$ to a relation $\left(E_{n-1} \cup\left\{t_{n}\right\},<_{T_{n}}\right)$ based on the position of t_{n} in the wall. There are five cases to consider:

1. If t_{n} occupies the extreme upper left point of W_{n-1}, then the column relation shows $a_{n}<a_{i}$, where t_{i} is the least element of E_{n-1}. Thus t_{n} is the least element of $\left(E_{n-1} \cup\left\{t_{n}\right\},<_{T_{n}}\right)$.
2. Dually, if t_{n} occupies the extreme lower right point of W_{n-1}, then t_{n} is the greatest element of $\left(E_{n-1} \cup\right.$ $\left.\left\{t_{n}\right\},<T_{n}\right)$.
3. If $a_{n}^{+}>1$ and $\operatorname{Col}\left(a_{n}^{+}-1, a_{n}^{-}-1\right) \cap T_{n}=\emptyset$, then consider the edge points t_{i}, t_{j} such that $a_{i}^{+}=a_{n}^{+}-1$ and $a_{j}^{+}=a_{n}^{+}$. Clearly t_{i} and t_{j} are consecutive in the order $<_{T_{n-1}}$. Then t_{i} hooks t_{n}, implying $a_{i}<a_{n}$, while $a_{j}>a_{n}$ due to the column relation. Extend $<_{T_{n-1}}$ by inserting t_{n} between t_{i} and t_{j}.
4. Dually, if $a_{n}^{-}>1$ and $\operatorname{Row}\left(a_{n}^{+}-1, a_{n}^{-}-1\right) \cap T_{n}=\emptyset$, then we find consecutive t_{i}, t_{j} such that $a_{i}^{-}=a_{n}^{-}$ and $a_{j}^{-}=a_{n}^{-}-1$. Extend the linear order by inserting t_{n} between t_{i} and t_{j}.
5. If none of the above conditions apply, then there exists $t_{i} \in E_{n-1}$ in the same row as t_{n} (to the left), and $t_{j} \in E_{n-1}$ in the same column (below). As conditions 3 and 4 do not apply we must have $a_{j}^{+}=a_{i}^{+}+1$ and $a_{j}^{-}=a_{i}^{-}-1$. Since $a_{i}<a_{n}<a_{j}$ is forced, and t_{i} and t_{j} are consecutive, the linear order is extended by inserting t_{n} between t_{i} and t_{j}.

Note that in all cases the new set of edge points, $E_{n} \subseteq E_{n-1} \cup\left\{t_{n}\right\}$, satisfies the condition that $<_{T_{n}}$ is the clockwise order.

Corollary 19. Within the Order Poset $P(T)$, there are chains \mathcal{E}_{i} corresponding to the total orders $\left(E_{i},<_{T_{i}}\right)$ of Lemma 18, for each $i \leq n$. Call \mathcal{E}_{n} the edge chain of T.

4.2. The Order Poset Theorem

Lemma 20. Let $T \in \mathcal{T}_{n}$. The set of order relations $\left\{<_{T_{i}}\right\}_{i \leq n}$ from Lemma 18 is necessary and sufficient for a sequence A to generate T.

Proof. Necessity is clear from Lemma 18, To show sufficiency, we must show that T can be reconstructed from the relations. By induction, it suffices to show that t_{n} can be uniquely determined, given T_{n-1} and the order relation $<_{T_{n}}$. By Lemma 7 and Theorem 13, there are exactly $\left|E_{n-1}\right|+1$ distinct points at which t_{n} can be placed, and each placement induces a distinct linear ordering on $E_{n} \subseteq E_{n-1} \cup\left\{t_{n}\right\}$. Thus the placement of t_{n} is determined by $\left(E_{n-1} \cup\left\{t_{n}\right\},<_{T_{n}}\right)$.

Corollary 21. The set of hook and slice relations are sufficent to generate $P(T)$.

Proof. By Lemma 20, $P(T)$ is equal to the transitive closure of the relations $\left\{<_{T_{i}}\right\}_{i \leq n}$ determined by T. All of these relations are either hooks or slices.

Corollary 22. Let $T=T_{n} \in \mathcal{T}_{n}$. A sequence A of the numbers $\{1,2, \ldots, n\}$ generates T if and only if $(A,<)$ is a linear extension of $\left([n],<_{P(T)}\right)$. A real number sequence A generates T if and only if there is an order-preserving map of sequences $A \rightarrow A^{\prime}$ such that A^{\prime} is a linear extension of $\left([n],<_{P(t)}\right)$.

Cor. 21 implies Theorem 15, while Cor. 22 implies Theorem 14.

4.3. Long chains within the order poset

With a view towards counting \mathcal{T}_{n}, we find a chain in $P=P(T)$ (for arbitrary $T \in \mathcal{T}_{n}$) which includes the edge chain \mathcal{E}_{n} as a subchain. Write the corner points in linear order: $C(T)=\left\{t_{r_{1}}, t_{r_{2}}, \ldots, t_{r_{k}}\right\}$. Call two corner points, $t_{r_{i}}$ and $t_{r_{i+1}}$, consecutive.

Figure 3: Chains in $P(T)$. The diagram shows an example EST, with points labeled as in the proof of Lemma 23 . Corner points are shown as larger dots. The curved arrow indicates the direction of points in the chain \mathcal{C}_{r}.

Lemma 23. Let $t_{r}=\left(x_{r}, y_{r}\right)$ and $t_{s}=\left(x_{s}, y_{s}\right)$ be consecutive corner points of T. There is a chain from r to s in P with at least $\left(y_{r}-y_{s}\right)+\left(x_{s}-x_{r}\right)-1$ intermediate points.

Proof. Let \mathcal{C}_{r} be the portion of the edge chain strictly between t_{r} and t_{s}. Note that $\left|\mathcal{C}_{r}\right|=\alpha+\beta$, where $\alpha=x_{s}-x_{r}-1$ and $\beta=y_{r}-y_{s}-1$. In terms of the poset P, we may write:

$$
\mathcal{C}_{r}=k_{1}<_{P} k_{2}<_{P} \cdots<_{P} k_{\alpha}<_{P} k_{1}^{\prime}<_{P} k_{2}^{\prime}<_{P} \cdots<_{P} k_{\beta}^{\prime},
$$

where an index k_{i} refers to an edge point $t_{k_{i}}$ corresponding to a vertical portion of the wall, while an index k_{j}^{\prime} refers to an edge point $t_{k_{i}^{\prime}}$ corresponding to a horizontal portion of the wall. It may be helpful to refer to Fig. 3. We shall find an additional point t_{c} such that $k_{\alpha}<_{P} c<_{P} k_{1}^{\prime}$. Without loss of generality, assume $k_{\alpha}<k_{1}^{\prime}$, since the case $k_{\alpha}>k_{1}^{\prime}$ can be handled in T^{*}. Set $t_{c}=\left(x_{c}, y_{k_{1}^{\prime}}\right)$ where $x_{c}=\max \left\{x \mid\left(x, y_{k_{1}^{\prime}}\right) \in T_{k_{\alpha}}\right\}$. Such a point t_{c} exists by the EST Structure Theorem, and No-Backwards-Placement implies $x_{c}<x_{k_{1}^{\prime}}$. Now $c<_{P} k_{1}^{\prime}$ by the horizontal relation, and $c>_{P} k_{\alpha}$ because $\operatorname{Row}\left(t_{c}\right) \cap T_{k_{\alpha}}=\emptyset$ implies that t_{c} slices $t_{k_{\alpha}}$.

Lemma 24. The poset $P(T)$ has height at least $M+m-1$, where

$$
\begin{equation*}
M=M(T)=\max \{x \mid(x, y) \in T\} \quad \text { and } \quad m=m(T)=\max \{y \mid(x, y) \in T\} \tag{1}
\end{equation*}
$$

Proof. Let \mathcal{L} be the chain obtained from the edge chain by inserting each internal point t_{c} as in Lemma 23, There are exactly $\left|C_{n}\right|-1$ such internal points. A simple counting argument gives the relation $\left|E_{n}\right|=$ $M+m-\left|C_{n}\right|$, and the result follows from $|\mathcal{L}|=\left|E_{n}\right|+\left|C_{n}\right|-1$.

Proposition 25. For all $T \in \mathcal{T}_{n}$, $\operatorname{Height}(P(T)) \geq 2 \sqrt{n}-1$.
Proof. Let M and m be as in Eqn. (11). Since the points of T must fall in the region $[1, M] \times[1, m]$ we have $M m \geq n$. Minimizing $M+m$ over this (integer) constraint yields $M+m \geq\lceil\sqrt{n}\rceil+\lfloor\sqrt{n}\rfloor$ which is well approximated by $2 \sqrt{n}$. The result follows from Lemma 24 ,

5. Quantitative Results

Our main goal in this section is to find bounds on the order of \mathcal{T}_{n}, but we will also discuss the distribution of the sizes of the equivalence classes $[T]=L(P(T))$. We will close with some explicit values for small n.

First observe that Prop. 25 can be used to get a crude lower bound on the number of linear extensions of a given poset $P=P(T)$ and, by extension, $\left|\mathcal{T}_{n}\right|$. Suppose P has height $h=2\lceil\sqrt{n} \mid-1$ (recall all such posets have minimum and maximum elements). Among posets (of this type) the number of linear extensions decreases with the number of additional relations and so to maximize the size of the equivalence class, $\Delta_{n}=\max \left\{|[T]| \mid T \in \mathcal{T}_{n}\right\}$, the $(n-h)$ points outside the unique maximal chain must form an antichain. To extend P to a linear order there are $(n-h)$! ways to order the antichain (this produces a poset consisting of 2 internally disjoint chains) and then $\binom{n-2}{h-2}$ ways of interlacing the chains. Hence $\Delta_{n} \leq(n-h)$! $\binom{n-2}{h-2}$ from which one could get an explicit lower bound $\left|\mathcal{T}_{n}\right| \geq \frac{n!}{\Delta_{n}}$. However, this bound is very weak as the distribution of class sizes is skewed towards the low end (see Fig. (4). We give a stronger bound in Theorem 16 which shows that the order of \mathcal{T}_{n} grows exponentially. The following is a proof of Theorem 16

Proof. The upper bound is immediate as $\left|\mathcal{T}_{n}\right| \leq n$!. For the lower bound consider the tableau

$$
\{(1,1),(1,2),(1,3) \ldots(1, k)\}
$$

Observe that any extension has a wall of size at least k as the number of columns cannot be decreased. Sequentially choosing the remaining $n-k$ points we get that $\left|\mathcal{T}_{n}\right| \geq k^{n-k}$ for all $k \leq n$. Taking $k=\frac{n}{\log n}$ gives the desired result.

Remark 26. It may be possible to derive a more explicit lower bound on the number of EST's by taking into account the distribution of sizes of equivalence classes in \mathcal{T}_{n} for arbitrary n. Unfortunately, we do not know much about the distribution except that it resembles a power law (with negative exponent). Even knowing the number of ESTs that have unique realizations (equivalently, that have linear posets) would be helpful. We present some data in Fig. 5.
Acknowledgements. We would like to thank the referees for many good suggestions, in particular, making the proof of Thm. 13 much clearer, shortening the proofs of Thms. 14 and 15, and strengthening Thm. 16 . Moreover, we wish to thank Dwight Duffus for helpful conversations.

Figure 4: Histogram: Frequency of $|[T]|$ for $T \in \mathcal{T}_{8}$

n	$\left\|\mathcal{T}_{n}\right\|$	Δ_{n}	U_{n}
≤ 3	$n!$	1	1
4	22	2	.83
5	96	3	.78
6	480	5	.68
7	2682	10	.57
8	16498	21	.47
9	110378	44	.44
10	795582		
11	6131722		
12	50224736		
13	434989688		

Figure 5: Values of $\left|\mathcal{T}_{n}\right|, \Delta_{n}=\max \left\{|[T]| \mid T \in \mathcal{T}_{n}\right\}$, and $U_{n}=\frac{1}{\left|\mathcal{T}_{n}\right|}\left|\left\{T \in \mathcal{T}_{n}| |[T] \mid=1\right\}\right|$.

References

[1] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161166, 1950.
[2] M. Eliáš and J. Matoušek. Higher-order Erdős-Szekeres theorems. In Symposium on Computational Geometry, 2012. Available online at arXiv:1111.3824v3 [cs.CG].
[3] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463-470, 1935.
[4] J. Fox, J. Pach, B. Sudakov, and A. Suk. Erdős-Szekeres-type theorems for monotone paths and convex bodies. Proceedings of the London Mathematical Society, to appear.
[5] J. S. Myers. The minimum number of monotone subsequences. Electr. J. Comb., 9(2):205-224, 2002.
[6] A. Seidenberg. A simple proof of a theorem of Erdős and Szekeres. Jour. of the London Math. Soc., 34:352, 1959.
[7] J. M. Steele. Variations on the monotone subsequence theme of Erdős and Szekeres. IMA Volumes in Mathematics and its Applications, 72:111-131, 1995.

[^0]: * Corresponding author

 Email addresses: svault@valdosta.edu (Shaun V. Ault), bshemmer@fordham.edu (Benjamin Shemmer)

