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MAXIMAL CHAINS OF ISOMORPHIC SUBORDERS OF
COUNTABLE ULTRAHOMOGENEOUS PARTIAL ORDERS

Milo š S. Kurili ć1 and Boriša Kuzeljevíc2

Abstract

We investigate the poset〈P(X)∪{∅},⊂〉, whereP(X) is the set of isomorphic
suborders of a countable ultrahomogeneous partial orderX. ForX different
from (resp. equal to) a countable antichain the order types of maximal chains
in 〈P(X) ∪ {∅},⊂〉 are characterized as the order types of compact (resp.
compact and nowhere dense) sets of reals having the minimum non-isolated.
2000 Mathematics Subject Classification: 06A06, 06A05, 03C15, 03C50.
Keywords: ultrahomogeneous partial order, isomorphic substructure, maxi-
mal chain, compact set.

1 Introduction

The general concept - to explore the relationship between the properties of a re-
lational structureX and the properties of the posetP(X) of its isomorphic sub-
structures - can be developed in several ways. For example, regarding the forcing
theoretic aspect, the poset of copies of each countable non-scattered linear order
is forcing equivalent to the two-step iteration of the Sacksforcing and aσ-closed
forcing [9], while the posets of copies of countable scattered linear orders have
σ-closed forcing equivalents (separative quotients) [10].

Regarding the order-theoretic aspect, one of extensively investigated order in-
variants of a poset is the class of order types of its maximal chains [2, 5, 6, 11]
and, for the poset of isomorphic suborders of the rational line,〈Q, <Q〉, this class
is characterized in [8]. The main result of the present paperis the following gener-
alization of that result.

Theorem 1.1 If X is a countable ultrahomogeneous partial order different from
a countable antichain, then for each linear orderL the following conditions are
equivalent:

(a)L is isomorphic to a maximal chain in the poset〈P(X) ∪ {∅},⊂〉;
(b) L is anR-embeddable complete linear order with0L non-isolated;
(c) L is isomorphic to a compact setK ⊂ R such that0K ∈ K ′.

If X is a countable antichain, then the corresponding characterization is obtained
if we replace “complete” by “Boolean” in (b) and “compact” by“compact and
nowhere dense” in (c).
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So, for example, there are maximal chains of copies of the random poset isomorphic
to (0, 1], to the Cantor set without 0, and toα∗, for each countable limit ordinalα.
Although it is not a usual practice, we start with a proof in the introduction. The
equivalence of (b) and (c) is a known fact (see, for example, Theorem 6 of [8])
and the implication (a)⇒ (b) follows from the general result on ultrahomogeneous
structures given in Theorem 2.2 of the present paper. Thus, only the implication
(b) ⇒ (a) remains to be proved. Naturally, we will use the following, well known
classification of countable ultrahomogeneous partial orders - the Schmerl list [13]:

Theorem 1.2 (Schmerl)A countable strict partial order is ultrahomogeneous iff it
is isomorphic to one of the following partial orders:
Aω, a countable antichain (that is, the empty relation onω);
Bn = n×Q, for 1 ≤ n ≤ ω, where〈i1, q1〉 < 〈i2, q2〉 ⇔ i1 = i2 ∧ q1 <Q q2;
Cn = n×Q, for 1 ≤ n ≤ ω, where〈i1, q1〉 < 〈i2, q2〉 ⇔ q1 <Q q2;
D, the unique countable homogeneous universal poset (the random poset).

For the antichainAω the implication (b)⇒ (a) follows from Theorem 1.4 and the
fact thatP(Aω) = [ω]ω is a positive family. The most difficult part of the proof of
(b) ⇒ (a) - for the random posetD - is given in Section 4. In Sections 5 and 6,
using the constructions from [8], we prove (b)⇒ (a) for the posetsBn andCn.

The rest of this section contains two facts which will be usedin the sequel. We
remind the reader that a linear order〈L,<〉 is calledBooleaniff it is complete(has
0,1 and has no gaps) andhas dense jumps, which means that for eachx, y ∈ L
satisfyingx < y there area, b ∈ L such thatx ≤ a < b ≤ y and(a, b)L = ∅.

Fact 1.3 Each countable complete linear order is Boolean.

We recall that a familyP ⊂ P (ω) is called apositive familyiff:
(P1)∅ /∈ P;
(P2)P ∋ A ⊂ B ⊂ ω ⇒ B ∈ P;
(P3)A ∈ P ∧ |F | < ω ⇒ A\F ∈ P;
(P4)∃A ∈ P |ω\A| = ω.

Theorem 1.4 ([7]) If P ⊂ P (ω) is a positive family, then for each linear orderL
the following conditions are equivalent:

(a)L is isomorphic to a maximal chain in the poset〈P ∪ {∅},⊂〉;
(b) L is anR-embeddable Boolean linear order with0L non-isolated;
(c)L is isomorphic to a compact nowhere dense setK ⊂ R such that0K ∈ K ′.

In addition, (b) implies that there is a maximal chainL in 〈P ∪ {∅},⊂〉 satisfying
⋂

(L \ {∅}) = ∅ and isomorphic toL.
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2 Copies of countable ultrahomogeneous structures

Let L = {Ri : i ∈ I} be a relational language, where ar(Ri) = ni, i ∈ I. An
L-structureX = 〈X, {ρi : i ∈ I}〉 is calledcountableiff |X| = ω. If A ⊂ X, then
〈A, {(ρi)A : i ∈ I}〉 (shortly denoted by〈A, {ρi : i ∈ I}〉, whenever this abuse
of notation does not produce a confusion) is asubstructureof X, where(ρi)A =
ρi ∩ Ani , i ∈ I. If Y = 〈Y, {σi : i ∈ I}〉 is anL-structure too, a mapping
f : X → Y is anembedding(we writeX →֒f Y) iff it is an injection and

∀i ∈ I ∀〈x1, . . . xni
〉 ∈ Xni (〈x1, . . . , xni

〉 ∈ ρi ⇔ 〈f(x1), . . . , f(xni
)〉 ∈ σi).

If X embeds inY we writeX →֒ Y. Let Emb(X,Y) = {f : X →֒f Y} and
Emb(X) = {f : X →֒f X}. If, in addition,f is a surjection, it is anisomorphism
(we writeX ∼=f Y) and the structuresX andY areisomorphic, in notationX ∼= Y.

A finite isomorphismof X is each isomorphism between finite substructures of
X. A structureX is ultrahomogeneousiff each finite isomorphism onX can be
extended to an automorphism ofX. Theageof X, AgeX, is the class of all finite
L-structures embeddable inX. We will use the following well known facts from
the Fraı̈ssé theory.

Theorem 2.1 (Fräısśe) LetL be an at most countable relational language. Then
(a) A countableL-structureX is ultrahomogeneous iff for each finite isomor-

phismϕ of X and eachx ∈ X \ domϕ there is a finite isomorphismψ of X
extendingϕ to x (see [3] p. 389 or [4] p. 326).

(b) If X andY are countable ultrahomogeneousL-structures andAgeX =
AgeY, thenX ∼= Y (see [3] p. 333 or [4] p. 326).

Concerning the order types of maximal chains in the posets ofthe form〈P(X),⊂〉,
whereX = 〈X, {ρi : i ∈ I}〉 is a relational structure andP(X) the set of the
domains of its isomorphic substructures, that is

P(X) = {A ⊂ X : 〈A, {(ρi)A : i ∈ I}〉 ∼= X} = {f [X] : f ∈ Emb(X)}

we have the following general statement.

Theorem 2.2 LetX be a countable ultrahomogeneous structure of an at most count-
able relational language andP(X) 6= {X}. If L is a maximal chain in the poset
〈P(X) ∪ {∅},⊂〉, then

(a)L is anR-embeddable complete linear order with0L(= ∅) non-isolated;
(b) If there is a positive familyP ⊂ P(X), then for each countable linear order

L satisfying (a), there is a maximal chain in〈P(X) ∪ {∅},⊂〉 isomorphic toL.

Proof. (a) First we prove that

⋃

A ∈ P(X), for each chainA in the poset〈P(X),⊂〉. (1)
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Let ϕ be a finite isomorphism of
⋃

A andx ∈
⋃

A. SinceA is a chain there is
A ∈ A such thatdomϕ∪ranϕ∪{x} ⊂ A. SinceA ∼= X, by Theorem 2.1(a) there
is y ∈ A such thatψ = ϕ∪{〈x, y〉} is an isomorphism soψ is a finite isomorphism
of

⋃

A. Thus, by Theorem 2.1(a), the structure
⋃

A is ultrahomogeneous. Since
X ∼= A ⊂

⋃

A ⊂ X we haveAgeX = AgeA ⊂ Age
⋃

A ⊂ AgeX, which, by
Theorem 2.1(b), implies

⋃

A ∼= X, that is
⋃

A ∈ P(X).
LetX = {xn : n ∈ ω} be an enumeration. SinceL ⊂ [X]ω ∪{∅}, the function

f : L → R defined byf(A) =
∑

n∈ω 2
−n ·χA(xn) (whereχA : X → {0, 1} is the

characteristic function of the setA ⊂ X) is an embedding of〈L,⊂〉 into 〈R, <R〉.
Clearly,minL = ∅ andmaxL = X. Let 〈A,B〉 be a cut inL. If A = {∅} then

maxA = ∅. If A 6= {∅}, by (1) we have
⋃

A ∈ P(X) and, sinceA ⊂
⋃

A ⊂ B,
for eachA ∈ A andB ∈ B, the maximality ofL implies

⋃

A ∈ L. So, if
⋃

A ∈ A thenmaxA =
⋃

A. Otherwise
⋃

A ∈ B andminB =
⋃

A. Thus
〈L,⊂〉 is complete.

Suppose thatA is the successor of∅ in L. SinceP(X) 6= {X} there isB ∈
P(X) \ {X} and, if f : X →֒ A, thenf [B] ∈ P(X), f [B]  A and, hence,
L ∪ {f [B]} is a chain inP(X). A contradiction to the maximality ofL.

(b) By Fact 1.3,L is a Boolean order and, by Theorem 1.4, in the poset〈P ∪
{∅},⊂〉 there is a maximal chainL isomorphic toL and such that

⋂

(L\{∅}) = ∅.
Now, L is a chain in〈P(X) ∪ {∅},⊂〉 and we check its maximality. Suppose that
L ∪ {A} is a chain, whereA ∈ P(X) \ L. ThenA  S or S  A, for each
S ∈ L \ {∅} and, since

⋂

(L \ {∅}) = ∅, there isS ∈ L \ {∅} such thatS ⊂ A,
which impliesA ∈ P. ButL \ {∅} is a maximal chain inP. A contradiction. ✷

Remark 2.3 Concerning the assumptionP(X) 6= {X} we note that there are
countable ultrahomogeneous structures satisfyingP(X) = {X} (see [3], p. 399).

For 1 < n < ω the setP(Cn) does not contain a positive family, since (P3) is
not satisfied. Namely, ifA ∈ P(Cn) andx ∈ A, thenA \ {x} is not a copy ofCn

(one class of incompatible elements is of sizen− 1).
For someω-saturated,ω-homogeneous-universal relational structures the im-

plication (b)⇒ (a) of Theorem 1.1 is not true. LetL be the language with one
binary relational symbolρ andT theL-theory of empty relations (∀x, y ¬ x ρ y).
ThenX = 〈ω, ∅〉 is theω-saturated model ofT . But P(X) = [ω]ω is a positive
family and, by Theorem 1.4, maximal chains inP(X)∪{∅} are Boolean. Thus, for
example,P(X) ∪ {∅} does not contain a maximal chain isomorphic to[0, 1]R.

3 Copies of the countable random poset

LetP = 〈P,<〉 be a partial order. ByC(P)we denote the set of all triples〈L,G,U〉
of pairwise disjoint finite subsets ofP such that:

(C1)∀l ∈ L ∀g ∈ G l < g,
(C2)∀u ∈ U ∀l ∈ L ¬u < l and
(C3)∀u ∈ U ∀g ∈ G ¬g < u.
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For〈L,G,U〉 ∈ C(P), letP〈L,G,U〉 be the set of allp ∈ P \(L∪G∪U) satisfying:
(S1)∀l ∈ L p > l,
(S2)∀g ∈ G p < g and
(S3)∀u ∈ U p‖u (wherep‖q denotes thatp 6= q ∧ ¬p < q ∧ ¬q < p).

Fact 3.1 Let P = 〈P,<〉 be a partial order and∅ 6= A ⊂ P . Then
(a)C(A,<) = {〈L,G,U〉 ∈ C(P) : L,G,U ⊂ A};
(b)A〈L,G,U〉 = P〈L,G,U〉 ∩A, for each〈L,G,U〉 ∈ C(A,<).
(c) 〈∅, ∅, ∅〉 ∈ C(P) andP〈∅,∅,∅〉 = P .

Proof. For pairwise disjoint setsL,G,U ⊂ Awe have:L×G ⊂ < iff L×G ⊂ <A

and((U × L) ∪ (G× U)) ∩ < = ∅ iff ((U × L) ∪ (G× U)) ∩ <A = ∅. ✷

Fact 3.2 A countable strict partial orderD = 〈D,<〉 is a countable random poset
iff D〈L,G,U〉 6= ∅, for each〈L,G,U〉 ∈ C(D) (see [1]).

Lemma 3.3 LetD = 〈D,<〉 be a countable random poset. Then
(a)D〈L,G,U〉 ∈ P(D) and, hence,|D〈L,G,U〉| = ω, for each〈L,G,U〉 ∈ C(D);
(b)D \ F ∈ P(D), for each finiteF ⊂ D;
(c) If D = A ∪̇ B, then eitherA orB contains an element ofP(D);
(d) If L ⊂ P(D) is a chain, then

⋃

L ∈ P(D);
(e) If C ⊂ D andA 6⊂ C for eachA ∈ P(D), thenD \ C ∈ P(D).

Proof. (a) Let〈L,G,U〉 ∈ C(D). ThenL,G andU are disjoint subsets ofD,

∀l ∈ L ∀g ∈ G ∀u ∈ U (u 6< l < g 6< u), (2)

andD〈L,G,U〉 ∩ (L ∪ G ∪ U) = ∅. Let 〈L1, G1, U1〉 ∈ C(D〈L,G,U〉). ThenL1,
G1 andU1 are disjoint subsets ofD〈L,G,U〉 and, by Fact 3.1,〈L1, G1, U1〉 ∈ C(D)
which implies

∀l1 ∈ L1 ∀g1 ∈ G1 ∀u1 ∈ U1 (u1 6< l1 < g1 6< u1). (3)

SinceL1 ∪G1 ∪ U1 ⊂ D〈L,G,U〉, by (S1)-(S3) we have

∀x ∈ L1∪G1∪U1 ∀l ∈ L ∀g ∈ G ∀u ∈ U (l < x < g∧x 6< u∧u 6< x). (4)

First we show that〈L ∪ L1, G ∪ G1, U ∪ U1〉 ∈ C(D). (C1) Letl′ ∈ L ∪ L1 and
g′ ∈ G ∪ G1. Thenl′ < g′ follows from: (2), if l′ ∈ L andg′ ∈ G; (3), if l′ ∈ L1

andg′ ∈ G1; (4), if l′ ∈ L andg′ = x ∈ G1 or l′ = x ∈ L1 andg′ ∈ G. (C2)
Let l′ ∈ L ∪ L1 andu′ ∈ U ∪ U1. Thenu′ 6< l′ follows from: (2), if l′ ∈ L and
u′ ∈ U ; (3), if l′ ∈ L1 andu′ ∈ U1; (4), if l′ ∈ L andu′ = x ∈ U1 (sincel′ < u′)
or l′ = x ∈ L1 andu′ ∈ U . In the same way we prove (C3).

So there isx ∈ D〈L∪L1,G∪G1,U∪U1〉, which impliesx ∈ D〈L,G,U〉∩D〈L1,G1,U1〉

= (D〈L,G,U〉)〈L1,G1,U1〉 (Fact 3.1). ThusD〈L,G,U〉 is a random poset and, hence a
copy ofD.
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(b) Let 〈L,G,U〉 ∈ C(D \ F ). By Fact 3.1 we have〈L,G,U〉 ∈ C(D) and,
by (a),∅ 6= (D \ F ) ∩D〈L,G,U〉 = (D \ F )〈L,G,U〉. ThusD \ F is a copy ofD.

(c) Suppose thatP (A) ∩ P(D) = ∅. ThenA /∈ P(D) and, hence, there is
〈L,G,U〉 ∈ C(A) such thatA〈L,G,U〉 = D〈L,G,U〉 ∩ A = ∅. By Fact 3.1 we have
〈L,G,U〉 ∈ C(D) and, by (a),P(D) ∋ D〈L,G,U〉 ⊂ B.

(d) See (1) in the proof of Theorem 2.2.
(e) Let〈L,G,U〉 ∈ C(D \ C). Then, by Fact 3.1,〈L,G,U〉 ∈ C(D) and, by

(a),D〈L,G,U〉 ∈ P(D). By the assumption we haveD〈L,G,U〉 ∩ (D \ C) 6= ∅ and,
by Fact 3.1,(D \ C)〈L,G,U〉 6= ∅ andD \ C is a random poset. ✷

Lemma 3.4 LetD = 〈D,<〉 be a countable random poset,C ∈ [D]ω andA 6⊂ C
for eachA ∈ P(D) (for example,C can be an infinite antichain). Then

(a)P = {B ⊂ D : D \ C ⊂∗ B} ⊂ P(D);
(b) P is a positive family onD.

Proof. (a) Suppose thatA ⊂ D \ B, for someA ∈ P(D). SinceD \ C ⊂∗ B we
haveD \ B ⊂∗ C and, hence,A ⊂∗ C, that is|A \ C| < ω. By Lemma 3.3(b),
A∩C = A \ (A \C) ∈ P(D), which is not true. SoD \B does not contain copies
of D and, by Lemma 3.3(e),B ∈ P(D).

(b) Conditions (P1) and (P2) are evident. IfD \ C ⊂∗ B and|F | < ω, then,
clearly,D \ C ⊂∗ B \ F and (P3) is true. Since the setD \ C is co-infinite (P4) is
true as well. ✷

Lemma 3.5 Let A ⊂ B ⊂ ω and letL be a complete linear ordering, such that
|B \A| = |L| − 1. Then there is a chainL in [A,B]P (B) satisfyingA,B ∈ L ∼= L
and such that

⋃

A,
⋂

B ∈ L and|
⋂

B \
⋃

A| ≤ 1, for each cut〈A,B〉 in L.

Proof. If |B \ A| is a finite set, sayB = A ∪ {a1, . . . an}, then|L| = n + 1 and
L = {A,A ∪ {a1}, A ∪ {a1, a2}, . . . , B} is a chain with the desired properties.

If |B\A| = ω, thenL is a countable and, hence,R-embeddable complete linear
order. It is known that an infinite linear order is isomorphicto a maximal chain in
P (ω) iff it is R-embeddable and Boolean (see, for example, [7]). By Fact 1.4L is
a Boolean order and, thus, there is a maximal chainL1 in P (B \ A) isomorphic to
L. LetL = {A ∪ C : C ∈ L1}. Since∅, B \ A ∈ L1 we haveA,B ∈ L and the
functionf : L1 → L, defined byf(C) = A ∪ C, witnesses that〈L1, 〉 ∼= 〈L, 〉
soL is isomorphic toL. For each cut〈A,B〉 in L1 we have

⋃

A ⊂
⋂

B and, by
the maximality ofL1,

⋃

A,
⋂

B ∈ L1 and|
⋂

B \
⋃

A| ≤ 1. Clearly, the same is
true for each cut inL. ✷

4 Maximal chains of copies of the random poset

Theorem 4.1 For eachR-embeddable complete linear orderLwith 0L non-isolated
there is a maximal chain in〈P(D) ∪ {∅},⊂〉 isomorphic toL.
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Proof. By Lemma 3.4 and Theorem 2.2 it remains to prove the statementfor un-
countableL’s. So letL be an uncountable linear order with the given properties.

Claim 4.2 L ∼=
∑

x∈[−∞,∞]Lx, where
(L1) Lx, x ∈ [−∞,∞], are at most countable complete linear orders,
(L2) The setM = {x ∈ [−∞,∞] : |Lx| > 1} is at most countable,
(L3) |L−∞| = 1 or 0L−∞

is non-isolated.

Proof. L =
∑

i∈I Li, whereLi are the equivalence classes corresponding to the
condensation relation∼ onL given by: x ∼ y ⇔ |[min{x, y},max{x, y}]| ≤ ω
(see [12]). SinceL is complete andR-embeddableI is too and, since the cofi-
nalities and coinitialities ofLi’s are countable,I is a dense linear order; soI ∼=
[0, 1] ∼= [−∞,∞]. HenceLi’s are complete and, sinceminLi ∼ maxLi, count-
able. If |Li| > 1, Li has a jump (Fact 1.3) so,L →֒ R gives|M | ≤ ω. ✷

Case I:−∞ 6∈M ∋ ∞. First we take the rational line〈Q, <Q〉 and construct a set
✁ ⊂ Q2 such that〈Q,✁〉 is a random poset with additional, convenient properties.
Let P be the set of pairsp = 〈Pp,⊳p〉 satisfying

(i) Pp ∈ [Q]<ω,
(ii) ⊳p⊂ Pp × Pp is a strict partial order onPp,
(iii) <Q extends⊳p, that is∀q1, q2 ∈ Pp (q1 ⊳p q2 ⇒ q1 <Q q2),

and let the relation≤ onP be defined by:

p ≤ q ⇔ Pp ⊃ Pq ∧ ⊳p ∩(Pq × Pq) =⊳q . (5)

Claim 4.3 〈P,≤〉 is a partial order.

Proof. The reflexivity of≤ is obvious. Ifp ≤ q ≤ p, thenPp = Pq and, hence,
✁p = ✁p ∩ (Pp × Pp) = ✁p ∩ (Pq × Pq) = ✁q sop = q and≤ is antisymmetric.

If p ≤ q ≤ r, thenPp ⊃ Pq ⊃ Pr and, consequently,✁p ∩ (Pr × Pr) =
✁p ∩ (Pq × Pq) ∩ (Pr × Pr) = ✁q ∩ (Pr × Pr) = ✁r. Thusp ≤ r. ✷

Claim 4.4 The setsDq = {p ∈ P : q ∈ Pp}, q ∈ Q, are dense inP.

Proof. If p ∈ P \ Dq, that isq /∈ Pp, then✁p is an irreflexive and transitive
relation on the setPp and on the setPp ∪ {q} as well. Also✁p ⊂<Q thusp1 =
〈Pp ∪ {q},✁p〉 ∈ P. Thusp1 ∈ Dq and, clearly,p1 ≤ p. ✷

Let Q = J ∪
⋃

y∈M Jy be a partition ofQ into |M | + 1 dense subsets ofQ. For
〈L,G,U〉 ∈ ([Q]<ω)3 \ {〈∅, ∅, ∅〉}, letm〈L,G,U〉 = max〈Q,<Q〉(L ∪G ∪ U).
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Claim 4.5 For each〈L,G,U〉 ∈ ([Q]<ω)3 \ {〈∅, ∅, ∅〉} and eachm ∈ N the set
D〈L,G,U〉,m is dense inP, where

D〈L,G,U〉,m =
{

p ∈ P : L ∪G ∪ U ⊂ Pp ∧
(

〈L,G,U〉 6∈ C(p)

∨ (G 6= ∅ ∧ p〈L,G,U〉 ∩ J 6= ∅)

∨ (G = ∅ ∧ p〈L,G,U〉 ∩ (m〈L,G,U〉,m〈L,G,U〉 +
1
m
) ∩ J 6= ∅)

)}

.

Proof. Let p′ ∈ P \ D〈L,G,U〉,m. By Claim 4.4 there isp ∈ P such thatp ≤ p′ and
L ∪G ∪ P ⊂ Pp. If 〈L,G,U〉 6∈ C(p) thenp ∈ D〈L,G,U〉,m and we are done. If

〈L,G,U〉 ∈ C(p), (6)

then we continue the proof distinguishing the following twocases.
Case 1: G 6= ∅. Let us definemax〈Q,<Q〉 ∅ = −∞. By (6) and (C1) for

p, if L 6= ∅, thenmax〈Q,<Q〉 L ✁p min〈Q,<Q〉G and, by (iii), max〈Q,<Q〉 L <Q
min〈Q,<Q〉G. Now, sinceJ is a dense set in〈Q, <Q〉 we choose

q ∈ (max〈Q,<Q〉 L,min〈Q,<Q〉G) ∩ J \ Pp (7)

and definep1 = 〈Pp ∪ {q},✁p1〉 where

✁p1 = ✁p ∪ {〈x, q〉 : ∃l ∈ L x Ep l} ∪ {〈q, y〉 : ∃g ∈ G g Ep y}. (8)

First we prove thatp1 ∈ P. Clearly,p1 satisfies condition (i).
(ii) Since✁p is an irreflexive relation and, by (7),q 6∈ Pp, by (8) the relation

✁p1 is irreflexive as well.
Suppose that✁p1 is not asymmetric. Then, since✁p is asymmetric, there is

t ∈ Pp such that〈t, q〉, 〈q, t〉 ∈ ✁p1 and by (8),g Ep t Ep l, for somel ∈ L and
g ∈ G which, by the transitivity ofEp implies g Ep l. But, by (6) and (C1) we
havel ✁p g. A contradiction.

Let 〈a, b〉, 〈b, c〉 ∈ ✁p1. Then, since the relation✁p1 is irreflexive and asym-
metric, we havea 6= b 6= c 6= a. If q 6∈ {a, b, c}, then 〈a, c〉 ∈ ✁p1 by the
transitivity of✁p. Otherwise we have three possibilities:

a = q. Then〈b, c〉 ∈ ✁p and there isg ∈ G such thatg Ep b. Henceg ✁p c
which, by (8), implies〈q, c〉 ∈ ✁p1, that is〈a, c〉 ∈ ✁p1.

b = q. Then there arel ∈ L andg ∈ G such thata Ep l andg Ep c. By (C1)
we havel ✁p g and, by the transitivity of✁p, a✁p c and, hence,〈a, c〉 ∈ ✁p1.

c = q. Then〈a, b〉 ∈ ✁p and there isl ∈ L such thatb Ep l. Hencea ✁p l
which, by (8), implies〈a, q〉 ∈ ✁p1, that is〈a, c〉 ∈ ✁p1.

(iii) Sincep ∈ P, we have✁p ⊂<Q. If 〈x, q〉 ∈ ✁p1 andl ∈ L, wherex Ep l,
then, since✁p satisfies (iii), we havex ≤Q l. By (7) we havel <Q q and, thus,
x <Q q. In a similar way we show that〈q, y〉 ∈ ✁p1 impliesq <Q y.

Thusp1 ∈ P, Pp1 ⊃ Pp ⊃ L ∪ G ∪ U and, by (8),✁p1 ∩ (Pp × Pp) = ✁p,
which implies thatp1 ≤ p (≤ p′). Sop is a suborder ofp1 and, by (6) and Fact
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3.1,〈L,G,U〉 ∈ C(p1). SinceG 6= ∅ andq ∈ J , for a proof thatp1 ∈ D〈L,G,U〉,m

it remains to be shown thatq ∈ (p1)〈L,G,U〉. By (8) l ✁p1 q ✁p1 g, for eachl ∈ L
andg ∈ G, so (S1) and (S2) are true. Foru ∈ U , 〈u, q〉 ∈ ✁p1 would givel ∈ L
satisfyingu Ep l and, sinceU ∩ L = ∅, u ✁p l, which is impossible by (6) and
(C2). Similarly,〈q, u〉 ∈ ✁p1 is not possible and, thus,q ‖p1 u and (S3) is satisfied.

Case 2:G = ∅. Again, sinceJ is a dense set in the linear order〈Q, <Q〉 we
choose

q ∈ (m〈L,G,U〉,m〈L,G,U〉 +
1
m
) ∩ J \ Pp (9)

and definep1 = 〈Pp ∪ {q},✁p1〉, where

✁p1 = ✁p ∪ {〈x, q〉 : ∃l ∈ L x Ep l}. (10)

First we prove thatp1 ∈ P. Clearly,p1 satisfies condition (i).
(ii) By (9) we haveq 6∈ Pp so, by (10) the relation✁p1 is irreflexive.
Let 〈a, b〉, 〈b, c〉 ∈ ✁p1. If q 6∈ {a, b, c}, then〈a, c〉 ∈ ✁p1 by (10) and the

transitivity of✁p. Otherwise, by (10) again,a, b 6= q and, thus,c = q. Hence there
is l ∈ L such thatb Ep l. Sincea, b 6= q, by (10) we havea✁p b and, hencea✁p l,
which implies〈a, q〉 ∈ ✁p1, that is〈a, c〉 ∈ ✁p1.

(iii) Since p ∈ P, we have✁p ⊂<Q. If 〈x, q〉 ∈ ✁p1 andl ∈ L, wherex Ep l,
then, since✁p satisfies (iii), we havex ≤Q l. By (9) we havel ≤Q m〈L,G,U〉 <Q q
and, thus,x <Q q.

Thusp1 ∈ P. As in Case 1 we show thatL ∪G ∪ U ⊂ Pp1 , p1 ≤ p (≤ p′) and
〈L,G,U〉 ∈ C(p1). By (9) and sinceG = ∅, for a proof thatp1 ∈ D〈L,G,U〉,m it
remains to be shown thatq ∈ (p1)〈L,G,U〉. (S2) is trivial and, by (10), forl ∈ L we
have〈l, q〉 ∈ ✁p1 thus (S1) holds as well. Suppose that¬ q ‖p1 u, for someu ∈ U .
Then, by (9) and (10),〈u, q〉 ∈ ✁p1 and, hence, there isl ∈ L satisfyingu ✁p l,
which is impossible by (6) and (C2) forp. So (S3) is true. ✷

By the Rasiowa Sikorski theorem there is a filterG in 〈P,≤〉 intersecting the sets
Dq, q ∈ Q, andD〈L,G,U〉,m, 〈L,G,U〉 ∈ ([Q]<ω)3,m ∈ N.

Claim 4.6 (a)
⋃

p∈G Pp = Q;
(b) ⊳=

⋃

p∈G ⊳p is a strict partial order onQ;
(c) ✁ ∩ (Pp × Pp) = ✁p, for eachp ∈ G;
(d)<Q extends⊳, that is∀q1, q2 ∈ Q (q1 ⊳ q2 ⇒ q1 <Q q2).

Proof. (a) Forq ∈ Q let p0 ∈ G ∩ Dq. Thenq ∈ Pp0 ⊂
⋃

p∈G Pp.
(b) The relation✁ is irreflexive since all the relations✁p are irreflexive.
Let 〈a, b〉, 〈b, c〉 ∈ ✁, 〈a, b〉 ∈ ✁p1 and〈b, c〉 ∈ ✁p2, wherep1, p2 ∈ G. SinceG

is a filter there isp ∈ G such thatp ≤ p1, p2, which by (5) implies✁p1 ,✁p2 ⊂ ✁p.
Thus〈a, b〉, 〈b, c〉 ∈ ✁p and, by the transitivity of✁p, 〈a, c〉 ∈ ✁p ⊂ ✁.

(c) The inclusion “⊃” follows from (ii) and the definition of✁. If 〈a, b〉 ∈
✁ ∩ (Pp × Pp), then there isp1 ∈ G such that〈a, b〉 ∈ ✁p1 and, sinceG is a filter,
there isp2 ∈ G such thatp2 ≤ p, p1. By (5) we have✁p1 ⊂ ✁p2, which implies
〈a, b〉 ∈ ✁p2 and, by (5) again,〈a, b〉 ∈ ✁p2 ∩ (Pp × Pp) = ✁p.
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(d) If 〈q1, q2〉 ∈ ✁ andp ∈ G where〈q1, q2〉 ∈ ✁p, then by (iii),q1 <Q q2. ✷

Claim 4.7 (a) 〈A,⊳〉 is a random poset, for eachx ∈ (−∞,∞] and each setA
satisfying

(−∞, x) ∩ J ⊂ A ⊂ (−∞, x) ∩Q (11)

(b) If J ⊂ A ⊂ Q then〈A,✁〉 (in particular,〈Q,⊳〉) is a random poset.
(c) If C ⊂ Q andmax〈Q,<Q〉 C exists, then〈C,✁〉 is not a random poset.

Proof. (a) By Claim 4.6(b),〈A,⊳〉 is a strict partial order. Let〈L,G,U〉 ∈
C(A,✁). Then

L ∪G ∪ U ⊂ A ∧ L ∩G = G ∩ U = U ∩A = ∅, (12)

∀l ∈ L ∀g ∈ G ∀u ∈ U (〈l, g〉 ∈ ✁ ∧ 〈u, l〉 6∈ ✁ ∧ 〈g, u〉 6∈ ✁). (13)

We show that〈A,✁〉〈L,G,U〉 6= ∅. For〈L,G,U〉 6= 〈∅, ∅, ∅〉 we have two cases.
Case 1:G 6= ∅. Let p ∈ G ∩ D〈L,G,U〉,1. Then

L ∪G ∪ U ⊂ Pp. (14)

First we show that〈L,G,U〉 ∈ C(p). Let l ∈ L, g ∈ G andu ∈ U . By (13), (14)
and Claim 4.6(c) we have〈l, g〉 ∈ ✁p and (C1) is true. Since✁p ⊂ ✁ by (13) we
have〈u, l〉 6∈ ✁p and〈g, u〉 6∈ ✁p and (C2) and (C3) are true as well.

Sincep ∈ D〈L,G,U〉,1 there isq ∈ p〈L,G,U〉∩J . We prove thatq ∈ 〈A,✁〉〈L,G,U〉.
For ag ∈ G we haveq ✁p g and, by (iii), q <Q g. By (11) and (12) we have
g ∈ G ⊂ A ⊂ (−∞, x) and, henceq <Q g <R x, thusq ∈ (−∞, x) ∩ J ⊂ A.
Let l ∈ L, g ∈ G andu ∈ U . Sinceq ∈ p〈L,G,U〉 we havel✁p q ✁p g and✁p ⊂ ✁

implies l ✁ q ✁ g. Thus (S1) and (S2) are true. Suppose that¬ q ‖〈A,✁〉 u. Since
q 6∈ U we haveq 6= u and, hence,q ✁ u or u ✁ q. But then, sinceu, q ∈ Pp,
by Claim 4.6(c) we would haveq ✁p u or u ✁p q, which is impossible because
q ∈ p〈L,G,U〉. So (S3) is true as well.

Case 2:G = ∅. By (11) and (12) we haveL ∪ G ∪ U ⊂ (−∞, x), which
impliesm〈L,G,U〉 < x and, hence, there ism ∈ N such that

m〈L,G,U〉 +
1
m
< x. (15)

Let p ∈ G ∩ D〈L,G,U〉,m. Then (14) holds again and exactly like in Case 1 we
show that〈L,G,U〉 ∈ C(p). Thus, sincep ∈ D〈L,G,U〉,m there isq ∈ p〈L,G,U〉 ∩

(m〈L,G,U〉,m〈L,G,U〉 +
1
m
) ∩ J and, by (15),q ∈ J ∩ (−∞, x). Thus, by (11),

q ∈ A and exactly like in Case 1 we prove thatq ∈ 〈A,✁〉〈L,G,U〉.
(b) Follows from (a) forx = ∞.
(c) Suppose thatmax〈Q,<Q〉 C = q and that〈C,✁〉 is a random poset. Then

C〈{q},∅,∅〉 6= ∅ and, by (S1), there isq1 ∈ C such thatq ✁ q1, which, by Claim
4.6(d) impliesq <Q q1. A contradiction with the maximality ofq. ✷

Fory ∈M let us takeIy ∈ [Jy ∩ (−∞, y)]|Ly|−1 and defineA−∞ = ∅ and

Ax = (J ∩ (−∞, x)) ∪
⋃

y∈M∩(−∞,x)Iy, for x ∈ (−∞,∞];
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A+
x = Ax ∪ Ix, for x ∈M.

SinceJ ⊂ A+
∞ ⊂ Q, by Claim 4.7(b)〈A+

∞,✁〉 is a random poset and we construct
a maximal chainL in 〈P(A+

∞,✁),⊂〉, such thatL ∼= L.

Claim 4.8 The setsAx, x ∈ [−∞,∞] andA+
x , x ∈ M are subsets of the setA+

∞

and ofQ. In addition, for eachx, x1, x2 ∈ [−∞,∞] we have
(a)Ax ⊂ (−∞, x);
(b)A+

x ⊂ (−∞, x), if x ∈M ;
(c) x1 < x2 ⇒ Ax1

 Ax2
;

(d)M ∋ x1 < x2 ⇒ A+
x1
 Ax2

;
(e) |A+

x \ Ax| = |Lx| − 1, if x ∈M ;
(f) Ax ∈ P(A+

∞), for eachx ∈ (−∞,∞].
(g)A+

x ∈ P(A+
∞) and[Ax, A

+
x ]P(A+

∞) = [Ax, A
+
x ]P (A+

x ), for eachx ∈M .

Proof. Statements (c) and (d) are true sinceJ is a dense subset ofQ; (a), (b) and
(e) follow from the definitions ofAx andA+

x and the choice of the setsIy. Since
J ∩ (−∞, x) ⊂ Ax ⊂ A+

x ⊂ (−∞, x) ∩ Q, (f) and (g) follow from Claim 4.7(a).
✷

Now, forx ∈ [−∞,∞] we define chainsLx ⊂ P(A+
∞)∪{∅} in the following way.

Forx 6∈M we defineLx = {Ax}. In particular,L−∞ = {∅}.
Forx ∈M , using Claim 4.8 and Lemma 3.5 we obtain a setLx ⊂ [Ax, A

+
x ]P (A+

x )

such that〈Lx, 〉 ∼= 〈Lx, <x〉 and

Ax, A
+
x ∈ Lx ⊂ [Ax, A

+
x ]P(A+

∞), (16)

⋃

A,
⋂

B ∈ Lx and |
⋂

B \
⋃

A| ≤ 1, for each cut〈A,B〉 in Lx. (17)

ForA,B ⊂ P(A+
∞) we will write A ≺ B iff A  B, for eachA ∈ A andB ∈ B.

Claim 4.9 LetL =
⋃

x∈[−∞,∞]Lx. Then
(a) If −∞ ≤ x1 < x2 ≤ ∞, thenLx1

≺ Lx2
and

⋃

Lx1
⊂ Ax2

⊂
⋃

Lx2
.

(b) L is a chain in〈P(A+
∞) ∪ {∅},⊂〉 isomorphic toL =

∑

x∈[−∞,∞]Lx.

(c) L is a maximal chain in〈P(A+
∞) ∪ {∅},⊂〉.

Proof. (a) LetA ∈ Lx1
andB ∈ Lx2

. If x1 ∈ (−∞,∞] \M , then, by (16) and
Claim 4.8(c) we haveA = Ax1

 Ax2
⊂ B. If x1 ∈ M , then, by (16) and Claim

4.8(d),A ⊂ A+
x1
 Ax2

⊂ B. The second statement follows fromAx2
∈ Lx2

.
(b) By (a),〈[−∞,∞], <〉 ∼= 〈{Lx : x ∈ [−∞,∞]},≺〉. SinceLx

∼= Lx, for
x ∈ [−∞,∞], we have〈L, 〉 ∼=

∑

x∈[−∞,∞]〈Lx, 〉 ∼=
∑

x∈[−∞,∞]Lx = L.

(c) Suppose thatC ∈ P(A+
∞) ∪ {∅} witnesses thatL is not maximal. Clearly

L = A∪̇B andA ≺ B, whereA = {A ∈ L : A  C} andB = {B ∈ L :
C  B}. Now ∅ ∈ L−∞ and, since∞ ∈ M , by (16) we haveA+

∞ ∈ L∞. Thus
∅, A+

∞ ∈ L, which impliesA,B 6= ∅ and, hence,〈A,B〉 is a cut in〈L, 〉. By (16)
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we have{Ax : x ∈ (−∞,∞]} ⊂ L \ {∅} and, by Claim 4.8(a),
⋂

(L \ {∅}) ⊂
⋂

x∈(−∞,∞]Ax ⊂
⋂

x∈(−∞,∞](−∞, x) = ∅, which impliesA 6= {∅}. Clearly,

⋃

A ⊂ C ⊂
⋂

B. (18)

Case 1:A∩Lx0
6= ∅ andB ∩Lx0

6= ∅, for somex0 ∈ (−∞,∞]. Then|Lx0
| > 1,

x0 ∈ M and 〈A ∩ Lx0
,B ∩ Lx0

〉 is a cut inLx0
satisfying (17). By (a),A =

⋃

x<x0
Lx ∪ (A ∩ Lx0

) and, consequently,
⋃

A =
⋃

(A ∩ Lx0
) ∈ L. Similarly,

⋂

B =
⋂

(B ∩ Lx0
) ∈ L and, since|

⋂

B \
⋃

A| ≤ 1, by (18) we haveC ∈ L. A
contradiction.

Case 2:¬ Case 1. Then for eachx ∈ (−∞,∞] we haveLx ⊂ A orLx ⊂ B. Since
L = A

.
∪ B, A 6= {∅} andA,B 6= ∅, the setsA′ = {x ∈ (−∞,∞] : Lx ⊂ A}

andB′ = {x ∈ (−∞,∞] : Lx ⊂ B} are non-empty and(−∞,∞] = A′
.
∪ B′.

SinceA ≺ B, for x1 ∈ A′ andx2 ∈ B′ we haveLx1
≺ Lx2

so, by (a),x1 < x2.
Thus〈A′,B′〉 is a cut in(−∞,∞] and, consequently, there isx0 ∈ (−∞,∞] such
thatx0 = maxA′ or x0 = minB′.

Subcase 2.1:x0 = maxA′. Thenx0 < ∞ becauseB 6= ∅ andA =
⋃

x≤x0
Lx

so, by (a),
⋃

A =
⋃

x≤x0

⋃

Lx =
⋃

x<x0

⋃

Lx ∪
⋃

Lx0
=

⋃

Lx0
which, together

with (16) implies
⋃

A =

{

Ax0
if x0 6∈M,

A+
x0

if x0 ∈M.
(19)

SinceB =
⋃

x∈(x0,∞]Lx, we have
⋂

B =
⋂

x∈(x0,∞]

⋂

Lx. By (16)
⋂

Lx = Ax,
so we have

⋂

B = (
⋂

x∈(x0,∞](−∞, x) ∩ J) ∪ (
⋂

x∈(x0,∞]

⋃

y∈M∩(−∞,x)Iy) =
((−∞, x0] ∩ J) ∪

⋃

y∈M∩(−∞,x0]Iy = Ax0
∪ ({x0} ∩ J) ∪

⋃

y∈M∩{x0}Iy, so

⋂

B =















Ax0
if x0 /∈ J ∧ x0 /∈M,

Ax0
∪ {x0} if x0 ∈ J ∧ x0 /∈M,

A+
x0

if x0 /∈ J ∧ x0 ∈M,
A+

x0
∪ {x0} if x0 ∈ J ∧ x0 ∈M.

(20)

If x0 6∈ J , then, by (18), (19) and (20), we have
⋃

A =
⋂

B = C ∈ L. A
contradiction.

If x0 ∈ J andx0 6∈ M , then
⋃

A = Ax0
and

⋂

B = Ax0
∪ {x0}. So, by (18)

and sinceC 6∈ L we haveC =
⋂

B. But, by Claim 4.8(a),x0 = max
⋂

B so, by
Claim 4.7(c),C 6∈ P(A+

∞). A contradiction.
If x0 ∈ J andx0 ∈ M , then

⋃

A = A+
x0

and
⋂

B = A+
x0

∪ {x0}. Again, by
(18) and sinceC 6∈ L we haveC =

⋂

B. By Claim 4.8(b),x0 = max
⋂

B so, by
Claim 4.7(c),C 6∈ P(A+

∞). A contradiction.

Subcase 2.2:x0 = minB′. Then, by (16),Ax0
∈ Lx0

⊂ B which, by (a), im-
plies

⋂

B = Ax0
. SinceAx ∈ Lx, for x ∈ (−∞,∞] andA =

⋃

x<x0
Lx we have

⋃

A =
⋃

x<x0

⋃

Lx ⊃
⋃

x<x0
Ax =

⋃

x<x0
((−∞, x)∩J)∪

⋃

x<x0

⋃

y∈M∩(−∞,x) Iy
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= ((−∞, x0)∩J)∪
⋃

y∈M∩(−∞,x0)
Iy = Ax0

soAx0
⊂

⋃

A ⊂
⋂

B = Ax0
, which

impliesC = Ax0
∈ L. A contradiction. ✷

Case II: −∞ 6∈ M 6∋ ∞. ThenL∞ = {maxL} and the sumL + 1 belongs to
Case I. So, there are a maximal chainL in 〈P(D) ∪ {∅},⊂〉 and an isomorphism
f : 〈L + 1, <〉 → 〈L,⊂〉. ThenA = f(maxL) ∈ P(D) andL′ = f [L] ∼= L. By
the maximality ofL, L′ is a maximal chain in〈P(A) ∪ {∅},⊂〉.

Case III: −∞ ∈ M . ThenL =
∑

x∈[−∞,∞]Lx, (L1) and (L2) of Claim 4.2 hold
and

(L3′) L−∞ is a countable complete linear order with0L−∞
non-isolated.

ClearlyL = L−∞ + L+, whereL+ =
∑

x∈(−∞,∞]Lx =
∑

y∈(0,∞] Lln y (here
ln∞ = ∞). LetL′

y, y ∈ [−∞,∞], be disjoint linear orders such thatL′
y
∼= 1, for

y ∈ [−∞, 0], andL′
y
∼= Lln y, for y ∈ (0,∞]. Now

∑

y∈[−∞,∞]L
′
y
∼= [−∞, 0] +

L+ belongs to Case I or Case II and we obtain a maximal chainL in P(D) ∪ {∅}
and an isomorphismf : 〈[−∞, 0]+L+, <〉 → 〈L,⊂〉. Clearly, forA0 = f(0) and
L+ = f [L+] we haveA0 ∈ L andL+ ∼= L+.

By (L3′) and the fact that (b)⇒ (a) for countableL’s, P(A0) ∪ {∅} contains a
maximal chainL−∞

∼= L−∞. ClearlyA0 ∈ L−∞ andL−∞∪L+ ∼= L−∞+L+ =
L. Suppose thatB witnesses thatL−∞∪L+ is not a maximal chain inP(D)∪{∅}.
Then eitherA0  B, which is impossible sinceL is maximal inP(D) ∪ {∅}, or
B  A0, which is impossible sinceL−∞ is maximal inP(A0) ∪ {∅}. ✷

5 Maximal chains in P(Bn)

Theorem 5.1 Forn ∈ N and eachR-embeddable complete linear orderL with 0L
non-isolated there is a maximal chain in〈P(Bn) ∪ {∅},⊂〉 isomorphic toL.

Proof. Let the order onBn =
⋃

i<nQi =
⋃

i<n{i} ×Q be given by

〈i1, q1〉 < 〈i2, q2〉 ⇔ i1 = i2 ∧ q1 <Q q2.

Clearly, 〈Q, <Q〉 ∼=fi 〈Qi, <〉, wherefi(q) = 〈i, q〉, for all q ∈ Q and, hence,
P(Qi) = {{i} × C : C ∈ P(Q)}. If f : Bn →֒ Bn, then for eachi < n the
restrictionf |Qi is an isomorphism, thus there isji < n such thatf [Qi] ⊂ Qji and,
moreover,f [Qi] ∈ P(Qji). Clearly,i1 6= i2 impliesji1 6= ji2 and, thus, we have

P(Bn) = {
⋃

i<n{i} × Ci : ∀i < n Ci ∈ P(Q)}. (21)

Now, by Theorem 6 of [8], there is a maximal chainL in 〈P(Q) ∪ {∅},⊂〉 isomor-
phic toL. ForA ∈ L \ {∅} let

A∗ = ({0} ×A) ∪
⋃

0<i<n{i} ×Q. (22)

By (21) we haveL∗ = {A∗ : A ∈ L \ {∅}} ∪ {∅} ⊂ P(Bn) ∪ {∅} and, clearly,
〈L∗,⊂〉 is a chain in〈P(Bn) ∪ {∅},⊂〉 isomorphic to〈L,⊂〉 and, hence, toL.
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Suppose that someC =
⋃

i<n{i}×Ci ∈ P(Bn) witnesses thatL∗ is not a maximal
chain. By (21) and (22)C ⊂

⋂

A∈L\{∅}A
∗ would implyP(Q) ∋ C0 ⊂

⋂

(L\{∅}),
which is impossible (L is a maximal chain inP(Q) ∪ {∅} andC0 \ F ∈ P(Q) for
each finiteF ⊂ C0). Thus there isA ∈ L \ {∅} such thatA∗ ⊂ C and, by (22),

C = {0} × C0 ∪
⋃

0<i<n{i} ×Q. (23)

SinceL∗ ∪ {C} is a chain, for eachA ∈ L \ {∅} we haveA∗ ( C ∨ C ( A∗

which together with (22) and (23) impliesA ( C0 or C0 ( A. A contradiction to
the maximality ofL. ✷

Theorem 5.2 For eachR-embeddable complete linear orderLwith 0L non-isolated
there is a maximal chain in〈P(Bω) ∪ {∅},⊂〉 isomorphic toL.

Proof. Let x0 = ∞, let 〈xn : n ∈ N〉 be a descending sequence inR \Q without a
lower bound and letBω = 〈Q, <ω〉 =

⋃

i∈ω〈(xi+1, xi) ∩Q, <i〉 where

q1 <ω q2 ⇔ ∃i ∈ ω (q1, q2 ∈ (xi+1, xi) ∧ q1 <Q q2).

Then for the setsQi = (xi+1, xi) ∩Q, i ∈ ω, we have〈Qi, <i〉 ∼= 〈Q, <Q〉, which
impliesP(Qi, <i) ∼= P(Q, <Q). As in the proof of Theorem 5.1 we obtain

P(Bω) = {
⋃

i∈S Ci : S ∈ [ω]ω ∧ ∀i ∈ S Ci ∈ P(Qi)}. (24)

Let L be a linear order with the given properties and, first, let|L| = ω. Clearly
the familyDense(Qi) of dense subsets ofQi is a subset ofP(Qi) and by (24) we
haveP = {

⋃

i∈ω Ci : ∀i ∈ ω Ci ∈ Dense(Qi)} ⊂ P(Bω). It is easy to check
thatP is a positive family onQ so, by Theorem 2.2(b), there is a maximal chain in
〈P(Bω) ∪ {∅},⊂〉 isomorphic toL.

Now, let|L| > ω. Then, by Claim 4.2, we can assume thatL =
∑

x∈[−∞,∞]Lx,
where conditions (L1-L3) from Claim 4.2 are satisfied. We distinguish two cases.

Case 1:−∞ /∈ M . Then, by the construction from [8] (if(0, 1] is replaced by
(−∞,∞] andA+

1 byQ), there is a maximal chainL in 〈P(Q) ∪ {∅},⊂〉 such that

∀A ∈ L \ {∅} ∃x ∈ (−∞,∞] (A ⊂ (−∞, x) ∧ A is dense in(−∞, x)) (25)

andL ∼= L. Now we prove

L \ {∅} ⊂ P(Bω) ⊂ P(Q, <Q). (26)

Let A ∈ L \ {∅}, let x be the real corresponding toA in the sense of (25) and let
i0 = min{i ∈ ω : (−∞, x) ∩ (xi+1, xi) 6= ∅}. Thenxi0+1 < x ≤ xi0 and, by
(25) the setCi0 = A ∩ (xi0+1, x) is dense in(xi0+1, x) and, hence,Ci0 ∈ P(Qi0).
Similarly, Ci = A ∩ (xi+1, xi) ∈ P(Qi), for all i > i0. SinceA ⊂ Q, we have
A =

⋃

i≥i0
Ci and, by (24),A ∈ P(Bω). So the first inclusion of (26) is proved.
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Let C =
⋃

i∈S Ci ∈ P(Bω). By (24) for eachi ∈ S we haveCi
∼= Qi

∼= Q

and, hence,C ∼=
∑

ω∗ Q ∼= Q. The second inclusion of (26) is proved as well.
By (26) we haveL ⊂ P(Bω)∪{∅} ⊂ P(Q, <Q)∪{∅} and, clearly,L is a chain

in P(Bω)∪{∅}. Suppose thatL∪{C} is a chain, for someC ∈ (P(Bω)∪{∅})\L.
Then, by (26),C ∈ P(Q, <Q) andL would not be a maximal chain in the poset
〈P(Q, <Q) ∪ {∅},⊂〉. SoL is a maximal chain in〈P(Bω) ∪ {∅},⊂〉 andL ∼= L.

Case 2:−∞ ∈M . Then we proceed as in (III) of the proof of Theorem 4.1.✷

6 Maximal chains in P(Cn)

Theorem 6.1 For alln ∈ N and eachR-embeddable complete linear orderL with
0L non-isolated there is a maximal chain in〈P(Cn) ∪ {∅},⊂〉 isomorphic toL.

Proof. Let the order< onCn = Q × n be given by〈q1, i1〉 < 〈q2, i2〉 ⇔ q1 <Q
q2. Clearly, the incomparability relationa‖b ⇔ a ≮ b ∧ b ≮ a on Cn is an
equivalence relation with the equivalence classes{q}×n, q ∈ Q, of sizen and the
corresponding quotient,Cn/‖, is isomorphic to〈Q, <Q〉. Since each element of
P(Cn) has such classes we haveP(Cn) = {A × n : A ∈ P(Q, <Q)}. It is easy to
see that the mappingf : P(Q, <Q)∪{∅} → P(Cn)∪{∅}, given byf(A) = A×n,
is an isomorphism of partial orders〈P(Q, <Q) ∪ {∅},⊂〉 and〈P(Cn) ∪ {∅},⊂〉.
Hence the statement follows from Theorem 6 of [8]. ✷

Theorem 6.2 For eachR-embeddable complete linear orderLwith 0L non-isolated
there is a maximal chain in〈P(Cω) ∪ {∅},⊂〉 isomorphic toL.

Proof. Let the strict order< on Cω = Q × ω =
⋃

q∈Q{q} × ω =
⋃

q∈Q ωq

be given by〈q1, i1〉 < 〈q2, i2〉 ⇔ q1 <Q q2. For a setX ⊂ Cω let us define
suppX = {q ∈ Q : X ∩ ωq 6= ∅}. Now the incomparability classesωq are infinite
and, again, the corresponding quotient,Cω/‖, is isomorphic to the rational line
〈Q, <Q〉. Since the same holds for the copies ofCω it is easy to check that

P(Cω) = {
⋃

q∈A{q} × Cq : A ∈ P(Q, <Q) ∧ ∀q ∈ A Cq ∈ [ω]ω}. (27)

X ⊂ Cω ∧ there ismax suppX ⇒ X /∈ P(Cω). (28)

By (27),P = {
⋃

q∈Q{q} × Cq : ∀q ∈ Q Cq ∈ [ω]ω} ⊂ P(Cω) and, clearly,P is a
positive family so for a countableL the statement follows from Theorem 2.2(b).

Now, letL be an uncountable linear order. Then, by Claim 4.2, we can assume
thatL =

∑

x∈[−∞,∞]Lx, where conditions (L1-L3) from Claim 4.2 are satisfied.

Case I:−∞ 6∈ M ∋ ∞. LetQ =
⋃

y∈M Jy be a partition ofQ into |M | disjoint

dense sets and, fory ∈ M , let Iy ∈ [Jy ∩ (−∞, y)]|Ly |−1. Let (−∞, x)Q =
(−∞, x) ∩Q andω+ = ω \ {0}. Let us defineA−∞ = ∅ and, for x ∈ (−∞,∞],

Ax = ((−∞, x)Q × ω+) ∪
⋃

y∈M∩(−∞,x) Iy × {0},
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A+
x = Ax ∪ (Ix × {0}), for x ∈M.

By (27),A+
∞

∼= Cω and we will construct a maximal chainL ∼= L in the poset
〈P(A+

∞)∪ {∅},⊂〉. By (27), for eachx ∈ (−∞,∞] and each setA ⊂ Cω we have

(−∞, x)Q × ω+ ⊂ A ⊂ (−∞, x)Q × ω ⇒ A ∈ P(Cω). (29)

Claim 6.3 The setsAx, x ∈ [−∞,∞] andA+
x , x ∈ M are subsets of the setA+

∞.
In addition, for eachx, x1, x2 ∈ [−∞,∞] we have

(a)Ax ⊂ (−∞, x)Q × ω;
(b)A+

x ⊂ (−∞, x)Q × ω, if x ∈M ;
(c) x1 < x2 ⇒ Ax1

 Ax2
;

(d)M ∋ x1 < x2 ⇒ A+
x1
 Ax2

;
(e) |A+

x \Ax| = |Lx| − 1, if x ∈M ;
(f) Ax ∈ P(A+

∞), for eachx ∈ (−∞,∞].
(g)A+

x ∈ P(A+
∞) and[Ax, A

+
x ]P(A+

∞) = [Ax, A
+
x ]P (A+

x ), for eachx ∈M .

Proof. Statements (c) and (d) are true sinceQ is a dense subset ofR; (a), (b) and
(e) follow from the definitions ofAx andA+

x and the choice of the setsIy. Since
(−∞, x)Q × ω+ ⊂ Ax ⊂ A+

x ⊂ (−∞, x)Q × ω, (f) and (g) follow from (29). ✷

Now, forx ∈ [−∞,∞] we define chainsLx ⊂ P(A+
∞)∪{∅} in the following way.

Forx 6∈M we defineLx = {Ax}. In particular,L−∞ = {∅}.
For x ∈ M , by Claim 6.3 and Lemma 3.5 there is a setLx ⊂ [Ax, A

+
x ]P (A+

x )

such that〈Lx, 〉 ∼= 〈Lx, <x〉 and

Ax, A
+
x ∈ Lx ⊂ [Ax, A

+
x ]P(A+

∞), (30)

⋃

A,
⋂

B ∈ Lx and |
⋂

B \
⋃

A| ≤ 1, for each cut〈A,B〉 in Lx. (31)

ForA,B ⊂ P(A+
∞) we will write A ≺ B iff A  B, for eachA ∈ A andB ∈ B.

Claim 6.4 LetL =
⋃

x∈[−∞,∞]Lx. Then
(a) If −∞ ≤ x1 < x2 ≤ ∞, thenLx1

≺ Lx2
and

⋃

Lx1
⊂ Ax2

⊂
⋃

Lx2
.

(b) L is a chain in〈P(A+
∞) ∪ {∅},⊂〉 isomorphic toL =

∑

x∈[−∞,∞]Lx.

(c) L is a maximal chain in〈P(A+
∞) ∪ {∅},⊂〉.

Proof. The proof of (a) and (b) is a copy of the proof of (a) and (b) of Claim 4.9, if
we replace (16) and Claim 4.8 by (30) and Claim 6.3.

(c) Suppose thatC ∈ P(A+
∞) ∪ {∅} witnesses thatL is not maximal. Using

(30) and Claim 6.3, as in the proof of Claim 4.9(c) forA = {A ∈ L : A  C} and
B = {B ∈ L : C  B} we show that〈A,B〉 is a cut in〈L, 〉, A 6= {∅} and

⋃

A ⊂ C ⊂
⋂

B. (32)
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Case 1:A ∩ Lx0
6= ∅ andB ∩ Lx0

6= ∅, for somex0 ∈ (−∞,∞]. Then we obtain
a contradiction exactly like in Claim 4.9.

Case 2:¬ Case 1. Then like in Claim 4.9 forA′ = {x ∈ (−∞,∞] : Lx ⊂ A} and
B′ = {x ∈ (−∞,∞] : Lx ⊂ B} we show that〈A′,B′〉 is a cut in(−∞,∞]. Thus,
there isx0 ∈ (−∞,∞] such thatx0 = maxA′ or x0 = minB′.

Subcase 2.1:x0 = maxA′. Then like in Claim 4.9 we prove

⋃

A =

{

Ax0
if x0 6∈M,

A+
x0

if x0 ∈M.
(33)

SinceB =
⋃

x∈(x0,∞]Lx, we have
⋂

B =
⋂

x∈(x0,∞]

⋂

Lx. By (30)
⋂

Lx = Ax,
so

⋂

B = (
⋂

x∈(x0,∞](−∞, x)Q × ω+) ∪ (
⋂

x∈(x0,∞]

⋃

y∈M∩(−∞,x)Iy × {0}) =
((−∞, x0]Q × ω+) ∪

⋃

y∈M∩(−∞,x0]Iy × {0} = Ax0
∪ (({x0} ∩ Q) × ω+) ∪

⋃

y∈M∩{x0}Iy × {0}, so

⋂

B =















Ax0
if x0 /∈ Q ∧ x0 /∈M,

Ax0
∪ ({x0} × ω+) if x0 ∈ Q ∧ x0 /∈M,

A+
x0

if x0 /∈ Q ∧ x0 ∈M,
A+

x0
∪ ({x0} × ω+) if x0 ∈ Q ∧ x0 ∈M.

(34)

If x0 6∈ Q, then, by (32-34), we have
⋃

A =
⋂

B = C ∈ L. A contradiction.
If x0 ∈ Q andx0 6∈ M , then

⋃

A = Ax0
and

⋂

B = Ax0
∪ ({x0} × ω+). So,

by (32) and sinceC 6∈ L we haveC = Ax0
∪ S, where∅ 6= S ⊂ {x0} × ω+. By

Claim 6.3(a),x0 = max suppC so, by (28),C 6∈ P(A+
∞). A contradiction.

If x0 ∈ Q andx0 ∈ M , then
⋃

A = A+
x0

and
⋂

B = A+
x0

∪ ({x0} × ω+).
Again, by (32) and sinceC 6∈ L we haveC = Ax0

∪S, where∅ 6= S ⊂ {x0}×ω
+.

By Claim 6.3(b),x0 = max suppC so, by (28),C 6∈ P(A+
∞). A contradiction.

Subcase 2.2:x0 = minB′. Then, by (30),Ax0
∈ Lx0

⊂ B which, by (a), implies
⋂

B = Ax0
. SinceAx ∈ Lx, for all x ∈ (−∞,∞] andA =

⋃

x<x0
Lx we have

⋃

A ⊃
⋃

x<x0
Ax =

⋃

x<x0
((−∞, x)Q×ω

+)∪
⋃

x<x0

⋃

y∈M∩(−∞,x) Iy ×{0} =

((−∞, x0)Q×ω
+)∪

⋃

y∈M∩(−∞,x0)
Iy×{0} = Ax0

soAx0
⊂

⋃

A ⊂
⋂

B = Ax0
,

which impliesC = Ax0
∈ L. A contradiction. ✷

Case II: −∞ 6∈M 6∋ ∞ or−∞ ∈M . Then we proceed like in Claim 4.9. ✷
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[5] S. Koppelberg, Maximal chains in interval algebras, Algebra Univers. 27,1 (1990) 32-43.

[6] K. Kuratowski, Sur la notion de l’ordre dans la théorie des ensembles, Fund. Math. 2 (1921)
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