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MAXIMAL CHAINS OF ISOMORPHIC SUBORDERS OF
COUNTABLE ULTRAHOMOGENEOUS PARTIAL ORDERS

Milo§ S. Kurili & and Boriga Kuzeljevid

Abstract

We investigate the posé@®(X)u{0}, C), whereP(X) is the set of isomorphic
suborders of a countable ultrahomogeneous partial étdétor X different
from (resp. equal to) a countable antichain the order typesaaimal chains

in (P(X) U {0}, C) are characterized as the order types of compact (resp.
compact and nowhere dense) sets of reals having the miniroursolated.
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1 Introduction

The general concept - to explore the relationship betweermpthperties of a re-
lational structureX and the properties of the posB{X) of its isomorphic sub-
structures - can be developed in several ways. For exanggarding the forcing
theoretic aspect, the poset of copies of each countablescattered linear order
is forcing equivalent to the two-step iteration of the Saftksing and as-closed
forcing [9], while the posets of copies of countable scatielinear orders have
o-closed forcing equivalents (separative quotients) [10].

Regarding the order-theoretic aspect, one of extensiveigstigated order in-
variants of a poset is the class of order types of its maxirhalns [2,/5] 6] 11]
and, for the poset of isomorphic suborders of the ratioma, Q, <g), this class
is characterized ir_[8]. The main result of the present paptre following gener-
alization of that result.

Theorem 1.1 If X is a countable ultrahomogeneous partial order differeminfr
a countable antichain, then for each linear ordethe following conditions are
equivalent:

(a) L is isomorphic to a maximal chain in the posBtX) U {0}, C);

(b) L is anR-embeddable complete linear order with non-isolated;

(c) L is isomorphic to a compact sat C R such thabx € K.
If X is a countable antichain, then the corresponding chaizatien is obtained
if we replace “complete” by “Boolean” in (b) and “compact” Bgompact and
nowhere dense” in (c).
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So, for example, there are maximal chains of copies of theéa@rposet isomorphic
to (0, 1], to the Cantor set without 0, and &3, for each countable limit ordinal.
Although it is not a usual practice, we start with a proof ie thtroduction. The
equivalence of (b) and (c) is a known fact (see, for exampleofem 6 of[[3])
and the implication (a}- (b) follows from the general result on ultrahomogeneous
structures given in Theorem 2.2 of the present paper. Thlg,tbe implication

(b) = (a) remains to be proved. Naturally, we will use the follogyimvell known
classification of countable ultrahomogeneous partialrgrdéhe Schmerl list [13]:

Theorem 1.2 (Schmerl) A countable strict partial order is ultrahomogeneous iff it
is isomorphic to one of the following partial orders:
A, a countable antichain (that is, the empty relationugn
B, =nxQ,forl <n <w,where(ii,q1) < (is,q2) < i1 =12 A @1 <Q ¢2;
Cp=nxQ,forl <n <w,where(i;,q1) < (i2,q2) < @1 <0 ¢2;
D, the unique countable homogeneous universal poset (themaposet).

For the antichaim\,, the implication (b)=- (a) follows from Theoreri 114 and the
fact thatP(A,,) = [w]* is a positive family. The most difficult part of the proof of
(b) = (a) - for the random poséd - is given in Sectioml4. In Sections 5 and 6,
using the constructions froml[8], we prove () (a) for the poset®,, andC,,.

The rest of this section contains two facts which will be uisetthe sequel. We
remind the reader that a linear ordér, <) is calledBooleaniff it is completghas
0,1 and has no gaps) amés dense jumpsvhich means that for eachy € L
satisfyingz < y there arer,b € L such thatt < a < b < yand(a,b);, = 0.

Fact 1.3 Each countable complete linear order is Boolean.

We recall that a familyP? C P(w) is called apositive familyiff:
(P10 ¢ P;
P2YP>ACBCw= BeP,
(PAePA|F|<w= A\F € P;
(PA)IA P |w\A| = w.

Theorem 1.4 ([7]) If P C P(w) is a positive family, then for each linear order
the following conditions are equivalent:

(@) L is isomorphic to a maximal chain in the pos&tu {0}, C);

(b) L is anR-embeddable Boolean linear order with non-isolated;

(c) L is isomorphic to a compact nowhere densefet R such that - € K'.
In addition, (b) implies that there is a maximal chainn (P U {0}, C) satisfying
N(L£\ {0}) = 0 and isomorphic td..



Maximal chains of isomorphic suborders of countable utirahgeneous. . 3

2 Copies of countable ultrahomogeneous structures

Let L = {R; : ¢ € I} be arelational language, wherd &) = n;, i € I. An
L-structureX = (X, {p; : i € I}) is calledcountableiff | X| = w. If A C X, then
(A, {(pi)a : © € I}) (shortly denoted by A, {p; : i € I}), whenever this abuse
of notation does not produce a confusion) isudbstructureof X, where(p;)a4 =
piNA", i € I. fY = (Y,{o; : i € I}) is an L-structure too, a mapping
f: X — Y is anembeddingwe writeX —  Y) iff it is an injection and

Viel Y(xi,...xn,) € X" ((x1,...,2n,) € pi & (f(z1),..., f(xn,)) € 04).

If X embeds inY we writeX — Y. Let Emb(X,Y) = {f : X —; Y} and
Emb(X) = {f : X — X}. If, in addition, f is a surjection, it is amsomorphism
(we writeX = Y) and the structureX andY areisomorphig in notationX = Y.

A finite isomorphisnof X is each isomorphism between finite substructures of
X. A structureX is ultrahomogeneoudf each finite isomorphism oiX can be
extended to an automorphism ¥f Theageof X, AgeX, is the class of all finite
L-structures embeddable ¥. We will use the following well known facts from
the Fraissé theory.

Theorem 2.1 (Frdss) Let L be an at most countable relational language. Then
(a) A countableL-structureX is ultrahomogeneous iff for each finite isomor-
phism ¢ of X and eache € X \ dom ¢ there is a finite isomorphisnp of X
extendingy to x (seel[3] p. 389 o1 [4] p. 326).
(b) If X andY are countable ultrahomogeneoiisstructures andige X =
AgeY, thenX = Y (seel3] p. 333 o1 [4] p. 326).

Concerning the order types of maximal chains in the posetsedform(P(X), C),
whereX = (X, {p; : i € I}) is a relational structure ané(X) the set of the
domains of its isomorphic substructures, that is

P(X) ={AC X : (A {(p)a:i€l}) =X} ={f[X]: f € Emb(X)}
we have the following general statement.

Theorem 2.2 LetX be a countable ultrahomogeneous structure of an at most-coun
able relational language aftiX) # {X}. If £ is a maximal chain in the poset
(P(X) U {0}, C), then

(a) £ is anR-embeddable complete linear order with(= ()) non-isolated;

(b) If there is a positive family? C P(X), then for each countable linear order
L satisfying (a), there is a maximal chain{B(X) U {0}, C) isomorphic toL.

Proof. (a) First we prove that

JA € P(X), for each chain4 in the posetP(X), C). 1)
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Let ¢ be a finite isomorphism df) A andz € |J.A. SinceA is a chain there is
A € Asuchthatlom pUran pU{z} C A. SinceA = X, by Theorem 2/1(a) there
isy € Asuchthat) = ¢U{(z,y)} is anisomorphism s¢ is a finite isomorphism
of | JA. Thus, by Theorerh 2.1(a), the structlreA is ultrahomogeneous. Since
X2 ACUAC X wehaveAgeX = Age A C AgelJA C AgeX, which, by
Theoren 2.11(b), implieg) A = X, that is| A € P(X).

Let X = {z, : n € w} be an enumeration. SingeC [X]* U {0}, the function
f: L — Rdefined byf(A) = >, .,27" - xa(zn) Wherex : X — {0,1} isthe
characteristic function of the sét C X) is an embedding ofZ, C) into (R, <g).

Clearly,min £ = ) andmax £ = X. Let (A4, B) be acutinl. If A = {0} then
max A = (. If A # {0}, by (I) we havd J A € P(X) and, sinced c |JA C B,
for eachA € A and B € B, the maximality ofC implies|JA € L. So, if
UA € Athenmax.A = [J.A. Otherwise JA € B andminB = |JA. Thus
(L, C) is complete.

Suppose that! is the successor df in £. SinceP(X) # {X} there isB ¢
P(X)\ {X} and, if f : X — A, then f[B] € P(X), f[B] & A and, hence,
L U {f[B]} is a chain inP(X). A contradiction to the maximality of.

(b) By Fac{1.B,L is a Boolean order and, by Theoréml1.4, in the pd&et
{0}, C) there is a maximal chaifl isomorphic toL and such thaf)(£\ {0}) = 0.
Now, £ is a chain in(P(X) U {0}, C) and we check its maximality. Suppose that
L U {A} is a chain, whered € P(X)\ £. ThenA ¢ SorS ¢ A, for each
S e £\ {0} and, since\(L \ {0}) = 0, there isS € £\ {0} such thatS C A,
which implies4 € P. But £ \ {0} is a maximal chain irP. A contradiction. O

Remark 2.3 Concerning the assumptio®(X) # {X} we note that there are
countable ultrahomogeneous structures satisfifX)) = { X} (seel3], p. 399).

For1l < n < w the setP(C,,) does not contain a positive family, since (P3) is
not satisfied. Namely, ifl € P(C,) andz € A, thenA \ {z} is not a copy ofC,,
(one class of incompatible elements is of size 1).

For somew-saturatedw-homogeneous-universal relational structures the im-
plication (b)=- (a) of Theorem_1]1 is not true. L€t be the language with one
binary relational symbagb and7 the L-theory of empty relationsvz, y — x p y).
ThenX = (w, ) is thew-saturated model of . But P(X) = [w]“ is a positive
family and, by Theorer 114, maximal chaingfitiX) U {()} are Boolean. Thus, for
example P(X) U {0} does not contain a maximal chain isomorphi¢ol |g.

3 Copies of the countable random poset

LetP = (P, <) be a partial order. B¢'(P) we denote the set of all triplé., G, U)
of pairwise disjoint finite subsets @ such that:

(CHVieLVge G l<y,

CYueUVlie L ~u<land

CAVu e UVg e G —g < u.



Maximal chains of isomorphic suborders of countable utirahgeneous. . 5

For(L,G,U) € C(P), let P;, ¢ uy be the setofalp € P\ (LUGUU) satisfying:
(SH)Vie Lp>1,
(S2)Vg € Gp < gand
(S3)Vu € U p||lu (wherep||q denotes thap # g A —p < g A =g < p).

Fact 3.1 LetP = (P, <) be a partial order and # A C P. Then
@C(A,<)={(L,G,U) e C(P): L,G,U C A};
(b) A(L,G,U} = P(L,G,U) N A, foreach(L,G,U) € C(A, <).
(© <@, (Z), ®> S C(P) andP@,&@ = P.

Proof. For pairwise disjoint seté, G, U C Awe have:LxG C <iff LxG C <4
and(Ux L)U(GxU))Nn<=0iff ((UxL)U(GxU))N<4=0. O

Fact 3.2 A countable strict partial orddd = (D, <) is a countable random poset
iff Dir.quy # 0, foreach(L, G,U) € C(D) (seel[1]).

Lemma 3.3 LetD = (D, <) be a countable random poset. Then
(@) D¢,y € P(D) and, hencelDy, ¢y | = w, for each(L, G, U) € C(D);
(b) D\ F € P(D), for each finiteF" C D;
(c) If D = AU B, then eitherA or B contains an element @f(D);
(d) If £ c P(D) is a chain, thefy ) £ € P(D);
(e)IfC c DandA ¢ C foreachA € P(D), thenD \ C € P(D).

Proof. (a) Let(L,G,U) € C(D). ThenL, G andU are disjoint subsets dp,
VieL VgeGVYueU (ugdl<g<u), 2

andD<L,G7U> N (L UuGuU U) = (. Let (Ll,Gl, U1> € C(D(L,G,U>)- Then L,
G1 andU; are disjoint subsets db,, 11y and, by Fadt 313(L;, G, Uy) € C(D)
which implies

Vi € Ly Vgl e G1 Yur e h (u1 % I < g1 % ul). (3)
SinceL; UGy UU; C Dy, gy, by (S1)-(S3) we have
Ve e LiUGLUU; VIEL Yge G YueU (I<zx<ghzLulu£x) (4

First we show thatL U L,,G U G1,U UU;) € C(D). (C1) Letl’ € LU L, and
g € GUG,. Then!’ < ¢ follows from: (2), ifl’ € Landg’ € G; @), if ' € L
andg’ € G1; @), ifl’ € Landg’ =2z € Gyorl’ =x € L andg € G. (C2)
Let!’ € LU Ly, andu’ € U U U;. Thenu' £ I’ follows from: (2), if’ € L and
weU;,@),ifl' e Lyandu € Uy; @), ifl' € L andu' = x € U; (sincel’ < u/)
orl’=x € Ly andu’ € U. In the same way we prove (C3).

Sothereis € D(1ur, qua,,vuuy)s Whichimpliesz € Dy, ¢oyN D1, .ay 0y
= (D(,a,0))(0,,61,0y) (Fac3). ThusD ;, ¢ 1y is a random poset and, hence a
copy ofD.
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(b) Let(L,G,U) € C(D \ F). By Fac3.1 we havéL,G,U) € C(D) and,
by (a),@ ;é (D \ F) N D(L,G,U) = (D \ F)(L,G,U>' ThusD \ Fisa copy ofD.

(c) Suppose thaP(A) N P(D) = (. ThenA ¢ P(D) and, hence, there is
(L,G,U) € C(A) suchthatd(; ¢ vy = Dir.auy N A = 0. By Fac3.1 we have
(L,G,U) € C(D) and, by (a)P(D) > D(L,G,U) C B.

(d) Seel(1) in the proof of Theordm P.2.

(e) Let(L,G,U) € C(D \ C). Then, by Fadt 3]I{L, G,U) € C(D) and, by
(@), Di1.c,vy € P(D). By the assumption we hav;, ¢y N (D \ C) # () and,
by Fac{3.1(D \ )1 vy # 0 andD \ C is a random poset. O

Lemma 3.4 LetD = (D, <) be a countable random posét,c [D]* andA ¢ C
for eachA € P(D) (for exampleC' can be an infinite antichain). Then
@P={BcD:D\Cc*B}cCPD);
(b) P is a positive family onD.

Proof. (a) Suppose that C D \ B, for someA € P(D). SinceD \ C C* B we
haveD \ B c* C and, henced c* C, thatis|A \ C| < w. By Lemma3.8(b),
ANC = A\ (A\C) € P(D), which is not true. S® \ B does not contain copies
of D and, by Lemm&3]3(e)}3 € P(D).

(b) Conditions (P1) and (P2) are evident.If\ C C* B and|F| < w, then,
clearly, D\ C c* B\ F and (P3) is true. Since the sbt\ C is co-infinite (P4) is
true as well. O

Lemma3.5Let A C B C w and let be a complete linear ordering, such that
|B\ A| = |L| — 1. Then there is a chaifi in [A, B] p(p) satisfyingA, B € L= L
and such that) A, B € Land| B\ Al <1, foreach cutA,B)in L.

Proof. If |B\ A is afinite set, say3 = AU {a1,...a,}, then|L| = n + 1 and
L={A,AU{a1},AU{a1,az},..., B} is achain with the desired properties.
If |B\ A| = w, thenL is a countable and, hend®;embeddable complete linear
order. It is known that an infinite linear order is isomorptica maximal chain in
P(w) iff itis R-embeddable and Boolean (see, for example, [7]). By[Fatt is4
a Boolean order and, thus, there is a maximal clfaim P(B \ A) isomorphic to
L. LetL={AUC :C € Ly}. Sincel), B\ A € L1 we haveA, B € £ and the
function f : £; — £, defined byf(C') = AU C, witnesses thatl,, &) = (£, &)
so L is isomorphic toL. For each cut.A, B) in £, we havel J.A C () B and, by
the maximality ofCq, | J A, B € £; and| B\ JA| < 1. Clearly, the same is
true for each cut irC. O

4 Maximal chains of copies of the random poset

Theorem 4.1 For eachR-embeddable complete linear ordewith 0z, non-isolated
there is a maximal chain itP(D) U {0}, C) isomorphic toL.
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Proof. By Lemmal3.4 and Theorem 2.2 it remains to prove the statefoenin-
countablel’s. So letL be an uncountable linear order with the given properties.

Claim4.2 L =% .1 . o) La Where
(L1) L., z € [—o0, 0], are at most countable complete linear orders,
(L2) The setM = {z € [—o0, 0] : |L,| > 1} is at most countable,
(L3) |L_oo| =10r0g__, is non-isolated.

Proof. L =} . ; L;, whereL; are the equivalence classes corresponding to the
condensation relatior on L given by: z ~ y < |[min{z,y}, max{z,y}]| < w

(see [[12]). Sincel is complete andR-embeddabld is too and, since the cofi-
nalities and coinitialities of_;'s are countable/ is a dense linear order; J0=

[0,1] = [—o0,0]. HenceL;'s are complete and, sinaein L; ~ max L;, count-
able. If|L;| > 1, L; has a jump (Fa¢t 1l.3) sé, — R gives|M| < w. O

Case |: —oo € M > oo. First we take the rational lingQ, <g) and construct a set
<1 € Q2 such thatQ, <1) is a random poset with additional, convenient properties.
LetP be the set of pairp = (P, <I,,) satisfying

(i) B, € [Q]=,

(i) <,C P, x P, is a strict partial order o,

(i) <g extends<,, thatisVq:,q2 € P, (g1 <p g2 = q1 <q ¢2),
and let the relatior< on P be defined by:

p<q& P,DP,AN<N(P; xFPy)=<,. (5)

Claim 4.3 (P, <) is a partial order.

Proof. The reflexivity of < is obvious. Ifp < ¢ < p, thenP, = P, and, hence,

<p =<pN (P, x Py) =<,N (P, x P;) =<, sop = g and< is antisymmetric.
If p < ¢ < r, thenP, > P, D P, and, consequentlyl, N (P, x P.) =

< N(Py x Py)N (P, x Pr) =<4N (P x P,) = <,. Thusp < r. O

Claim 4.4 The setD, = {p € P: q € Py}, ¢ € Q, are dense ifP.

Proof. If p € P\ Dy, thatisq ¢ P,, then<, is an irreflexive and transitive
relation on the seP, and on the seP, U {¢} as well. Also<, C<g thusp; =
(P,U{q},<p) € P. Thusp; € D, and, clearlyp; < p. O

LetQ =JU UyeM J, be a partition ofQ into | M| + 1 dense subsets @. For
(L,G,U) & ([Q]<)*\ {(0,0,0)}, letmyy, ) = max(g< ) (LUGUU).
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Claim 4.5 For each(L,G,U) € ([Q]<¥)3\ {(0,0,0)} and eachn € N the set
D 1,G,uy,m is dense i, where

Diguym = {PEP:LUGUUCR, A ((LGU)&C)
VA(G#DNpraoyNJ #0)
V (G=0Apurcu Nmpery,meoy + =) NJ # @)) }

Proof. Letp’ € P\ D1, ¢ v),m- By Claim[4.4 there ip < P such thap < p’ and
LUGUPC P, If(L,G,U) ¢ C(p) thenp € D1, ¢ 1), and we are done. If

(L,G,U) € C(p), (6)

then we continue the proof distinguishing the following teases.

Case 1: G # 0. Let us definemaxg .,y = —oo. By (6) and (C1) for
p, if L # 0, thenmax g,y L <, mingg,«,) G and, by (i), maxg ) L <q
min g <,y G. Now, sinceJ is a dense set i{{Q, <g) we choose

qeE (HlaX<Q’<Q> L, miH<Q7<Q> G) nJ \ Pp (7)
and defingr, = (P, U{q}, <,,) where
Iy = <pU{(z,q): A €L o<1} U{{q,y) : Fg€ G g<py}.  (8)

First we prove thap; € P. Clearly,p; satisfies condition (i).

(i) Since <, is an irreflexive relation and, by1(73, ¢ P,, by (8) the relation
<p, isirreflexive as well.

Suppose thatd,, is not asymmetric. Then, since, is asymmetric, there is
t € P, such that(t, q), (q,t) € <, and by [8),g <, t <, [, for somel € L and
g € G which, by the transitivity of<,, impliesg <,, I. But, by [6) and (C1) we
havel <, g. A contradiction.

Let (a,b), (b,c) € <,,. Then, since the relatior,, is irreflexive and asym-
metric, we haven # b # ¢ # a. If ¢ &€ {a,b,c}, then(a,c) € <,, by the
transitivity of <i,,. Otherwise we have three possibilities:

a = q. Then(b,c) € <, and there igy € G such thaty <, b. Henceg <, c
which, by [8), implies(q, ¢) € <,,,, thatis(a,c) € <,,.

b = q. Then there aré € L andg € G such thaia <, I andg <, c. By (C1)
we havel <1, g and, by the transitivity ok, a <, ¢ and, hence(a, c) € <, .

¢ = ¢q. Then(a,b) € <, and there id € L such thatr <,, I. Hencea <, [
which, by [8), implies(a, ¢) € <,,,, thatis(a,c) € <1p,.

(i) Sincep € P, we havex,, C<g. If (z,q) € <,, andl € L, wherex <, [,
then, since<,, satisfies (iii), we have: <g {. By (7) we havel <g ¢ and, thus,
x <@ ¢. In a similar way we show thdy, y) € <, impliesq <q .

Thusp, € P, P,, D P, D LUGUU and, by [(8),<,, N (P, x Py) = <,
which implies thatp; < p (< p’). Sop is a suborder op; and, by [(6) and Fact
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B1,(L,G,U) € C(p1). SinceG # () andq € J, for a proof thaip; € Dz, ¢ v),m

it remains to be shown thate (p1).¢.0y. BY B) 1 <p, ¢ <, g, for eachl €L

andg € G, so (S1) and (S2) are true. F@re U, (u,q) € <p, would givel € L

satisfyingu <, ! and, sincell N L = (), v <, [, which is impossible by[{6) and

(C2). Similarly, (g, u) € <, is not possible and, thug,||,, © and (S3) is satisfied.
Case 2:G = (). Again, sinceJ is a dense set in the linear ordg, <q) we

choose

¢ € Moy e +m) NI\ P )
and defingy; = (P, U{q}, <;,), where

Ly = <pU{{z,q) : T e L z],1}. (10)

First we prove thap; € P. Clearly,p; satisfies condition (i).

(ii) By (B) we haveq ¢ P, so, by [10) the relatiora,,, is irreflexive.

Let (a,b),(b,c) € <p,. If ¢ &€ {a,b,c}, then(a,c) € <, by (10) and the
transitivity of <,,. Otherwise, by[(10) agaim, b # ¢ and, thus¢ = ¢. Hence there
is! € L such thab <, I. Sincea, b # ¢, by (10) we have: <1, b and, hence <1, [,
which implies(a, ¢) € <, thatis(a,c) € <,,.

(iii) Since p € P, we have<,, C<q. If (z,q) € <, andl € L, wherex <, [,
then, sinceq,, satisfies (iii), we have: <q [. By () we have <q m ¢y <q ¢
and, thusg <q ¢.

Thusp; € P. Asin Case 1 we show thdtUGUU C P,,,p1 <p (< p') and
(L,G,U) € C(p1). By (@) and since& = (), for a proof thatp; € D1, ¢ 17y,m it
remains to be shown thate (p1)z ¢.vy- (S2) is trivial and, byl[(10), fof € L we
have(l, ¢) € <, thus (S1) holds as weII Suppose thag ||,, u, for someu € U.
Then, by [(9) and(10)u, q) € <,, and, hence, there Ise L satisfyingu <, [,
which is impossible by {6) and (C2) fer So (S3) is true. O

By the Rasiowa Sikorski theorem there is a fillem (P, <) intersecting the sets
Dy, q € Q, andDyy, ¢.).m» (L, G, U) € ([Q]<¥)%, m € N.

Claim 4.6 () U,eg I = Q;
(b) <= U,eg <p is astrict partial order of;
() <N (P, x Py) = <, foreachp € G;
(d) <@ extends<, that isVq1, g2 € Q (¢1 < g2 = @1 <q ¢2)-

Proof. (a) Forg € Qletpy € GND,. Theng € P,, C Upeg P,.

(b) The relation« is irreflexive since all the relations,, are irreflexive.

Let(a,b), (b,c) € <, (a,b) € <, and(b, ¢) € <,,,, wherep;,ps € G. Sinceg
is a filter there i € G such thap < p1, p2, which by [5) implies<,,,, <, C <.
Thus(a, b), (b, c) € <, and, by the transitivity ok, (a,c) € <, C <.

(c) The inclusion " follows from (ii) and the definition of<. If (a,b) €

N (P, x Bp,), then there i, € G such that(a,b) € <, and, sincej is a filter,

there isps € G such thatp, < p,p;. By (B8) we have<,, C <,,, which implies
(a,b) € <, and, by [(5) again(a,b) € <ip, N (P, x P,) = <p.
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(d) If (g1, 92) € <andp € G where(qi, g2) € <, then by (iii),¢1 <g ¢2. O

Claim 4.7 (a) (A, <) is a random poset, for each e (—oo, oo] and each setl
satisfying
(—o0,z)NJ CAC (—00,2)NQ (11)

(b) If J € A C Qthen(A, <) (in particular,(Q, <)) is a random poset.
(c) If € C Q andmax g, ) C exists, thenC, <) is not a random poset.

Proof. (a) By Claim[4.6(b),(A, <) is a strict partial order. LetL,G,U) €
C(A,<). Then

LUGUUCA N LNG=GNU=UNA=10, (12)

VieLVgeG VYueU ((lg)e<a A (u,l) &< A (g,u) € <). (13)

We show that A, <)z, .oy # 0. For(L,G,U) # (0,0,0) we have two cases.
Case 1.:G # 0. Letp € GNDr g.vy,1- Then

LUGUU C P, (14)

First we show thatL, G,U) € C(p). Letl € L, g € G andu € U. By (13), (14)
and Clain’4.6(c) we havé, g) € <1, and (C1) is true. Sincel, C < by (13) we
have(u,l) ¢ <1, and(g, u) ¢ <1, and (C2) and (C3) are true as well.

Sincep € Dy, .q,u),1 thereisg € pir, ¢ pyNJ. We prove thag € (A, <)z ¢.v)-
Forag € G we haveq <, g and, by (iii), ¢ <g ¢. By (11) and [(IR) we have
g€ G CAC (—o0,z)and, hencg <g g <gr z, thusq € (—oo,z)NJ C A.
Letl € L,g € Gandu € U. Sinceq € p(, q,u) We havel <, ¢ <, gand<, C <
implies! <t ¢ <t g. Thus (S1) and (S2) are true. Suppose that || 4 ) u. Since
q ¢ U we haveq # u and, henceg <t u or u < ¢. But then, sinces,q € P,,
by Claim[4.6(c) we would have <, v or u <1, ¢, which is impossible because
q € p(r,a,u)- S0 (S3) is true as well.

Case 2:G = (. By (IT) and[(IR) we havé U G U U C (—o0,z), which
impliesm;, ¢ ¢y < = and, hence, there is € N such that

"Y(L.G,U) + % <. (15)

Letp € G N Dy guym- Then [14) holds again and exactly like in Case 1 we
show that(L, G,U) € C(p). Thus, since € Dy, ¢,u),m there isq € pir .oy N
(m<L7G’U>,m<L7G’U> + %) nJ and, by KI!S),(] eJn (—OO,QZ') ThUS, by m),
q € A and exactly like in Case 1 we prove that (A, <) ¢ ) -

(b) Follows from (a) forx = co.

(c) Suppose thathax g ) C = ¢ and that(C, <) is a random poset. Then
Cuqr 00 # 0 and, by (S1), there ig; € C such thaty < ¢;, which, by Claim
[4.6(d) impliesg <@ ¢1. A contradiction with the maximality of. O

Fory € M let us takel, € [J, N (—oo,y)]*¥/= and defined_,, = ¢ and

Ay = (J N (_0073:)) U UyGMﬂ(—oo,x)Izp forz € (_007 OO];
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AF=A,Ul,, forze M.

SinceJ C Al c Q, by Claim[4.7(b)(AZ,, <) is a random poset and we construct
a maximal chairC in (P(A%, <), C), such that = L.

Claim 4.8 The sets4,, = € [—oo,00] and A}, x € M are subsets of the sdf’_
and ofQ. In addition, for eachr, z1,z9 € [—00, co] we have

(@A, C (—o0,x);

(b) Af C (—o0,2),if x € M;

(C)z1 <x2 = Axl & Axg;

(d)M 2T < Ty = Ajc_l & Am;

(e)|AF\ Ayl = |Ls| — 1,if 2 € M;

(f) A, € P(AL), for eachr € (—o0, ).

(9) AT € P(AL) and[Aq, AT]p 41 ) = [Az, AT] p( 4+, for eache € M.

Proof. Statements (c) and (d) are true sintés a dense subset ¢f; (a), (b) and
(e) follow from the definitions ofd, and A} and the choice of the sefg. Since
JN(=o00,z) C Az C A} C (—o0,2) NQ, (f) and (g) follow from Clain{4.J(a).
O

Now, for z € [—oo, co] we define chaing, c P(AL) U {0} in the following way.
Forx ¢ M we definel, = {A,}. In particular,L_, = {0}.
Forz € M, using Claini4.B and Lemnla 3.5 we obtain asetC [A,, Aﬂp(Aj
suchthatL,, &) = (L, <,) and

)

Ay, AT € Ly C [As, Aflp(at ) (16)

UANBeL, and |NB\UA| <1, foreachcut A,B)inL,. (17)
For A, B Cc P(AZL) we will write A < Biff A ¢ B, foreachA € AandB € B.
Claim 4.9 Let £ = U, (o 0] £z~ Then

(@) If —oo <1 <29 < o0,thenl,, < L, andJL,, C Az, C ULy,
(b) L is a chain in(P(A%) U {0}, C) isomorphic toL = > Lz
(c) £ is a maximal chain iqP(AL) U {0}, C).

x€[—00,00

Proof. (a) LetA € £, andB € L;,. If 1 € (—o0,00] \ M, then, by [(16) and
Claim[4.8(c) we havel = A,, ¢ A,, C B. If z; € M, then, by[(16) and Claim
438(d),A c Af, ¢ A,, C B. The second statement follows frafy, € £,,.

(b) By (@), ([—o0, ], <) = ({L; : x € [—00, 0]}, <). SinceLl, = L, for
S [_007 OO]' we have(ﬁ, g> = Zme[—oo,oo] <£1‘7 g> = Zme[—oo,oo] Ly =L.

(c) Suppose that’ € P(AL) U {0} witnesses that is not maximal. Clearly
L =AUBand A < B,whereA ={A e L:AG ClandB ={B € L :
C & B}. Now( € L_, and, sincex € M, by (I8) we haved} € L. Thus
0, AL € £, which impliesA, B # 0 and, hence(A, B) is a cutin(L, ). By (16)



12 Milo$ S. Kurilic and Borisa Kuzeljevié

we have{4, : z € (—oo,00]} C £\ {0} and, by Clainf4B(a) (£ \ {#}) C
Nie(—o0,00] Az € Nye(—o0,00)(—00, ) = B, which implies A # {0}. Clearly,

UAcCCcNB. (18)

Case 1:ANL,, # landBNL,, # 0, for somezry € (—o0, oc]. Then|L,,| > 1,
xg € M and(AnN L,,,BN L,,) is a cut inL,, satisfying [1¥). By (a),A =
Uzcao £z U (AN Ly,) and, consequently, ) A = (J(AN Ly,) € L. Similarly,
NB=NBNL,) € Land, sincd( B\ JA| <1,by(d8)wehave” € L. A
contradiction.

Case 2:— Case 1. Then for eache (—oo, oo] we havel, C Aor L, C B. Since
L=AUB,A# {0} andA,B # 0, the setsd’ = {z € (—o0,00] : L, C A}
andB’ = {z € (—o0,00] : L, C B} are non-empty an@—oo, <] = A" U B.
SinceA < B, forz; € A" andxzy € B’ we havel,, < L, so, by (a),x1 < 2.
Thus(A’, B') is a cut in(—oo, 0] and, consequently, thereig € (—oo, oo such
thatzg = max A’ or zy = min B'.

Subcase 2.1xy = max.A’. Thenzy < oo because3 # () and A = Us<ao L2
s0, by (@)U A = U,<py ULs = Uy UL: UU Ly, = U Ly, Which, together
with (I6) implies

[ Ay, iz e M,
UA—{ Af ifxo e M.

SinceB = U, ¢(zg,00) Lo» We haVE( 1 B = (¢ () o) 1 La- BY @) Lo = As,
so we haveﬂ B = (mme(mo,oo}(_oo7 33‘) N ']) U (ﬂ 2€(z0,00] UyEMﬂ(—oo,x)Iy) =
(=00, 20l N J) UU yemn(—oomo) Iy = Azo U ({0} N JT) UU yertnaor Iy, SO

(19)

A:co if  xg Qé J AN x Qé M,

. Amo U {1’0} if zgeJ A x §é M,
nB - A;,_O if  xg Qé J AN xzg€ M, (20)

A;_O U {1’0} if zgeJ AN x9€ M.

If xo & J, then, by [I8),[(I9) and(20), we hat¢A = 1B = C € L. A
contradiction.

If 2o € Jandzy ¢ M, then|J A = A, and(\B = A, U {zo}. So, by [18)
and sinceC' ¢ £ we haveC' = () B. But, by Claim(4.8(a)z¢ = max (B so, by
Claim[4.7(c),C ¢ P(AL). A contradiction.

If zo € Jandzy € M, then|JA = A} and\B = A U {zo}. Again, by
(18) and sinc&” ¢ £ we haveC' = () B. By Claim[4.8(b),xy = max () B so, by
Claim[4.7(c),C ¢ P(AL). A contradiction.

Subcase 2.2xy = minB’. Then, by [16),4,, € L., C B which, by (a), im-
plies(\ B = Ay,. SinceA, € L, forz € (—o0,00] andA = {J,_,, £ We have

U A = Ux<x0 U ‘CZE D Ux<x0 A(E = Ux<x0 ((_007 x)m'])UUx<xO UyEMﬂ(—oo,x) Iy



Maximal chains of isomorphic suborders of countable utirmbgeneous.. 13

= (=00, 20)NJ)UUy e Mn(—oo,z0) Iy = Azo S04z, CUA C B = Ay, which
impliesC' = A,, € L. A contradiction. O

Case ll: —co ¢ M # oo. ThenL,, = {max L} and the sun’. + 1 belongs to
Case I. So, there are a maximal chdinn (P(D) U {0}, C) and an isomorphism
f:{L+1,<) = (L,C). ThenA = f(max L) € P(D) andL’ = f[L] = L. By
the maximality ofZ, £’ is a maximal chain iqP(A) U {0}, C).

Case lll: —co € M. ThenL =} 1 Lz, (L1) and (L2) of Clain4.P hold
and

(L3) L_ is a countable complete linear order with___ non-isolated.
Clearly L = L_oo + L™, whereL™ = 37 1 Ls = 3 (0,00 Liny (here
Inoo = 00). Let L, y € [~oo, oc], be disjoint linear orders such thaf, = 1, for
y € [-00,0], andLy = Ly, fory € (0,00]. Now>_ o ) Ly = [-00,0] +
L* belongs to Case | or Case Il and we obtain a maximal cBaimP(D) U {0}
and an isomorphisnyfi : ([—o0,0]+ L*, <) — (£, C). Clearly, for4y = f(0) and
Lt = f[LT]we haved; € LandLT = LT,

By (L3') and the fact that (b} (a) for countablel’s, P(Ap) U {0} contains a
maximal chainf_., = L_.. ClearlyAy € £L_andL_ULT = L_+ Lt =
L. Suppose thaB witnesses thaf _., U L™ is not a maximal chain ii?(D) U {0}.
Then eitherdy & B, which is impossible sinc€ is maximal inP(D) U {0}, or
B ¢ Ay, which is impossible sincé_ ., is maximal inP(4y) U {0}. 0

zE€[—00,00

5 Maximal chains inP(B,)

Theorem 5.1 Forn € N and eacR-embeddable complete linear ordexvith Oy,
non-isolated there is a maximal chain(ik(B,,) U {0}, C) isomorphic toL.

Proof. Let the order oB,, = | J,_,, Q; = U,.,,{i} x Q be given by
(o) < (iz a2) & 00 =i2 A a1 <g @z

Clearly, (Q, <q) =y, (Q;, <), wherefi(¢) = (i,q), for all ¢ € Q and, hence,
P(Q;) = {{i} xC : C € P(Q)}. If f: B, — B,, then for each < n the
restriction f|Q; is an isomorphism, thus therejis< » such thatf[Q;] C Q;, and,
moreover,f[Q;] € P(Qj,). Clearly,i; # iy impliesyj;, # ji, and, thus, we have

P(B,) = { U, {i} X Ci : Vi <n Ci € P(Q)}. (21)

Now, by Theorem 6 of[8], there is a maximal chalnn (P(Q) U {0}, C) isomor-
phictoL. ForA € £\ {0} let

A* = ({0} x A)UUgo;n{i} x Q. (22)

By (21) we have.* = {A* : A € £\ {0}} U {0} C P(B,) U {0} and, clearly,
(£*,C) is a chain in(P(B,,) U {0}, C) isomorphic to(L, C) and, hence, td..
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Suppose that som& = | J,_,,{i} x C; € P(B,,) witnesses thaf* is not a maximal
chain. By [21) and(22)' C (1 4¢\ g9y A™ would implyP(Q) > Co € ((L£\{0}),
which is impossible £ is a maximal chain if?(Q) U {0} andC) \ F' € P(Q) for
each finiteF’ C Cp). Thus there isA € £\ {0} such thatd* c C and, by [22),

C = {0} x CoUUpeicnli} x Q. (23)

SinceL* U {C} is a chain, for eactd € £\ {0} we haveA* C C v C C A*
which together with[(22) and (23) implie$ C Cy or Cy C A. A contradiction to
the maximality ofL. |

Theorem 5.2 For eachiR-embeddable complete linear ordewith 07, non-isolated
there is a maximal chain itP(B,,) U {0}, C) isomorphic toL.

Proof. Letzy = oo, let (x,, : n € N) be a descending sequenceRin Q without a
lower bound and leB,, = (Q, <.,) = U, ((®it1, 7)) NQ, <;) where

@ <w @2 e dcw (q1,9 € (Tig1,7) N q1 <Q ¢2)-

Then for the setf); = (z;11,2;) N Q, i € w, we have(Q;, <;) = (Q, <q), which
impliesP(Q;, <;) = P(Q, <g). As in the proof of Theorein 5.1 we obtain

PB.) = {UiegCi: S e w]¥ AVieS C; e P(Qy)}. (24)

Let L be a linear order with the given properties and, first,|lgt= w. Clearly
the family Dense(Q;) of dense subsets @, is a subset oP(Q;) and by [2#) we
haveP = {J,c,Ci : Vi € w C; € Dense(Q;)} C P(B,,). It is easy to check
thatP is a positive family o) so, by Theorerh 212(b), there is a maximal chain in
(P(B,,) U {0}, C) isomorphic toL.

Now, let|L| > w. Then, by Claini 412, we can assume that > .. . Lz,
where conditions (L1-L3) from Claifin 4.2 are satisfied. Weidguish two cases.

Case 1:—oco ¢ M. Then, by the construction from|[8] (i), 1] is replaced by

(—o0, 00] and AT by Q), there is a maximal chaifi in (P(Q) U {0}, C) such that
VA e L\{0} Tz € (—o0,00] (A C (—o0,z) A Alisdensein—oo,z)) (25)

andf = L. Now we prove
L\ {0} CP(B,) C P(Q, <q)- (26)

Let A € £\ {0}, letz be the real corresponding tbin the sense of (25) and let
ip = min{i € w : (—o0,z) N (i1, ;) # 0}. Thenz; 11 < = < z;, and, by
(28) the seC;, = AN (24,41, ) is dense inz;,+1, z) and, henceC;, € P(Q;,).
Similarly, C; = AN (zi41,z;) € P(Q;), for all i > iy5. SinceA C Q, we have
A =U;>;, Ci and, by [2%).A € P(B,,). So the first inclusion of (26) is proved.
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Let C = ;s Ci € P(By). By (24) for eachi € S we haveC; = Q; = Q
and, hence(” = )" . Q = Q. The second inclusion df (6) is proved as well.

By (26) we haveC C P(B,,)U{0} C P(Q, <q)U{0} and, clearlyL is a chain
inP(B,,) U{0}. Suppose thaf U{C} is a chain, for somé€’ € (P(B,,)U{0})\ L.
Then, by [(26),C € P(Q, <g) and £ would not be a maximal chain in the poset
(P(Q, <g) U {0}, C). SoL is a maximal chain ifP(B,,) U {0}, C) andL = L.

Case 2:—oco € M. Then we proceed as in (Ill) of the proof of Theorem 41.

6 Maximal chainsinP(C,)

Theorem 6.1 For alln € N and eaciR-embeddable complete linear ordemwith
07, non-isolated there is a maximal chain(in(C,,) U {0}, C) isomorphic toL.

Proof. Let the order< onC,, = Q x n be given by(qi,i1) < (g2,%2) < ¢1 <@
q2. Clearly, the incomparability relation||b < a £ b A b £ aonC, is an
equivalence relation with the equivalence classgsx n, ¢ € Q, of sizen and the
corresponding quotient,, /||, is isomorphic to{Q, <g). Since each element of
P(C,,) has such classes we ha®€C,,) = {A xn: A € P(Q,<g)}. Itis easy to
see that the mapping: P(Q, <g)U{0} — P(C,)U{0}, given byf(A) = Axn,

is an isomorphism of partial ordef®(Q, <q) U {0}, C) and(P(C,,) U {0}, C).
Hence the statement follows from Theorem 6.of [8]. O

Theorem 6.2 For eachiR-embeddable complete linear ordewith 0;, non-isolated
there is a maximal chain itP(C,,) U {0}, C) isomorphic toL.

Proof. Let the strict order< onC,, = Q x w = U,cola} x w = Uyeqwy
be given by(q1,i1) < (g2,i2) & @1 <g q2. For a setX C C, let us define
suppX = {q € Q : X Nw, # 0}. Now the incomparability classes, are infinite
and, again, the corresponding quotie@t, /||, is isomorphic to the rational line
(Q, <) Since the same holds for the copiesf it is easy to check that

P(C.) = {Uyealal x Cy: A€P(Q<g) A Vae AC, € W]} (27)

X C Cy, A thereismaxsupp X = X ¢ P(C,). (28)

By @7), P = {U,cold} x Cy : Vg € Q Cy € [w]“} C P(C,,) and, clearlyP is a

positive family so for a countablg the statement follows from Theorém 2.2(b).
Now, let L be an uncountable linear order. Then, by Claini 4.2, we camaess

thatl = L., where conditions (L1-L3) from Claiin 4.2 are satisfied.

Case I: —oo ¢ M > oo. LetQ = {J,¢,, Jy be a partition ofQ into [1/] disjoint
dense sets and, far € M, let I, € [J, N (—o0,y)]kvI=1. Let (—o0,2)g =
(—o0,z) NQ andw™ = w \ {0}. Let us defined_, = 0 and, for x € (—o0, o],

x€[—00,00]

Ay = ((—o00,z)g x wh) U Uyern(—ooz) Iy % {0},
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At = A, U (I, x {0}), forxzec M.

By (27), AL, = C, and we will construct a maximal chaift = L in the poset
(P(AL) U {0}, ). By (217), for eachr € (—oo, o] and each set C C,, we have

(—00,2)g X wm CAC (—o0,7)g xw = AeP(C,). (29)

Claim 6.3 The sets4,, z € [—oo, 0] and A}, x € M are subsets of the sdt’,.
In addition, for eachr, x1, 9 € [—00, 0] we have

(@) Ay C (—o0,2)g X w;

(b) Al C (—o0,2)p X w, if z € M;

C)x1 <o = Az, & Ay

(d)M 21 <X = Ajc_l & Am;

(e)|AF \ Al = |L,| - 1,if z € M;

() A, € P(AL), for eachr € (—o0, 00].

(9) A7 € P(AL) and[Ay, AT]p 1) = [Az, AT]p 41y, for eache € M.

Proof. Statements (c) and (d) are true siri¢es a dense subset &; (a), (b) and
(e) follow from the definitions ofA, and A; and the choice of the sefg. Since
(—o0,z)gp X wh C Ay C A C (—o00,2)g x w, (f) and (g) follow from [29). O
Now, for z € [—oo, oo] we define chaing,, C P(AL) U {0} in the following way.
Forx ¢ M we definel, = {A,}. In particular,L_ ., = {0}.
Forz € M, by Claim[6.3 and Lemmia 3.5 there is a ggt C [AE,A;]P(Am
such that L., ¢) = (L,, <,) and

AxyA;— € ‘CZB C [AmyA;]IP(A;LO)’ (30)

UANBeL, and |NB\UA| <1, foreachcutl A, B)in £,. (31)
For A, B Cc P(AL) we will write A < Biff A ¢ B, for eachA € AandB € B.

Claim 6.4 Let £ = |J,¢[_co,00) L2 TheN
(@) If —oo <z < g < o0, thenl,, < L, andJ Ly, C Az, C ULy,
(b) £ is a chain in(P(AL,) U {0}, C) isomorphic tol = 3, . La-
(c) L is a maximal chain ifP(AL) U {0}, C).

Proof. The proof of (a) and (b) is a copy of the proof of (a) and (b) ci@I4.9, if
we replace[(16) and Claim 4.8 Hy (30) and Claim 6.3.

(c) Suppose that’ € P(AL) U {0} witnesses that is not maximal. Using
(30) and Claini 6.3, as in the proof of Claim4.9(c) fér= {A € L: A & C'} and
B={BeL:C¢& B}weshowtha{A,B)isacutin(f,&), A+# {0} and

UAccCcN:B. (32)
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Case LLANL,, # 0andBN L,, # 0, for somezy € (—oo, oo]. Then we obtain
a contradiction exactly like in Clain 4.9.

Case 2:— Case 1. Then like in Clain 4.9 fot' = {z € (—o0, 0] : L, C A} and
B = {x € (—oo,00] : L, C B} we show that A’, B') is a cut in(—oco, co]. Thus,
there isxg € (—o0, 0o] such thatrg = max A’ or zg = min B'.

Subcase 2.1ry = max A’. Then like in Claini 4. we prove

| Ay ifxg & M,
UA_{A;_O if xg € M.

SinceB = U, ¢(zg,00] Lo WE haVE) B = (N, ¢(39.00) (1 L2- By BD) N Ly = As,
SOﬂB = (ﬂ :(:E(J:O,oo}(_oo7x)(@ X O.)+) U (ﬂ z€(xo,00] UyEMﬂ(—oo,x)Iy X {0}) =
((—OO,l’o]Q X w+) U UyeMﬂ(—oo,mo]Iy X {0} = Awo U (({350} N Q) X w+) U
UyEMﬁ{xo}Iy X {0}7 Sy

(33)

Axo if ) §7§ @ N X9 §7§ M,
) ApyUmo xwt) if 2peQ A x0¢ M,
NB=9 ax if 20¢Q A o€ M, (34)

AL U({xo} xwh) if 20€Q A x9e M.

If 29 ¢ Q, then, by[[3#-3K), we haug A = B = C € L. A contradiction.

If zo0 € Qandzy & M, theny A = A,, and\B = A,, U ({zo} x w™). So,
by (32) and sinc€' ¢ £ we haveC' = A,, U S, wheref) # S C {zo} x w™. By
Claim[6.3(a),zo = max supp C so, by [28),C' ¢ P(AL). A contradiction.

If zp € Qandzy € M, thenJA = AF and\B = A} U ({zo} x w).
Again, by [32) and sinc€' ¢ £ we haveC' = A,,US, whered) # S C {zg} xw™.
By Claim[6.3(b),z¢o = max supp C so, by [28),C' ¢ P(AL). A contradiction.
Subcase 2.2y = min B'. Then, by[(3D)A4,, € L., C B which, by (a), implies
NB = Ay, Sinced, € L, forallz € (—oo,00] andA = U, ,, £ We have
U'A ) Uw<m0 Ax = Um<x0((_oov ‘T)Q X w+) U Uw<m0 Uye]\/lﬂ(—oo,m) Iy X {0} =
((_OO’xO)wa+)UUyEMﬂ(—oo,x()) IyX{O} = Awo SOAIO - UA - ﬂB = ASUo’
which impliesC = A,, € L. A contradiction. O
Case ll: —oo € M % oo or —oo € M. Then we proceed like in Claim4.9. O
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