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Abstract

Combinatorial structures have been considered under various orders, including substruc-
ture order and homomorphism order. In this paper, we investigate the homomorphic image
order, corresponding to the existence of a surjective homomorphism between two structures.
We distinguish between strong and induced forms of the order and explore how they be-
have in the context of different common combinatorial structures. We focus on three aspects:
antichains and partial well-order, the joint preimage property and the dual amalgamation
property. The two latter properties are natural analogues of the well-known joint embedding
property and amalgamation property, and are investigated here for the first time.

1 Introduction

Between any two relational structures S and T, the notion of a structure-preserving map is cap-
tured by a homomorphism. Many concepts in combinatorics may fruitfully be viewed in terms of
the existence (or non-existence) of certain types of homomorphisms. For example, an r-colouring
of a graph G is simply a homomorphism from G into the complete graph Kr, and other graph-
theoretic notions such as independence number, clique number and connectivity of a graph also
possess characterizations via homomorphisms. One may also define classes of combinatorial
objects by means of homomorphisms (from or into the objects). More details on this viewpoint
are given in [11].

Combinatorial objects have been considered under various different orderings: two well-
studied examples are substructure order (for which we may make a further distinction between
weak and induced, see [4], Section 4) and homomorphism order (see for example [6], Chapter
3). Two structures are related under the substructure order if there exists an injective homo-
morphism between them; a “standard” homomorphism in the case of weak substructure, and a
strong homomorphism in the case of induced substructure.

By way of analogy, it is natural to consider the partial order corresponding to the existence
of a surjective homomorphism between two structures; we may call this the homomorphic image
order. As with the substructure order, we may distinguish between weak and induced forms.
Somewhat surprisingly, this order has received very little attention in the literature. In compar-
ison, the homomorphism order, corresponding to the existence of any homomorphism between
two structures, is much-studied ([5], [10]), as are various related concepts such as the core of a
graph ([3]).
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In this paper, we will investigate three forms of the homomorphic image order, focussing
on three aspects: antichains and partial well order, the joint preimage property (the dual of the joint
embedding property) and the dual amalgamation property (corresponding to the amalgamation
property). To the best of our knowledge, the two latter properties are investigated here for the
first time.

2 Homomorphisms, orders, properties

2.1 Background and notation

Let L = (Ri)i∈I be a relational signature, and let C be a class of structures of signature L. We
consider structures up to isomorphism and in general we assume our structures are finite. For a
structure S = (S, RS

i (i ∈ I)) and a mapping φ : S → T, we let

φ(RS
i ) = {(φ(s1), . . . , φ(sk)) : (s1, . . . , sk) ∈ RS

i }.

We take the following definitions:

Definition 2.1. Let S = (S, RS
i (i ∈ I)) and T = (T, RT

i (i ∈ I)) be two L-structures, and let
φ : S → T. We say that φ is:

(i) a homomorphism if (s1, . . . , sk) ∈ RS
i ⇒ (φ(s1), . . . , φ(sk)) ∈ RT

i , i.e. if φ(RS
i ) ⊆ RT

i |φ(S);

(ii) a strong homomorphism if φ is a homomorphism and φ(RS
i ) = RT

i |φ(S);

(iii) an M-strong homomorphism if φ is a homomorphism such that (s1, . . . , sk) ∈ RS
i ⇔ (φ(s1), . . . , φ(sk)) ∈

RT
i , i.e. φ(RS

i ) = RT
i |φ(S) and φ(RS

i ) = RT
i |φ(S).

The “M” in the final definition refers to the model theoretic definition of a strong embedding
(see, for example, [8], Chapter 1). Our definition of strong homomorphism requires that every
related k-tuple in φ(S) must be the image of at least one related k-tuple in S but, in contrast to
the model theoretic definition, it does not require that every preimage of a related k-tuple in φ(S)
must be a related k-tuple in S.

We make the following further definitions:

Definition 2.2. A homomorphism is an embedding if it is injective, and is an epimorphism if it is
onto. Like any other homomorphisms, embeddings and epimorphisms may be strong or M-
strong. An isomorphism is an M-strong bijection.

It is clear that every M-strong homomorphism is strong. Moreover, an embedding φ : S → T
is M-strong if and only if it is strong. Considering the three strengths of homomorphisms for
injections and surjections leads to six partial orders on finite structures, of which only five are
distinct by the previous observation. In addition to the customary notation � appropriately
subscripted, we will also find it convenient to have a letter notation for parts of the text where
we treat the order as a set.

Definition 2.3. (i) Substructure order �S or OS: A �S B if there exists an embedding φ : A →
B;

(ii) induced substructure order �IS or OIS: A �IS B if there exists a strong embedding φ : A →
B;
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(iii) homomorphic image order �H or OH: A �H B if there exists an epimorphism B → A;

(iv) induced homomorphic image order �IH or OIH: A �IH B if there exists a strong epimor-
phism B → A;

(v) M-induced homomorphic image order �MH or OMH: A �MH B if there exists an M-strong
epimorphism B → A.

Note that in all these definitions the direction of homomorphisms is chosen so as to ensure
that A � B implies |A| ≤ |B|.

Lemma 2.4. Let C be a collection of finite relational structures of the same signature.

(i) All of OS, OIS, OH, OIH and OMH are partial orders on C;

(ii) OIS ⊆ OS and OMH ⊆ OIH ⊆ OH.

The inclusions (ii) follow immediately from Definition 2.3. Reflexivity and transitivity for
each of the relations is straightforward, while antisymmetry relies on the finiteness assumption.
Without this assumption, the above relations are only quasiorders. Note that OS and OIS are the
usual substructure and induced substructure orderings; the remaining three will be the focus of
the present article.

2.2 Types of structures

Our aim is to investigate how the above orders behave in the context of different common com-
binatorial structures; in this subsection, we introduce the structures which will be considered.

A digraph is simply a set D with a binary relation E(D). A related pair (x, y) ∈ E(D) is called
a (directed) edge. A digraph homomorphism φ : D1 → D2 maps edges to edges; φ is strong if it
maps E(D1) onto E(D2) and is M-strong if it also maps non-edges to non-edges.

In combinatorics there are numerous graph-like specializations of digraphs. In this paper we
will consider the following.

A graph is a digraph G in which the edge relation E(G) is symmetric. Furthermore, we will in-
sist that E(G) is either irreflexive or reflexive. This choice affects the notion of homomorphisms:
in the irreflexive representation a homomorphism may not “collapse” an edge to a single point,
while in the reflexive representation both edges and non-edges may be collapsed.

A tree is a connected graph with no cycles. Again, we will consider trees in two different
representations, reflexive and irreflexive. At times, we will also consider rooted trees, where ho-
momorphisms are required to map root to root.

A tournament is a digraph T in which for any two distinct x, y ∈ T, precisely one of (x, y)
or (y, x) is an edge. Again, we consider reflexive and irreflexive tournaments. In the irreflexive
case, since a homomorphism may not collapse an edge, every homomorphism is injective.

An equivalence relation is a digraph X with a reflexive, symmetric and transitive edge set E(X).
A mapping φ : X1 → X2 is a homomorphism precisely if it maps the equivalence classes of
E(X1) into equivalence classes of E(X2). A homomorphism φ is strong if every pair of elements
in imφ which lie in the same equivalence class of E(X2) possesses a pair of preimages which
lie in the same equivalence class of E(X1). Finally, a homomorphism is M-strong if at most one
equivalence class of E(X1) is mapped into each equivalence class of E(X2).

A poset is a digraph P in which the relation E(P) (usually written ≤) is anti-symmetric and
transitive. We consider reflexive and irreflexive posets. Note that an M-strong homomorphism
in the reflexive case is necessarily injective because of anti-symmetry.

3



A linear order is a partial order L in which for any two distinct x, y ∈ L we have x ≤ y or
y ≤ x. A mapping φ : L1 → L2 between two linear orders is a homomorphism if and only
if all preimages φ−1(y) (y ∈ L2) are contiguous subsets of L1 and if y1 < y2 (y1, y2 ∈ L2) and
xi ∈ φ−1(yi) imply x1 < x2. It is straightforward to see that every homomorphism is strong, but
that only the injective ones are M-strong.

A word over alphabet A is a relational structure (W,≤, fa(a ∈ A)) where ≤ is a linear order
and fa (a ∈ A) are unary relations such that for each w ∈ W, w ∈ fa is true for precisely one
a ∈ A. Given such a structure, if W = {w1, . . . , wk} with w1 < · · · < wk we write W = a1 . . . ak

where wi ∈ fai
, a sequence of letters from the alphabet. A mapping φ : W1 → W2 between

two such relational structures is a homomorphism if the preimages φ−1(y) of points in W2 are
appropriately ordered contiguous segments of W, as in the linear orders case and, in addition,
all x ∈ φ−1(y) belong to the same fa. Thus, if W1 = a1 . . . ak and W2 = a′1 . . . a′l are written
as sequences, φ can be thought of as a “process” which identifies contiguous occurrences of
the same letter in W1 and yields a subsequence (subword) of W2. As with linear orders, every
homomorphism is strong but only the injective ones are M-strong.

A permutation is a relational structure (P,≤1,≤2) where ≤1, ≤2 are linear orders. A mapping
f : P1 → P2 between two permutations is a homomorphism if the preimages of points in P2

are contiguous under both ≤1 and ≤2. Such sets are known as intervals, see [1]. Yet again, all
homomorphisms are strong and only the injective ones are M-strong. All these assertions follow
from their counterparts above.

2.3 Relationships between orders

In general, the three orders are distinct, with OMH ⊆ OIH ⊆ OH. For certain classes of combinato-
rial structures, some of the orders may coincide, or reduce to isomorphism. Table 1 summarizes
this by indicating when all homomorphisms are strong or M-strong (entries “hom.”) and when
some types of homomorphism are necessarily injective (entries “inj.”).

Table 1: Summary of certain order properties

Class C hom. strong hom. M-strong hom. OH OIH OMH

Tournaments
(reflexive) hom. inj. OH

∼=
Tournaments
(irreflexive) inj. inj. inj. ∼= ∼= ∼=
Trees (reflexive) hom. Lemma 2.6 OH

Trees (irreflexive) hom. inj. OH
∼=

Posets (reflexive) inj. ∼=
Linear orders hom. inj. OH

∼=
Permutations hom. inj. OH

∼=
Words hom. inj. OH

∼=

We justify the claim in the table concerning trees.

Lemma 2.5. For the class of trees (reflexive or irreflexive), every homomorphism is strong and hence
OH = OIH.

Proof. Let φ : S → T be a homomorphism of trees. Let (u, v) be an edge in φ(S) (u 6= v).
Let wu, wv be preimages of u, v in S. Let w1, . . . , wk be a path in S connecting wu and wv. By
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considering the image of this path under φ, take the shortest subpath connecting u and v; let
this be φ(wi), φ(wi+1), . . . , φ(wj) where φ(wi) = u and φ(wj) = v. Note that φ(ws) 6= u, v for
i < s < j. We cannot have j > i + 1, since then φ(wi), . . . , φ(wj), u would be a cycle. Hence
j = i + 1 and (wi, wi+1) is an edge in S which is mapped onto (u, v) in T.

Furthermore, we observe that M-strong epimorphisms of reflexive trees are “almost” isomor-
phisms.

Lemma 2.6. A mapping φ : T → U is an M-strong epimorphism of reflexive trees if and only if φ is an
isomorphism or U is trivial and |T| = 2.

Proof. Suppose φ is not an isomorphism and let x, y ∈ T be such that φ(x) = φ(y) = u ∈ U.
Suppose |U| > 1, and let v ∈ U be any vertex adjacent to u. Let z ∈ T be any preimage of
v. Then {x, y, z} form a triangle, a contradiction. On the other hand, if U is trivial, then T is
complete, and hence a tree only if |T| ≤ 2.

2.4 PWO and join properties

As described in the Introduction, for each of the three homomorphic image orders, our investi-
gations will focus on three aspects, reflecting some fundamental structural properties of posets.

The first such is the property of being partially well ordered (see [7], [9] and [4]). A poset (X,�)
has this property if it has no infinite antichains and no infinite descending chains. In our context
there can never be infinite descending chains, because of size considerations, and we are left to
investigate the existence or otherwise of infinite antichains.

A poset (X,�) is said to have the join property if for any two x, y ∈ X there exists z ∈ X
such that x � z and y � z. When applied to the order �IS this notion becomes the well known
joint embedding property (JEP): a class C has JEP if for any two A, B ∈ C there exists C ∈ C into
which both A and B strongly embed. Paralleling this, each of our homomorphic image orders
gives rise to a join-type property. We say that C has the joint preimage property (JPP) if for any
A, B ∈ C there exists C ∈ C which has both A and B as homomorphic images. By strengthening
homomorphisms to strong- or M-strong homomorphisms we obtain the strong- and M-strong
JPP.

A property related to the JEP is the amalgamation property (AP), which stipulates that for any
A, B, C ∈ C, with strong embeddings f : A → B and g : A → C, there exist D ∈ C and
strong embeddings h : B → D and k : C → D such that h f = kg. We will term the analogue
in our context the dual amalgamation property (DAP); it requires that for any A, B, C ∈ C, with
epimorphisms f : B → A and g : C → A, there exist D ∈ C and epimorphisms h : D → B and
k : D → C such that f h = gk. Again, we also have the strong and M-strong variants of DAP.

The customary diagrams illustrating the definitions of JEP, JPP, AP and DAP are shown in
Figure 1

We present our material by proceeding property by property; however, to facilitate compari-
son of the main results on an order-by-order basis, three tables (one corresponding to each order)
are provided at the end of the paper.

3 Antichains and partial well order

This section addresses the question: for a given class C under a given homomorphic image order,
can we construct an infinite antichain in C, or is C PWO? For most choices of class and order, we
find that an appropriate infinite antichain can be constructed, notable exceptions being trees and
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Figure 1: JEP, JPP, AP and DAP.

equivalence relations in the OIH and OH cases. For a negative answer to the PWO question, it of
course suffices to exhibit the antichain corresponding to the weakest such order, though we will
also discuss antichains which differentiate between the three orders.

3.1 Digraphs

We begin by considering digraphs.

Theorem 3.1. Let C be the class of digraphs.

(i) Let P = {Pn : n(≥ 4) ∈ N}, where digraph Pn has vertices {1, . . . , n} and edges

{(i, i + 1) : 1 ≤ i ≤ n − 1} ∪ {(i, i) : 1 ≤ i ≤ n}

(a directed path). Then P is an antichain with respect to OMH but not with respect to OIH.

(ii) Let G = {Gn : n(≥ 4) ∈ N}, where Gn has vertices {1, . . . , n} and edges

{(i, i + 1) : 1 ≤ i ≤ n − 1} ∪ {(n − 2, n), (n, n)}

(see Figure 2). Then G is an antichain with respect to OIH but not with respect to OH.

(iii) Let K = {Kn : n(≥ 2) ∈ N}, where Kn has vertices {1, . . . , n} and edges {(i, j) : 1 ≤ i < j ≤ n}
(a linear tournament). Then K is an antichain w.r.t. OH.

Proof. (i) For every pair of distinct vertices {x, y} in Pn, there is some vertex z connected to
precisely one of {x, y}, and so x and y cannot be mapped by an M-strong homomorphism to the
same image point. Hence Pn is a minimal element under OMH. Consider the mapping from Pn to
Pn−1 given by i 7→ i for 1 ≤ i ≤ n − 1 and n 7→ n − 1: it is a strong epimorphism. To see that it is
not M-strong, observe that non-edge (n − 2, n) and edge (n − 2, n − 1) are both mapped to edge
(n − 2, n − 1).

(ii) We first establish that the mapping φ : Gn → Gm (n > m) given by

φ(x) =

{

x, x ≤ m

m, x > m

is a homomorphism, but not a strong homomorphism. We check that φ maps edges to edges:
for 1 ≤ i ≤ n − 1, edge (i, i + 1) is mapped to (i, i + 1) if i < m and to (m, m) if i ≥ m. Edge
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Figure 2: Digraph G6 from the proof of Theorem 3.1

(n, n) is mapped to (m, m) and edge (n − 2, n) is mapped to (m − 1, m) if n = m + 1 and (m, m)
otherwise. It is clear that φ is onto; however, since edge (m − 2, m) in Gm is not the image of an
edge in Gn, φ is not strong.

We now show that φ is the unique onto homomorphism from Gn to Gm. Let θ : Gn → Gm

(n > m) be an onto homomorphism. We claim that θ(1) = 1. Suppose θ(1) = k 6= 1. Let
j ∈ Gn be arbitrary. Since there is a directed path in Gn from 1 to j, in Gm we must have a
directed path from θ(1) = k to θ(j). Hence θ(j) 6= 1, and so θ is not onto. For i = 1, . . . , m − 3
there is a unique edge, namely (i, i + 1), coming out of i in both Gm and Gn. Hence θ(i) = i for
i = 1, 2, . . . , m − 2. In Gn, there is only one edge coming out of m − 2, namely (m − 2, m − 1). In
Gm, there are two: (m − 2, m − 1) and (m − 2, m). Hence θ(m − 1) ∈ {m − 1, m}. If θ(m − 1) = m
then θ(m) = θ(m + 1) = · · · = θ(n) = m because of edges (m − 1, m), (m, m + 1), . . . , (n − 1, n).
But then θ(x) 6= m − 1, a contradiction. Hence θ(m − 1) = m − 1 and then θ(m) = m. Thus θ is
the mapping φ defined above. Since φ is not strong, it follows that G is an antichain under OIH.

(iii) Suppose φ : Km → Kn (m > n) is any mapping. Then there are i, j ∈ [m] (i < j) such that
φ(i) = φ(j) = k. But then the edge (i, j) in Km is mapped to a non-edge (k, k) in Kn. Hence φ is
not a homomorphism, proving that {Kn : n ∈ N} is an antichain.

3.2 Graphs

Note that, in the irreflexive case, every complete graph is minimal.

Theorem 3.2. The class of irreflexive graphs has infinitely many minimal elements with respect to OH,
and hence is not PWO.

In the reflexive case, by contrast, the trivial graph is the unique minimal element. Nonethe-
less, we have:

Theorem 3.3. The class of reflexive graphs is not PWO with respect to OH.

Proof. Let Gn be the graph on 2n vertices {1, . . . , 2n} such that (2i − 1, 2i) is a non-edge (i =
1, . . . , n) and all other pairs of vertices are edges; see Figure 3. Let φ : Gk → Gl (k > l) be an onto
mapping. For some r in Gl , r = φ(p) = φ(q) for distinct p, q in Gk (without loss, we assume that
r = 1). Recall that (1, 2) is a non-edge in Gl and consider a preimage s of 2. At least one of (p, s),
(q, s) must be an edge, hence φ is not a homomorphism.

Remark 3.4. Some common families of graphs are antichains with respect to �MH, but not with
respect to the two weaker orders. For example, the set of paths on 4 or more vertices is an
antichain with respect to OMH but not with respect to OIH (in both the reflexive and irreflexive
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Figure 3: Graph G3 from the proof of Theorem 3.3
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Figure 4: T3 and T5 of Proposition 3.5

setting). Infinite families of graphs which are antichains with respect to OIH but not with respect
to OH do not arise so naturally.

3.3 Tournaments

Recall that, for irreflexive tournaments, all homomorphism are injective (see Table 1).

Proposition 3.5. Let n ∈ N be odd. The tournament Tn on n vertices {1, . . . , n} given by the rule: for
1 ≤ i < j ≤ n,

i → j if i 6≡ j (mod 2)
j → i if i ≡ j (mod 2)

(see Figure 4) has no proper non-trivial homomorphic image within the class of reflexive or irreflexive
tournaments.

Proof. It is immediate that a directed triangle (T3) has no non-trivial homomorphic image. We
show that every edge of Tn is in some directed triangle. To see this, consider i, j ∈ [n] with i < j.
If i and j are of the same parity, then j → i. Take any k of opposite parity from both, such that
i < k < j; then i → k and k → j. If i and j are of opposite parity, then i → j. If j < n then
{i, j, j + 1} form a triangle, while if j = n then {1, i, j} form a triangle. Since it is not possible to
collapse a directed triangle, the result follows.

Theorem 3.6. The class of reflexive (or irreflexive) tournaments is not PWO with respect to OH.

Proof. The reflexive case is a consequence of Proposition 3.5, while the irreflexive case follows
from the non-existence of proper epimorphisms.

3.4 Posets

Similarly to the case of graphs, in the class of irreflexive posets, every chain is a minimal element.
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Figure 5: Poset B4 from the proof of Theorem 3.8

Theorem 3.7. The class of irreflexive posets has infinitely many minimal elements with respect to OH

and hence is not PWO.

For the reflexive case we have:

Theorem 3.8. The class of reflexive posets is not PWO with respect to OH.

Proof. Let Bn be the poset on 2n vertices {1, . . . , 2n} such that, for each i = 2, . . . , n − 1: vertices
2i − 1 and 2i are incomparable; each covers 2i − 2 and 2i − 3; and each is covered by 2i + 1 and
2i+ 2; see Figure 5. Let φ : Bk → Bl (k > l) be an onto mapping. For some r in Bl , r = φ(p) = φ(q)
for distinct p, q in Bk. There is a unique element s in Bl , incomparable to r. Let u be a preimage
of s. At least one of p, q is comparable to u, say this is p. Then φ maps the comparable pair (p, u)
to an incomparable pair (r, s), and so φ is not a homomorphism.

As with graphs, it is easy to find families of posets which form antichains with respect to the
strongest order but not with respect to the two weaker orders. For example, let F = {F1, F2, . . .}
where Fn is the poset on 2n vertices {1, . . . , 2n} such that 2i − 1 covers 2i (i = 1, . . . , n) and all
other pairs of elements are incomparable. Then (in both the reflexive and irreflexive setting) F
is an antichain with respect to OMH but not with respect to OIH. Again, examples distinguishing
between OIH and OH do not arise so naturally.

3.5 Trees

We now consider a class of structure which provides a positive answer to our PWO question,
namely trees. We will prove our result for irreflexive trees; the case of reflexive trees then follows.
Our strategy involves proceeding via rooted trees. Recall that a rooted tree T may conveniently
be decomposed into levels; L0 is the root, and Li+1 is the set of vertices from T \ {L0 ∪ . . . ∪ Li}
adjacent to elements in Li. The depth is the largest d such that Ld 6= ∅.

Let T be the class of irreflexive trees, and let T • be the class of irreflexive rooted trees.

Lemma 3.9. Let T ∈ T • be a rooted tree of depth d with root r, and let P be a path with vertices p0, . . . , pe

and edges (pi, pi+1), i = 0, . . . , e − 1. If d ≥ e then there is an epimorphism φ : T → P with φ(r) = p0.

Proof. Let L0 = {r}, L1, . . . , Ld be the levels of T. The mapping φ : T → P defined by

φ(v) =











pi, if v ∈ Li, 0 ≤ i ≤ e

pe, if v ∈ Li, e < i ≤ d and i ≡ e (mod 2)

pe−1, if v ∈ Li, e < i ≤ d and i ≡ e + 1 (mod 2)

has the desired properties.
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Figure 6: The construction of τ(P). Here P = (U1, . . . , Uk; V1, . . . , Vl), where U1, . . . , Uk, V1, . . . , Vl

are trees rooted at x1, . . . , xk, y1, . . . , yl respectively.

Lemma 3.10. Let C ′ be the class of irreflexive rooted trees. For every non-trivial S ∈ C ′, the set Av(S) =
{T ∈ C ′ : S 6�H T} is PWO.

Proof. Induction on |S|, the case |S| = 2 being trivial by Lemma 3.9. Suppose |S| > 2. Let v0 be
the root of S, let d = depth(S) and let v0, v1, . . . , vd be any path in S of length d (note vd must be
a leaf). Let S′ be the tree S with vd removed. By induction, Av(S′) is PWO.

Consider an arbitrary T ∈ Av(S), with root r. Let c1, . . . , ct be the children of r. Let Ti be the
subtree of T rooted in ci (i = 1, . . . , t); call these the principal subtrees. We claim that one of the
following holds:

(i) all Ti are in Av(S′); or

(ii) if, for some i, S′ �H Ti, then removing Ti from T yields a tree in Av(S′).

For, suppose not, so that (say) each of T1 and T \ T1 has S′ as a homomorphic image. Let
φ : T \ T1 → S′ be an epimorphism. Note that depth(T1) ≥ depth(S′) ≥ d − 1 because we
are dealing with homomorphisms of rooted trees. By Lemma 3.9, there is a homomorphism
ψ : T1 → S with ψ(T1) = {v1, . . . , vd} and ψ(c1) = v1. Define π : T → S as follows:

π(v) =

{

ψ(v), v ∈ T1

φ(v), v 6∈ T1.

This is a homomorphism because φ and ψ are, and π(r) = φ(r) = v0, π(c1) = ψ(c1) = v1 and
v0, v1 are adjacent in S. It is also onto because π(T) = φ(T \ T1) ∪ ψ(T1) = S′ ∪ {v1, . . . , vd} = S.
This contradicts T ∈ Av(S).

By a repeated application of this claim, we see that to every T ∈ Av(S), we can associate a
pair of sequences (U1, . . . , Uk; V1, . . . , Vl) of members of Av(S′). Starting with T, and supposing
(ii) holds, we let U1 = T \ Ti ∈ Av(S′) and T(1) = Ti. We repeat this process, constructing
U1, . . . , Uk ∈ Av(S′) and T(1), . . . , T(k) having S′ as a homomorphic image, until all principal
subtrees V1, . . . , Vl of T(k) lie in Av(S′), at which stage we append them to U1, . . . , Uk and stop
the process. Conversely, every pair of sequences P = (U1, . . . , Uk; V1, . . . , Vl) defines a unique
tree τ(P), obtained by connecting the trees U1, . . . , Uk, V1, . . . , Vl as indicated in Figure 6.

Denote by P the set of all such pairs of sequences. We define the following ordering on P :

(U1, . . . , Uk; V1, . . . , Vl) ≤ (U′
1, . . . , U′

m; V ′
1, . . . , V ′

n)

if and only if
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V ′
1

y′1

V ′
j1

y′j1
V ′

jl

y′jl

V ′
n

y′n

x′m+1
U′

m

x′m U′
ik

x′ik U′
i1

x′i1 U′
1

x′1

Figure 7: τ(P′), where P′ = (U′
1, . . . , U′

m; V ′
1, . . . , V ′

n). The shaded subtrees U′
i1

, . . . , U′
ik

, V ′
j1

, . . . , V ′
jl

are mapped onto U1, . . . , Uk, V1, . . . , Vl respectively via ζ.

• k ≡ m (mod 2)

and there exist 1 ≤ i1 < . . . < ik ≤ m and 1 ≤ j1 < . . . < jl ≤ n such that

• Us �H U′
is

, s = 1, . . . , k;

• Vs �H V ′
js

, s = 1, . . . , l;

• is ≡ s (mod 2).

Since this ordering is derived from the usual subsequence ordering by imposing a couple of
finitary restrictions, a standard multiple application of Higman’s Theorem ([7]) yields that P is
PWO.

Next, we prove that τ preserves ordering. Let

P = (U1, . . . , Uk; V1, . . . , Vl) ≤ P′ = (U′
1, . . . , U′

m; V ′
1, . . . , V ′

n)

with τ(P) and τ(P′) as shown in Figures 6 and 7. By definition, there exist epimorphisms µs :
U′

is
→ Us (s = 1, . . . , k) and νs : V ′

js
→ Vs (s = 1, . . . , l). We shall exhibit an epimorphism ζ

sending τ(P′) to τ(P). The essential idea of ζ is that it maps each U′
is

onto Us and each V ′
js

onto

Vs, while every other U′
i and V ′

i is collapsed to a suitable two-element path. It is to ensure that
the desired connection may be made between each U′

is
and its “natural” image Us, that parity

conditions feature in the order definition.
We define ζ(x′i) for i = 1, . . . , m as follows:

• for is−1 < i ≤ is (setting i0 = 0),

x′i 7→

{

xs, if (i − is−1) is even

xs+1, if (i − is−1) is odd;

• for i > ik,

x′i 7→

{

xk, if (i − ik) is even

xk+1, if (i − ik) is odd.

Next, we define ζ(y′j) for j = 1, . . . , n:

11



• for js−1 < j ≤ js (setting j0 = 0), y′j 7→ ys;

• for j > jl , y′j 7→ yl .

Finally, we define ζ on U′
i (i = 1, . . . , m) and on V ′

j (j = 1, . . . , n):

• if i = is, U′
i is mapped onto Us via µs;

• otherwise, U′
i is mapped onto an edge emanating from ζ(x′i), as guaranteed by Lemma 3.9;

• if j = js, V ′
j is mapped onto Vs via νs;

• otherwise, V ′
j is mapped onto an edge emanating from ζ(y′j), as guaranteed by Lemma 3.9.

A routine check shows that ζ is an epimorphism.
Since τ is order-preserving and P is PWO, it follows that τ(P) is PWO, and we have seen

that τ(P) contains Av(S), proving the lemma.

We can now proceed to stating and proving the main results of this section:

Theorem 3.11. Let T • be the class of all irreflexive rooted trees. Then T • is PWO with respect to OH.

Proof. Suppose T1, T2, . . . forms an infinite antichain of irreflexive rooted trees. Without loss,
assume that T1 is non-trivial. Then T2, T3, . . . is an infinite antichain in Av(T1), in contradiction
to Lemma 3.10.

Corollary 3.12. Let C be the class of irreflexive trees. Then C is PWO with respect to OH.

Proof. Let T1, T2, . . . be an infinite collection of irreflexive trees. In each Ti, pick an arbitrary vertex
ri. Denote by T∗

i the rooted tree obtained from Ti by designating ri as the root. By Theorem 3.11,
for some i 6= j there exists an epimorphism of irreflexive rooted trees φ : T∗

i → T∗
j . Thus φ maps

edges of Ti to edges of Tj and maps ri to rj. In particular, φ is also an epimorphism of non-rooted
trees, Ti → Tj, and the corollary follows.

Corollary 3.13. Let C be the class of reflexive trees. Then C is PWO with respect to OH.

Proof. Let T1, T2, . . . be an infinite collection of reflexive trees. Let T′
i be the irreflexive tree ob-

tained by removing the loops at each vertex from Ti. By Corollary 3.12, there is an epimorphism
φ : T′

i → T′
j for some i 6= j. Thus φ maps non-loop edges of Ti to non-loop edges of Tj and, since

φ trivially maps loops of Ti to loops of Tj, it follows that φ is also an epimorphism Ti → Tj.

3.6 Equivalence relations

Let A = (A, R) and B = (B, S) be equivalence relations. Let A1, . . . , Ak be the equivalence
classes of R, and B1, . . . , Bl be the equivalence classes of S. As we have seen in Subsection 2.2, a
mapping φ : A → B is

• a homomorphism if (∀i)(∃j)(φ(Ai) ⊆ Bj);

• a strong homomorphism if it is a homomorphism and for any y1, y2 ∈ Bj ∩ imφ we have

(∃i)(∃x1, x2 ∈ Ai)(φ(x1) = y1, φ(x2) = y2);

12



• an M-strong homomorphism if it is a homomorphism and

φ(Ai1), φ(Ai2) ⊆ Bj ⇒ i1 = i2.

From the above definitions, we have the following descriptions of OH, OIH and OMH:

(E1) A �H B ⇔ ∃φ : A → B such that every Bj is a union of some φ(Ai);

(E2) A �IH B ⇔ ∃φ : A → B such that for any y1, y2 ∈ Bj, ∃i : y1, y2 ∈ φ(Ai);

(E3) A �MH B ⇔ k = l and there is a permutation j1, . . . , jk of 1, . . . , k such that φ(Ai) = Bji .

We prove that the class of equivalence relations is PWO under OIH, which implies that it is
PWO under OH.

Lemma 3.14. Let A = (A, R) and B = (B, S) be two equivalence relations. If R has k non-singleton
equivalence classes, |B| = n and k ≥ n2 then B �IH A.

Proof. Let A1, . . . , Ak be the non-singleton equivalence classes of R. Since

k ≥ n2 = |B|2 ≥ |S|

there exists a surjection f : {A1, . . . , Ak} → S. Since |Ai| ≥ 2, there exists a surjection φi : Ai →
{b′, b′′} where f (Ai) = (b′, b′′) ∈ S. Let φ′ : A \ (

⋃k
i=1 Ai) → B be arbitrary. The mapping

φ = (
⋃k

i=1 φi) ∪ φ′ is an epimorphism, and indeed strong by (E2).

Theorem 3.15. The class of equivalence relations is PWO with respect to OIH (and hence also with respect
to OH).

Proof. Let As = (As, Rs) (s = 1, 2, . . .) be an infinite collection of equivalence relations. Let cs be
the number of non-singleton equivalence classes of Rs. We distinguish two cases.

Case 1: {cs : s ∈ N} is unbounded. Let s ∈ N be such that cs ≥ |A1|
2. By Lemma 3.14, we have

A1 �IH As.

Case 2: {cs : s ∈ N} is bounded. Without loss we may assume that c1 = c2 = · · · = c. So, each Rs

has precisely c non-singleton classes, say As,1, As,2 . . . , As,c, and, say, ts singleton ones. Consider
the collection of (c + 1)-tuples

{(|As,1|, . . . , |As,c|, ts) : s = 1, 2, . . .}.

By Higman’s Theorem ([7]), this is PWO with respect to tuple ordering. Hence there are distinct
u, v ∈ N such that

(|Au,1|, . . . , |Au,c|, tu) ≤ (|Av,1|, . . . , |Av,c|, tv).

Hence there are onto mappings φd : Av,d → Au,d and φ′ : Av \ (
⋃c

d=1 Av,d) → Au \ (
⋃c

d=1 Au,d).
Their union φ : (

⋃c
d=1 φd) ∪ φ′ is an epimorphism, which is strong by (E2).

Theorem 3.16. Let C be the class of equivalence relations. Then C is not PWO with respect to OMH.

Proof. Let An = (An, Rn) where Rn has precisely n equivalence classes. Then (A1,A2, . . .) is an
antichain by (E3).
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3.7 Linear orders, words and permutations

Proposition 3.17. The class of linear orders is PWO with respect to OH and OIH, but not with respect to
OMH.

Proof. A chain may be mapped onto any shorter chain under OH; the other cases follow from
Table 1.

Proposition 3.18. Neither of the following classes is PWO with respect to OH:

• the class of words over a non-singleton alphabet;

• the class of permutations.

Proof. In the word case, an infinite antichain is given by any infinite collection of words with
no consecutive occurrences of any letter, for example (ab)n, n ∈ N. Likewise, in the permuta-
tion case, any infinite set of permutations without non-trivial intervals (also known as simple
permutations) would suffice; there are many such examples in the literature (see [1] and [2]).

4 Joint Preimage Property

Here, we address the question: for a given class C under a given homomorphic image order, does C
possess the joint preimage property (JPP)? Unlike in the previous section, there is no single consis-
tent division in behaviour between M-strong order and the other two; the orders are “grouped”
differently as we move between different classes of structures. From the tables, the following
patterns are observable: the answer to the JPP question is negative in all cases for the M-strong
homomorphic image order, approximately half-and-half for the strong homomorphic image or-
der, and largely positive for the homomorphic image order.

We first consider classes of structure which do not possess the JPP property under any of the
three orders; in each case, it is sufficient to prove the assertion for OH.

Theorem 4.1. The class of irreflexive trees does not possess the JPP under any of the homomorphic image
orderings.

Proof. This follows from the fact that the single-vertex tree is not the homomorphic image of any
tree other than itself.

We observe that the class of non-trivial irreflexive trees would possess JPP, via a proof similar
to that for reflexive trees (Theorem 4.5).

Theorem 4.2. The class of tournaments (irreflexive or reflexive) does not possess the JPP under any of
the homomorphic image orderings.

Proof. The irreflexive case is trivial, since irreflexive tournaments are minimal. We consider the
reflexive case. Let A = T3 and B = T5 from Proposition 3.5. So A is the directed triangle
a → b → c → a, and neither of A nor B has proper non-trivial homomorphic image.

Suppose A and B have a joint preimage C, say with φ : C → A and ψ : C → B. For every
x ∈ A, pick a preimage x′ ∈ C under φ. Then A′ = {a′, b′, c′} is a tournament isomorphic to A.
Likewise, there exists a tournament B′ = {x′ : x ∈ B} inside C which is isomorphically mapped
onto B under ψ.

Since B has no proper non-trivial homomorphic image and |B| > |A|, it follows that φ(B′) is
a single point of A, say φ(B′) = {a}. From a′ → b′, we have that x′ → b′ for all x′ ∈ B′. Suppose
ψ(b′) = y ∈ B. Let z ∈ B be such that y → z and y 6= z. Then b′ → z′, a contradiction.
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Theorem 4.3. Neither of the following possesses the JPP under any of the homomorphic image orderings:
(i) the class of words over a non-singleton alphabet, (ii) permutations.

Proof. In the word case, a counterexample is given by taking any two distinct letters from the
alphabet, and in the permutation case by taking 12 and 21.

Next, we consider those classes which possess the JPP under OH, but not under the two
stronger orders.

Theorem 4.4. The following classes possess the JPP under OH but not under OIH or OMH: (i) digraphs,
(ii) irreflexive graphs, (iii) irreflexive posets.

Proof. To prove that digraphs possess the JPP under OH, it is sufficient to note that an empty
graph has any other smaller digraph as a homomorphic image. On the other hand, any preimage
of an empty digraph is empty, while any strong preimage of a non-empty digraph is non-empty.
Hence, such a pair of graphs cannot join. To complete the proof, note that empty digraphs belong
to all three listed classes.

Finally, we consider those classes which possess JPP under OIH (and hence OH) but not under
OMH.

Theorem 4.5. The following classes possess the JPP under OH and OIH, but not OMH: (i) reflexive
graphs, (ii) reflexive trees, (iii) reflexive posets, (iv) equivalence relations, (v) linear orders.

Proof. Let C be any of the above classes, and let A, B ∈ C. Take C to be:

• the disjoint union of A and B in cases (i), (iii), (iv);

• a union of A and B with a single-vertex intersection in case (ii);

• the order sum of A and B in case (v).

Note that C ∈ C in each case. Furthermore, both A and B are strong homomorphic images of C.
For instance, we can map a copy of A inside C bijectively onto A, and map the copy of B to an
appropriate single point of A. Hence C has the JPP under OIH.

We now prove that C does not possess the JPP under OMH. In cases (ii), (iii), (v) this is due
to minimality; see Table 1. For cases (i), (iv) note that every M-strong preimage of a complete
digraph is necessarily complete, while an M-strong preimage of the (reflexive) empty digraph is
a disjoint union of complete digraphs. Hence two such digraphs do not join.

5 Dual amalgamation property

We now move on to our final question: for a given class C under a given homomorphic image order,
does C possess the dual amalgamation property (DAP)? In this context, the arguments necessary
for each of the three types of order are rather different in nature. This is due to the fact that
epimorphisms feature under the assumptions for this property, and therefore, say, DAP for the
M-induced order is not a specialisation of DAP for the induced order. Despite this, it transpires
that the answer to the DAP question is positive for most classes and orders.

We begin with the following lemma:

Lemma 5.1. The Dual Amalgamation Property holds for unstructured sets with respect to surjections.
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Proof. Let A, B, C be sets and let f : B → A, g : C → A be surjections. We will prove the existence
of a set D and epimorphisms h : D → B and k : D → C such that f h = gk. For each a ∈ A,
consider the sets f−1(a) ⊆ B and g−1(a) ⊆ C; both are non-empty. Let Da be pairwise disjoint
sets such that |Da| ≥ max(| f−1(a)|, |g−1(a)|). Let ha : Da → f−1(a) and ka : Da → g−1(a) be
arbitrary surjections. Let D =

⋃

a∈A Da, h =
⋃

a∈A ha and k =
⋃

a∈A ka. Since im(ha) = f−1(a)
and

⋃

a∈A f−1(a) = B, we have that h is onto. Analogously, k is onto. Let d ∈ D, say d ∈ Da. Then
h(d) = ha(d) ∈ f−1(a) and k(d) = ka(d) ∈ g−1(a). Hence f h(d) = a = gk(d), as required.

Theorem 5.2. The following classes possess the DAP with respect to OH: (i) digraphs, (ii) reflexive
graphs, (iii) irreflexive graphs, (iv) reflexive posets, (v) irreflexive posets, (vi) irreflexive tournaments,
(vii) equivalence relations, (viii) linear orders, (ix) words.

Proof. Case (vi) is immediate because OMH reduces to isomorphism (see Table 1).
For cases (i), (ii), (iii), (iv), (v), (vii) and (viii), we apply Lemma 5.1. For example, given

digraphs A, B, C and epimorphisms f : B → A, g : C → A, apply the process in the proof of
Lemma 5.1 to the vertices of A, B and C to obtain the vertices of D =

⋃

a∈A Da, and take D to be
the empty digraph on these vertices. This construction may then be appropriately adapted, with
“empty digraph” replaced by the appropriate analogous structure: reflexive/irreflexive empty
graph in cases (ii) and (iii), reflexive/irreflexive antichain in cases (iv) and (v), the diagonal
relation in case (vii) and the order-sum of chains Da in case (viii).

For case (ix), let A, B, C be words and f : B → A, g : C → A be epimorphisms. Suppose
A = xα1

1 xα2
2 . . . xαk

k where x1, . . . , xk ∈ X and xi 6= xi+1. The existence of homomorphisms f and
g implies that B and C have the same “form” as A but with different exponents; more precisely

B = x
β1

1 . . . x
βk

k and C = x
γ1

1 . . . x
γk

k where βi, γi ≥ αi. Then D = xδ1
1 . . . xδk

k where δi = max(βi, γi),
with the obvious mappings h : D → B, k : D → C, satisfies the definition of DAP.

Theorem 5.3. The following classes do not possess the DAP with respect to OH: (i) reflexive trees, (ii)
irreflexive trees, (iii) reflexive tournaments, (iv) permutations.

Proof. Cases (iii) and (iv) follow since, for each class, the JPP does not hold and the trivial struc-
ture is a homomorphic image of each member.

For cases (i) and (ii), let A be a star with four vertices {1, 2, 3, 4} and edges (1, 2), (1, 3) and
(1, 4). Let B = {b1, . . . , b11} and C = {c1, . . . , c11} be paths of length 11, and let f : B → A and
g : C → A be the epimorphisms given by:

f =

(

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

1 4 1 3 1 2 1 3 1 4 1

)

g =

(

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

1 3 1 4 1 2 1 4 1 3 1

)

.

Suppose there exists a tree D and epimorphisms h : D → B and k : D → C such that f h = gk.
Let p, q ∈ D be such that h(p) = b4, h(q) = b6 and the unique path p = d1, d2, . . . , dk = q is
shortest possible. Then of course h(di) /∈ {p, q} for i 6= 1, k. It then follows that in fact h(di) = b5

for i = 2, . . . , k − 1. Hence we have f h({d1, . . . , dk}) = {3, 1, 2}. (In the irreflexive case we must
have k = 3.) Consider now the image of the path d1, . . . , dk in C. Its vertices form a contiguous
segment cl , . . . , cm. From the definition of g we see that no such contiguous segment is mapped
precisely onto the set {3, 1, 2}. Hence f h 6= gk.

We next consider the strong homomorphism definition.
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Theorem 5.4. The following classes possess the DAP with respect to OIH: (i) digraphs, (ii) reflexive
graphs, (iii) irreflexive graphs, (iv) reflexive posets, (v) irreflexive posets, (vi) irreflexive tournaments,
(vii) equivalence relations, (viii) linear orders, (ix) words.

Proof. For case (i), let A, B, C be digraphs and let f : B → A, g : C → A be strong epimorphisms.
We will prove the existence of a digraph D and epimorphisms h : D → B and k : D → C such
that f h = gk.

For every edge α = (a1, a2) in E(A), there are edges

(F(α, a1), F(α, a2)) ∈ E(B) and (G(α, a1), G(α, a2)) ∈ E(C)

such that
f (F(α, a1)) = a1, f (F(α, a2)) = a2, g(G(α, a1)) = a1, g(G(α, a2)) = a2.

We construct D as follows. For every edge β = (b1, b2) ∈ E(B), let DB,β = {d1,β, d2,β},
and for every edge γ = (c1, c2) ∈ E(C), let DC,γ = {d1,γ, d2,γ}. Now let D = DB ∪ DC where
DB =

⋃

β∈E(B) DB,β and DC =
⋃

γ∈E(C) DC,γ, and let the edges be

E(D) = {(d1,β, d2,β) : β ∈ E(B)} ∪ {(d1,γ, d2,γ) : γ ∈ E(C)}.

We now define homomorphisms h : D → B and k : D → C as follows. For x = di,β ∈ DB,β,
with β = (b1, b2), we let a1 = f (b1), a2 = f (b2), note that α = (a1, a2) ∈ E(A), and define

h(x) = bi, k(x) = G(α, ai).

Analogously, for x = di,γ ∈ DC,γ with γ = (c1, c2), we let a1 = g(c1), a2 = g(c2), note that
α = (a1, a2) ∈ E(A), and define

h(x) = F(α, ai), k(x) = ci.

From this definition it is clear that h maps edges of D onto the edges of B, and does so
bijectively when restricted to DB. Hence h, and dually k, are strong epimorphisms.

We claim that f h = gk. Indeed, let x ∈ D, and without loss, assume x = d1,β. With the
notation as above

f h(x) = f h(d1,β) = f (b1) = a1 = g(G(α, a1)) = gk(d1,β) = gk(x),

as required.
We may adapt this proof for cases (ii), (iii), (iv), (v) and (vii); for irreflexive graphs and posets

the argument follows the digraph proof precisely. For reflexive graphs and posets and for equiv-
alence relations, loops at every vertex must be added in the construction.

Cases (vi), (viii) and (ix) all follow from Theorem 5.2 and the fact that all homomorphisms
are strong (see Table 1).

Theorem 5.5. The following classes do not possess the DAP with respect to OIH: (i) reflexive trees, (ii)
irreflexive trees, (iii) reflexive tournaments, (iv) permutations.

Proof. The proof of Theorem 5.3 remains valid because all homomorphisms are strong.
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In the M-strong case, it turns out that the dual amalgamation property holds for all-but-one
of the types of structure under consideration, but for reasons that are rather different to those
we have seen so far. Essentially, in order for A, B and C to possess surjective homomorphisms
f : B → A and g : C → A under the M-strong definition, the situation is already very
constrained, with the structure of B and C being tightly controlled by that of A. This allows the
construction of a suitable D, also determined by A. It is worth recalling that the Joint Preimage
Property does not hold for any of the classes under OMH.

Theorem 5.6. All the following classes possess DAP with respect to OMH: (i) digraphs, (ii) reflexive
graphs, (iii) irreflexive graphs, (iv) reflexive trees, (v) reflexive posets, (vi) irreflexive posets, (vii) reflexive
tournaments, (viii) irreflexive tournaments, (ix) equivalence relations, (x) linear orders, (xi) permutations,
(xii) words.

Proof. For case (i), let A, B, C be digraphs and let f : B → A, g : C → A be M-strong epimor-
phisms. We will prove the existence of a digraph D and M-strong epimorphisms h : D → B and
k : D → C such that f h = gk.

For each a ∈ A, define B(a) = f−1(a) and C(a) = g−1(a). Since f and g are onto, we have
B =

⋃

a∈A B(a) and C =
⋃

a∈A C(a). Let D(a) (a ∈ A) be pairwise disjoint sets with |D(a)| ≥
max(|B(a)|, |C(a)|). Let ha : D(a) → B(a) and ka : D(a) → C(a) be arbitrary surjections. Let
D =

⋃

a∈A D(a), h =
⋃

a∈A ha and k =
⋃

a∈A ka.
Define a digraph structure on D as follows: for d1, d2 ∈ D with di ∈ D(ai) (a1, a2 ∈ A), we let

(d1, d2) ∈ E(D) ⇔ (a1, a2) ∈ E(A). (1)

Since D =
⋃

a∈A D(a), B =
⋃

a∈A B(a) and ha : D(a) → B(a) is onto, it follows that h : D → B
is onto. For arbitrary d1, d2 ∈ D, with di ∈ D(ai), let bi = h(di) ∈ B(ai), and then

(d1, d2) ∈ E(D) ⇔ (a1, a2) ∈ E(A) (by (1))

⇔ ( f (b1), f (b2)) ∈ E(A) (since Bi = f−1(ai))

⇔ (b1, b2) ∈ E(B) (since f is M-strong)

⇔ (h(d1), h(d2)) ∈ E(B) (since bi = h(di))

Hence h is an M-strong homomorphism, and so is k by an analogous argument.
Finally, we check that f h = gk. Let d ∈ D, say d ∈ D(a). Then h(d) = ha(d) ∈ B(a) and so

f h(d) = a. By symmetry, gk(d) = a and hence f h = gk.
The digraph construction may also be used to establish the result in cases (ii), (iii), (vi) and

(ix). Cases (v), (vii), (viii), (x), (xi) and (xii) are trivial, since OMH reduces to isomorphism; see
Table 1. Case (iv) follows similarly from Lemma 2.6.

Theorem 5.7. The class of irreflexive trees does not possess DAP with respect to OMH.

Proof. Let A, B and C be the paths 1 − 2, 3 − 4 − 5 and 6 − 7 − 8 respectively. Let f : B → A and
g : C → A be M-strong homomomorphisms defined by

f =

(

3 4 5
2 1 2

)

, g =

(

6 7 8
1 2 1

)

.

Suppose there exists a tree D and M-strong homomorphisms h : D → B, k : D → C such that
f h = gk. Note that D is a disjoint union D1 ∪ D2, where Di = ( f h)−1(i) = (gk)−1(i). Since 1 and
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2 are connected in A, and f h = gk is an M-strong homomorphism, it follows that every vertex
from D1 is connected to every vertex from D2. Furthermore

D1 = (gk)−1(1) = k−1g−1(1) = k−1{6, 8},

implying that |D1| ≥ 2 and, likewise, |D2| ≥ 2. But then the edges between D1 and D2 must
form cycles, contradicting D being a tree.

6 Concluding remarks

In this paper we have begun an investigation into the homomorphic image order, structured
around the three topics of partial well-order, joint preimage property and dual amalgamation
property. There are of course many avenues open for future investigation. The antichain results
presented here give a fairly uniform picture; this undoubtedly changes in the presence of avoid-
ance restrictions. So one possible research direction is: in each of our contexts, classify partially
well-ordered classes defined by a small number of small obstructions. In the setting of substruc-
ture order, the Joint Embedding Property and the Amalgamation Property lead to the notions of
atomic and homogeneous structures. It is natural to ask whether our orders OH, OIH and OMH

admit of a similar treatment, and whether this would lead to interesting combinatorial objects
with universal properties.

Acknowledgement. The authors are grateful to an anonymous referee for a careful reading of
the paper and helpful comments.
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Table 2: Summary of results for the homomorphic image order

Class C PWO JPP DAP

Digraphs No: Theorem 3.1 Yes: Theorem 4.4 Yes: Theorem 5.2
Graphs(reflexive) No: Theorem 3.3 Yes: Theorem 4.5 Yes: Theorem 5.2
Graphs (irreflexive) No: Theorem 3.2 Yes: Theorem 4.4 Yes: Theorem 5.2
Trees (reflexive) Yes: Corollary 3.13 Yes: Theorem 4.5 No: Theorem 5.3
Trees (irreflexive) Yes: Corollary 3.12 No: Theorem 4.1 No: Theorem 5.3
Posets (reflexive) No: Theorem 3.8 Yes: Theorem 4.5 Yes: Theorem 5.2
Posets (irreflexive) No: Theorem 3.7 Yes: Theorem 4.4 Yes: Theorem 5.2
Tournaments (reflexive) No: Theorem 3.6 No: Theorem 4.2 No: Theorem 5.3
Tournaments (irreflexive) No: Theorem 3.6 No: Theorem 4.2 Yes: Theorem 5.2
Equivalence relations Yes: Theorem 3.15 Yes: Theorem 4.5 Yes: Theorem 5.2
Linear orders Yes: Proposition 3.17 Yes: Theorem 4.5 Yes: Theorem 5.2
Permutations No: Proposition 3.18 No: Theorem 4.3 No: Theorem 5.3
Words No: Proposition 3.18 No: Theorem 4.3 Yes: Theorem 5.2

Table 3: Summary of results for the strong homomorphic image order

Class C PWO JPP DAP

Digraphs No: Theorem 3.1 No: Theorem 4.4 Yes: Theorem 5.4
Graphs(reflexive) No: Theorem 3.3 Yes: Theorem 4.5 Yes: Theorem 5.4
Graphs (irreflexive) No: Theorem 3.2 No: Theorem 4.4 Yes: Theorem 5.4
Trees (reflexive) Yes: Corollary 3.13 Yes: Theorem 4.5 No: Theorem 5.5
Trees (irreflexive) Yes: Corollary 3.12 No: Theorem 4.1 No: Theorem 5.5
Posets (reflexive) No: Theorem 3.8 Yes: Theorem 4.5 Yes: Theorem 5.4
Posets (irreflexive) No: Theorem 3.7 No: Theorem 4.4 Yes: Theorem 5.4
Tournaments (reflexive) No: Theorem 3.6 No: Theorem 4.2 No: Theorem 5.5
Tournaments (irreflexive) No: Theorem 3.6 No: Theorem 4.2 Yes: Theorem 5.4
Equivalence relations Yes: Theorem 3.15 Yes: Theorem 4.5 Yes: Theorem 5.4
Linear orders Yes: Proposition 3.17 Yes: Theorem 4.5 Yes: Theorem 5.4
Permutations No: Proposition 3.18 No: Theorem 4.3 No: Theorem 5.5
Words No: Proposition 3.18 No: Theorem 4.3 Yes: Theorem 5.4
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Table 4: Summary of results for the M-strong homomorphic image order

Class C PWO JPP DAP

Digraphs No: Theorem 3.1 No: Theorem 4.4 Yes: Theorem 5.6
Graphs(reflexive) No: Theorem 3.3 No: Theorem 4.5 Yes: Theorem 5.6
Graphs (irreflexive) No: Theorem 3.2 No: Theorem 4.4 Yes: Theorem 5.6
Trees (reflexive) No: Remark 3.4 No: Theorem 4.5 Yes: Theorem 5.6
Trees (irreflexive) No: Remark 3.4 No: Theorem 4.1 No: Theorem 5.7
Posets (reflexive) No: Theorem 3.8 No: Theorem 4.5 Yes: Theorem 5.6
Posets (irreflexive) No: Theorem 3.7 No: Theorem 4.4 Yes: Theorem 5.6
Tournaments (reflexive) No: Theorem 3.6 No: Theorem 4.2 Yes: Theorem 5.6
Tournaments (irreflexive) No: Theorem 3.6 No: Theorem 4.2 Yes: Theorem 5.6
Equivalence relations No: Theorem 3.16 No: Theorem 4.5 Yes: Theorem 5.6
Linear orders No: Proposition 3.17 No: Theorem 4.5 Yes: Theorem 5.6
Permutations No: Proposition 3.18 No: Theorem 4.3 Yes: Theorem 5.6
Words No: Proposition 3.18 No: Theorem 4.3 Yes: Theorem 5.6
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