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A HEYTING ALGEBRA ON DYCK PATHS OF TYPE A AND B

HENRI MÜHLE

Abstract. In this article we investigate the lattices of Dyck paths of type A and
B under dominance order, and explicitly describe their Heyting algebra structure.
This means that each Dyck path of either type has a relative pseudocomplement
with respect to some other Dyck path of the same type. While the proof that this
lattice forms a Heyting algebra is quite straightforward, the explicit computation
of the relative pseudocomplements using the lattice-theoretic definition is quite
tedious. We give a combinatorial description of the Heyting algebra operations
join, meet, and relative pseudocomplement in terms of height sequences, and we
use these results to derive formulas for pseudocomplements and to characterize
the regular elements in these lattices.

1. Introduction

In this article we mostly consider lattice paths from (0, 0) to (n, n) that consist
only of up- and right-steps and that stay (weakly) above the diagonal x = y. We
denote the set of all these paths by DA

n , and refer to them as Dyck paths of type A,
a notation that is justified in the next paragraphs.

A path p ∈ DA
n dominates another Dyck path p′ of the same length, if p′ stays

weakly below p at all time, and in that case we write p′ ≤D p. We write DA
n

for the resulting poset. In fact, DA
n is a distributive lattice, and probably first

appeared in [20, Example 4] as a partial order on the set of order ideals of a
triangular poset with n − 1 minimal elements. (It is an easy exercise to work out
the isomorphism between these two posets.) Apart from these two guises, the
lattice DA

n also appears as the Bruhat order on noncrossing partitions [17] and
312-avoiding permutations [1,3]. A lot of research has been done on enumerative
and structural aspects of DA

n [10, 12–15], and it has interesting connections to the
change of basis matrix of the Temperley–Lieb algebra [8, 16].

The lattice DA
n naturally constitutes a principal order filter in the lattice L(n, n)

of all lattice paths from (0, 0) to (n, n) using only up- and right-steps. In general,
L(n, m) is also a distributive lattice, and it is clearly a sublattice of Young’s lattice.
For a certain choice of parameters L(n, m) is isomorphic to the Bruhat order on
parabolic quotients of the symmetric group [21, Section 4]. These lattices have
been further studied in [5, 19] and the references given therein.
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2 HENRI MÜHLE

The previous paragraphs suggest a strong connection between DA
n and the

symmetric group Sn, which is isomorphic to the Coxeter group An−1. This is
the main motivation for the superscript “A”. We also remark that the triangular
poset with n − 1 minimal elements also appears naturally in this context, namely
as the so-called root poset of An−1.

It is well known that the cardinality of DA
n is given by the nth Catalan number

1
n+1(

2n
n ) [22, Exercise 6.19(i)]. It is often the case for combinatorial objects associ-

ated with the symmetric group and enumerated by the Catalan numbers, that the
subset of these objects with a central symmetry is an interesting combinatorial
family in its own right. Famous examples are noncrossing partitions fixed under
a half turn, or centrally symmetric triangulations of a convex polygon.

Something similar happens for Dyck paths of type A. Consider the set DB
n

of lattice paths from (0, 0) to (2n, 2n) that stay weakly above the diagonal x = y,
and that are invariant under reflection about the diagonal x = 2n− y. For brevity,
identify each of these paths with the subpath consisting of the first 2n steps. The
cardinality of DB

n is given by the central binomial coefficient (2n
n ), which is also

the number of order ideals in the root poset of the Coxeter group Bn; an explicit
bijection was given in [23, Section 3.1]. Consequently, we call the elements of
DB

n Dyck paths of type B. We remark that the Coxeter group Bn is isomorphic
to the hyperoctahedral group of rank n. It is straightforward to show that the
dominance order on DB

n forms a distributive lattice, denoted by DB
n , which is

isomorphic to the lattice of order ideals of the root poset of the Coxeter group Bn.
The main purpose of this article is to outline further structural commonalities

between the lattices DA
n and DB

n , which fit nicely into the combinatorial rela-
tionship between the Coxeter groups An−1 and Bn that is part of the stream of
Coxeter-Catalan combinatorics. In particular, since DA

n and DB
n are both finite dis-

tributive lattices, they naturally possess a Heyting algebra structure, and it is our
goal to combinatorially understand the relation between these Heyting algebras.
Our first main result is the following theorem.

Theorem 1.1. For n > 0 the lattice DB
n of Dyck paths of type B under dominance order

forms a Heyting algebra. The sublattice DA
n of Dyck paths of type A under dominance

order forms a Heyting algebra as well, but it is not a Heyting subalgebra of the former.

Conversely, however, DB
n is (isomorphic to) a Heyting subalgebra of DA

2n.

The second main contribution of this article, is a purely combinatorial descrip-
tion of these Heyting algebras, i.e. we give explicit formulas for join, meet, and
relative pseudocomplements in these Heyting algebras using only the combina-
torial realization of Dyck paths in terms of height sequences. Moreover, we use
these formulas to describe pseudocomplements and characterize the regular ele-
ments in these algebras. A thorough investigation of the Heyting algebra of Dyck
paths of type A from a logic-theoretical standpoint was recently carried out in
[11]. More precisely, in [11] the Heyting algebra of Dyck paths of type A was
related to a fragment of interval temporal logic.

This article is organized as follows: in Section 2 we recall the necessary lattice-
theoretic notions of Heyting algebra and distributive lattice. Moreover, we for-
mally define Dyck paths, realize them in terms of height sequences, and relate
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Dyck paths of type B to centrally symmetric Dyck paths of type A. Subsequently
we characterize the join-prime Dyck paths, and relate the lattices of Dyck paths
to the lattices of order ideals of some triangular posets. In Section 3, we explicitly
describe the height functions of the relative pseudocomplements and pseudocom-
plements in the Heyting algebras of Dyck paths. More precisely, we start with
the investigation of the Heyting algebra of all monotone lattice paths, and derive
the formulas in the Heyting algebras of Dyck paths of type A and B from this.

2. Preliminaries

In this section we define the basic notions needed in this article. Throughout
this article we use the abbreviation [n] = {1, 2, . . . , n}.

2.1. Heyting Algebras and Distributive Lattices. We start by recalling the no-
tions of Heyting algebra and distributive lattice. For further background we refer
the reader to [2] or [7, Chapter 7].

Let L = (L,≤) be a lattice with least element 0̂ and greatest element 1̂. Given
x, y ∈ L we say that the greatest element z ∈ L satisfying

(1) x ∧ z ≤ y

is (if it exists) the relative pseudocomplement of x with repect to y, and we usually
write x → y. If relative pseudocomplements exist for all x, y ∈ L, then L is a
Heyting algebra. Moreover, if L is a Heyting algebra, then the element x → 0̂ for
x ∈ L is the pseudocomplement of x, and we usually write xc. An element x ∈ L
is regular if (xc)c = x. It is straightforward to verify that the poset B = (B,≤),
where B = {x ∈ L | x is regular}, is a Boolean lattice.

Lemma 2.1 ([2, Theorem IX.1.3(iii)]). Let L = (L,≤) be a Heyting algebra. If x, y ∈ L

satisfy x ≤ y, then x → y = 1̂.

If every three elements x, y, z ∈ L satisfy one of the two equivalent laws

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), and(2)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),(3)

then L is distributive. The following theorem states the connection between dis-
tributive lattices and Heyting algebras.

Theorem 2.2 ([7, Theorem 7.10]). Every Heyting algebra is distributive. Conversely,
every finite distributive lattice is a Heyting algebra.

We recall some further background on Heyting algebras, borrowing slightly
from category theory. Let K,L be two Heyting algebras, and let f , g : K → L be
two Heyting algebra morphisms. Define Eq( f , g) = {k ∈ K | f (k) = g(k)} to be
the equalizer of f and g. We have the following result.

Proposition 2.3. Let K,L be Heyting algebras, and let f , g : K → L be two Heyting
algebra morphisms. The equalizer Eq( f , g) is a Heyting subalgebra of K.

Proof. This follows for instance from [4, Proposition 9.1.5]. �
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h = (3, 5, 7, 7, 7, 8, 10, 11, 11, 11, 11)
w = uuuruuruurrruruururrrr

h = (3, 5, 7, 7, 10, 14, 14, 15)
w = uuuruuruurruuuruuuurru

Figure 1. Two Dyck paths of semilength 11, and their corre-
sponding height sequences and Dyck words. The left path is
of type A, and the right path is of type B.

2.2. Dyck Paths of Type A and B. A Dyck path of semilength n is a lattice path on
N

2 which starts at (0, 0), which consists of 2n steps either of the form (0, 1) (so-
called up-steps) or of the form (1, 0) (so-called right-steps), and which stays weakly
above the diagonal x = y. A Dyck path of semilength n is of type A if it ends at
(n, n). If we do not pose the restriction on the Dyck path enforcing it to end at
(n, n), then it is of type B. Let DA

n denote the set of Dyck paths of semilength n

being of type A, and let DB
n denote the set of Dyck paths of semilength n being

of type B. Clearly we have DA
n ⊆ DB

n . It is well known that

∣
∣DA

n

∣
∣ =

1
n + 1

(
2n

n

)

, and
∣
∣DB

n

∣
∣ =

(
2n

n

)

,

and these numbers are known as Catalan numbers of type A and B, respectively.
See for instance [22, Exercise 6.19(i)] and [18, Corollary 6].

It is standard, see for instance [9, Section 2] or [18, Section 3.2], that a Dyck
path p ∈ DB

n can be encoded by a Dyck word, namely a word wp of length 2n

over the alphabet {u, r} in which every prefix contains at least as many u’s as it
contains r’s. If p ∈ DA

n , then wp is additionally required to contain exactly n times
the letter u and n times the letter r. See Figure 1 for an illustration.

2.2.1. Type A. For p ∈ DA
n define a sequence hp = (h1, h2, . . . , hn), where hi is the

number of u’s occurring in wp before the ith occurence of the letter r, and call this
sequence the height sequence of p. The next lemma implies that the entry hi in hp

determines precisely the height of p at abscissa i − 1.
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Lemma 2.4. If p ∈ DA
n , then hp = (h1, h2, . . . , hn) satisfies h1 ≤ h2 ≤ · · · ≤ hn, and

i ≤ hi ≤ n for all i ∈ [n]. Conversely, each such sequence uniquely determines a Dyck

path in DA
n .

Proof. If p is a Dyck path of type A, then the conditions h1 ≤ h2 ≤ · · · ≤ hn = n
and i ≤ hi for i ∈ [n] both follow easily from the assumption that wp is a Dyck
word.

Conversely, if h = (h1, h2, . . . , hn) has the desired properties, then it is quickly
checked that

wh = uu · · · u
︸ ︷︷ ︸

h1

r uu · · · u
︸ ︷︷ ︸

h2−h1

r · · · r uu · · · u
︸ ︷︷ ︸

hn−hn−1

r.

is a Dyck word of type A. �

Remark 2.5. Our notion of a height sequence associated with a Dyck path of type
A coincides with the max-vector of a noncrossing partition defined in [3, Sec-
tion 4].

Let p, p′ ∈ DA
n with associated height sequences hp = (h1, h2, . . . , hn) and hp′ =

(h′1, h′2, . . . , h′n). Define p ≤D p′ if and only if hi ≤ h′i for i ∈ [n], and call this partial
order the dominance order on DA

n . We usually write DA
n for the poset

(
DA

n ,≤D

)
.

Figure 2 shows DA
4 .

Lemma 2.6. For any p, p′ ∈ DA
n we have p ≤D p′ if and only if in every prefix of wp

there are at least as many r’s as there are in the prefix of wp′ of the same length.

Proof. This is a straightforward computation. �

Theorem 2.7 ([15, Corollary 2.2]). For n > 0 the poset DA
n is a distributive lattice.

The set DA
n comes naturally equipped with a nontrivial automorphism ψ, the

reflection map, which corresponds to a reflection of the lattice path about the di-
agonal y = n − x. In terms of Dyck words, this automorphism can be expressed
as follows. Let p ∈ DA

n have associated Dyck word wp. We construct a new word
w′ from wp by simultaneously replacing each u by an r, and each r by an u. Sub-
sequently, we construct a word w′′ from w′, by sending the ith letter of w′

p to the
(n − i + 1)st letter of w′′

p. It is straightforward to check that w′′ is the Dyck word
of some path ψ(p) ∈ DA

n . See Figure 3 for an illustration.

Lemma 2.8. Let p ∈ DA
n have height sequence hp = (h1, h2, . . . , hn). The Dyck path

ψ(p) has height sequence hψ(p) = (h′1, h′2, . . . , h′n), given by

h′n−hi+1 = h′n−hi+2 = · · · = hn−hi−1
= n − i + 1,

for any i ∈ [n] with hi > hi−1, and where we set h0 = 0.

Proof. Let p ∈ DA
n have height sequence hp = (h1, h2, . . . , hn), and pick i ∈ [n]

with hi > hi−1. More precisely, say that hi − hi−1 = c > 0. By definition this
means that in wp there are exactly c-many letters u between the (i − 1)st and the
ith occurrence of the letter r. More precisely, these are the (hi−1 + 1)st, (hi−1 +
2)nd, . . . , hth

i letters u in wp.
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Figure 2. The lattice DA
4 . The highlighted paths are regular.

h = (3, 5, 7, 7, 7, 8, 10, 11, 11, 11, 11)
w = uuuruuruurrruruururrrr

h = (4, 5, 5, 6, 9, 9, 10, 10, 11, 11, 11)
w = uuuururruruuurrurrurrr

Figure 3. Illustration of the reflection map ψ. The right path is
the image of the left path under ψ.

Hence, by construction, in wψ(p) occur precisely c consecutive r’s between the
(n − i + 1)st and (n − i + 2)nd occurrence of the letter u. (If i = 1, then the
previous is to be read as “after the nth occurrence of the letter u”). More precisely,
these are the (n− hi + 1)st, (n− hi + 2)nd, . . . , (n− hi−1)

th letters r in wψ(p), which
implies that h′n−hi+1 = h′n−hi+2 = · · · = h′n−hi−1

= n − i + 1, which concludes the
proof. �
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Lemma 2.9. The map ψ is a lattice automorphism of DA
n , i.e. p, p′ ∈ DA

n satisfy p ≤D p′

if and only if ψ(p) ≤D ψ(p′).

Proof. Suppose that p ≤D p′. Lemma 2.6 implies that in every prefix of p the
number of r’s is at least as big as the number of r’s in the prefix of the same length
in wp′ . This implies by construction that the same is true for ψ(p) and ψ(p′),
which yields ψ(p) ≤D ψ(p′). Since ψ is an involution, the converse follows. �

2.2.2. Type B. By definition, a Dyck path of type B having semilength n is a path
that stays weakly above the line x = y, and consists of 2n steps. Observe that the
definition of the reflection map ψ in the last section does not require its input to
be a Dyck path of type A, in fact, we can apply it to any word over the alphabet
{u, r}. It is easy to see that in general for p ∈ DB

n , the image ψ(p) need not be
a Dyck path again. The next lemma claims, however, that the concatenation of
p ∈ DB

n and ψ(p) is in DA
2n.

Lemma 2.10. For any p ∈ DB
n the concatenation of p and ψ(p) is in DA

2n.

Proof. Observe that if wp has k letters equal to r, then p ends at (k, 2n − k). By
definition p does not cross the diagonal x = y, and therefore the concatenation of
p and ψ(p) does not cross this diagonal either. It thus corresponds to a path in
DA

2n. �

Corollary 2.11. The sets DB
n and

{
p ∈ DA

2n | ψ(p) = p
}

are in bijection.

Proof. Lemma 2.10 describes the map that sends each p ∈ DB
n to some q ∈ DA

2n,
and it is immediate from the construction that in this case ψ(q) = q. Conversely,
if we have q ∈ DA

2n with ψ(q) = q, then this path is completely determined by
its first 2n steps, which can be regarded as a path p ∈ DB

n in its own right. That
these two maps are mutually inverse is straightforward to verify. �

We call the Dyck paths in
{
p ∈ DA

2n | ψ(p) = p
}

centrally symmetric. Now we
can use the connection described in Corollary 2.11 to define a height sequence
for Dyck paths of type B. Let p ∈ DA

2n have ψ(p) = p, and let q ∈ DB
n denote

the subpath consisting of the first 2n steps. Let hp = (h1, h2, . . . , h2n), and define
k = min

{
i ∈ [n] | i + hi ≥ 2n

}
. The sequence hq = (h1, h2, . . . , hk) is the height

sequence of q. We observe that k + hk = 2n if wq ends with a right-step, and
k + hk = 2n + 1 if wq ends with an up-step. It is clear that hi is precisely the
number of up-steps occuring before the ith occurrence of the letter r in wq, with
the exception that if wq ends with the letter u, then hk is the total number of u’s
occurring in wq. Like in the type A case, the entry hi in hp determines precisely
the height of p at abscissa i − 1.

Lemma 2.12. If p ∈ DB
n , then hp = (h1, h2, . . . , hk) for k ∈ [n] satisfies

hk =

{

2n − k + 1, if wp ends with u

2n − k, if wp ends with r,

as well as h1 ≤ h2 ≤ · · · ≤ hk−1 ≤ 2n − k and hi ≥ i for i ∈ [k]. Conversely, each such

sequence uniquely determines a Dyck path in DB
n .
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Proof. If wp is a Dyck word of type B, then it is straightforward to verify that hp

satisfies the given conditions.

Conversely, let h = (h1, h2, . . . , hk) satisfy the given conditions, where we put
h0 = 0 in the case k = 1. If hk = 2n − k + 1, then we define

wh = uu · · · u
︸ ︷︷ ︸

h1

r uu · · · u
︸ ︷︷ ︸

h2−h1

r · · · r uu · · · u
︸ ︷︷ ︸

hk−hk−1

,

and if hk = 2n − k, then we define

wh = uu · · · u
︸ ︷︷ ︸

h1

r uu · · · u
︸ ︷︷ ︸

h2−h1

r · · · r uu · · · u
︸ ︷︷ ︸

hk−hk−1

r.

In both cases, it is straightforward to verify that wh is a Dyck word of type B. �

The next lemma describes how to derive the height sequence of the centrally
symmetric Dyck path p ∈ DA

2n from a Dyck path q ∈ DB
n .

Lemma 2.13. Let q ∈ DB
n with height sequence hq = (h1, h2, . . . , hk). The correspond-

ing centrally symmetric Dyck path p ∈ DA
2n has height sequence hp = (h′1, h′2, . . . , h′2n),

where h′i = hi for i ≤ k, and

h′2n−hi+1 = h′2n−hi+2 = · · · = h′2n−hi−1
= 2n − i + 1,

for i ∈ [k] with hi > hi−1 and h0 = 0.

Proof. This is essentially the same proof as the one of Lemma 2.8. �

Remark 2.14. If p ∈ DA
n ⊆ DB

n , then the associated Dyck word wp ends with the
letter r, and its height sequence has precisely n entries. In this case, the conditions
in Lemma 2.12 coincide with those in Lemma 2.4.

Lemma 2.15. Let p, p′ ∈ DB
n with associated height sequences hp = (h1, h2, . . . , hk) and

hp′ = (h′1, h′2, . . . , h′k′), respectively. If k < k′, then hk > h′k.

Proof. Lemma 2.12 implies that hk ∈ {2n − k, 2n− k + 1}, and hk′ ∈ {2n − k′, 2n−
k′ + 1}. If k < k′, then we immediately get 2n − k + 1 > 2n − k > 2n − k′

and 2n − k + 1 > 2n − k′ + 1, as well as 2n − k ≥ 2n − k′ + 1. If 2n − k =
2n − k′ + 1, then both paths p and p′ end at the same height, which forces k = k′,
a contradiction. �

Let p, p′ ∈ DB
n have associated height sequences hp = (h1, h2, . . . , hk) and hp′ =

(h′1, h′2, . . . , h′k′) for k, k′ ∈ [n]. Define p ≤D p′ if and only if k ≥ k′ and hi ≤ h′i for
i ∈ [k′], and call this partial order the dominance order on DB

n . We usually write
DB

n for the poset
(

DB
n ,≤D

)
. Figure 4 shows DB

3 . The following result extends
Theorem 2.7.

Theorem 2.16. For n > 0 the poset DB
n is a distributive lattice.

Proof. Let p, p′ ∈ DB
n have height sequences hp = (h1, h2, . . . , hk) and hp′ =

(h′1, h′2, . . . , h′k′), and assume without loss of generality that k ≥ k′. It is straight-
forward to verify that their meet can be defined via the height sequence

hp∧Dp′ =
(
min{h1, h′1}, min{h2, h′2}, . . . , min{hk′ , h′k′}, hk′+1, hk′+2, . . . , hk

)
,
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Figure 4. The lattice DB
3 . The highlighted paths are regular.

and their join can be defined via the height sequence

hp∨Dp
′ =

(
max{h1, h′1}, max{h2, h′2}, . . . , max{hk′ , h′k′}

)
.

Since min and max are distributive, the result follows. �

In fact, we can strengthen Corollary 2.11 as follows.

Lemma 2.17. The reflection map ψ is a poset isomorphism from DB
n to

({
q ∈ DA

2n |

ψ(q) = q
}

,≤D

)

.
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Proof. Let p, p′ ∈ DB
n . If p ≤D p′, then p stays weakly below p′, and by construction

the same is true for ψ(p) and ψ(p′). Let q and q′ denote the concatenation of p

and ψ(p), respectively p′ and ψ(p′). We clearly have ψ(q) = q and ψ(q′) = q′,
and the previous shows that q stays weakly below q′, which yields q ≤D q′. The
opposite direction is trivial. �

2.3. Join-Prime Dyck Paths. In general, many properties of a Heyting algebra
can be understood by looking at the induced subposet of join-prime elements. An
element p in a finite lattice L = (L,≤) is join-prime if p is not the least element,
and if for any two elements x, y ∈ L we have that p ≤ x ∨ y implies p ≤ x or
p ≤ y. Moreover, p is join-irreducible if it is not the least element, and for any
X ⊆ L with p =

∨
X it follows that p ∈ X. In other words, join-irreducible

elements in a finite lattice are precisely those elements with a unique lower cover.
We have the following straightforward result.

Lemma 2.18 ([2, Theorem III.1.2(i)]). If L is a finite distributive lattice, then an element
is join-prime if and only if it is join-irreducible.

Let us now characterize the join-prime elements of DB
n .

Lemma 2.19. An element p ∈ DB
n with height sequence hp = (h1, h2, . . . , hk) is join-

prime if and only if there exists a unique index i ∈ [k] such that hi > i and hi > hi−1,
where we put h0 = 0 if necessary.

Proof. In view of Theorem 2.16 and Lemma 2.18 it suffices to characterize the
join-irreducible elements of DB

n .
First suppose that hp has the desired form, i.e. there exists a unique index

i ∈ [k] such that hi > i and hi > hi−1. We necessarily have hi−1 = i − 1, and
hi = hi+1 = · · · = hmin{hi,k}. It is now easy to check that (h1, h2, . . . , hi−1, hi −

1, hi+1, . . . , hk) determines a Dyck path p′ ∈ DB
n , which is the unique lower cover

of p in DB
n . Hence p is join-irreducible.

Conversely, suppose that hp is not of the desired form. Then we may have that
hi = i for all i ∈ [k], which implies that p is the least element of DB

n , and is thus
not join-irreducible. Otherwise, there are at least two indices i and j with j > i

such that hi > i and hi > hi−1 as well as hj > j and hj > hj−1. It follows that
both (h1, h2, . . . , hi−1, hi − 1, hi+1, . . . , hk) and (h1, h2, . . . , hj−1, hj − 1, hj+1, . . . , hk)
determine lower covers of p that are mutually incomparable. Hence p is not join-
irreducible. �

The join-prime elements of DA
n are recovered by considering the case k = n in

Lemma 2.19, and they have been characterized previously in [12, Proposition 3.7].
As a final part of this section, we describe the subposet of join-prime elements

of DA
n and DB

n , respectively. First of all, let us denote the set of join-irreducible
elements of a finite lattice L by J(L), and write JA

n = J
(
DA

n

)
and JB

n = J
(
DB

n

)
.

Define TA
n =

{
(i, j) | 1 ≤ i < j ≤ n

}
and TB

n =
{
(i, j) | 1 ≤ i < j ≤ 2n + 1 − i

}
.

Consider the partial order on N
2 defined by (a, b) ≤ (a′, b′) if and only if a ≥ a′

and b ≤ b′.

Lemma 2.20. We have
(

JA
n ,≤D

)
∼=

(
TA

n ,≤) and
(

JB
n ,≤D

)
∼=

(
TB

n ,≤
)

for every n > 0.
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Proof. It is sufficient to consider only the type-B case, since type A is just a re-
striction of it.

Lemma 2.19 implies that the elements in JB
n can be indexed by a pair (i, hi) for

i ∈ [k], where k is the length of the corresponding height sequence, and hi is some
value in {i + 1, i + 2, . . . , 2n + 1 − i}. Write pij for the corresponding path, where
j = hi. Now pick pij, pi′ j′ ∈ JB

n with height sequences hpij
= (h1, h2, . . . , hk) and

hpi′ j′
= (h′1, h′2, . . . , h′k′). Lemma 2.19 implies that hi = j is the first entry of hp that

is strictly greater than its index, and likewise for h′i′ = j′ and hpi′ j′
.

Suppose that pij ≤D pi′ j′ . If i < i′, then h′i = i, and we get j = hi ≤ h′i = i < j,
which is a contradiction. If i ≥ i′ and j > j′, then j = hi ≤ h′i = max{i, j′} < j,
which is a contradiction. Hence (i, j) ≤ (i′, j′) as desired.

Conversely suppose that i′ ≤ i < j ≤ j′, and let s ∈ [n]. If s < i′, then
hs = s = h′s. If i′ ≤ s < i, then h′s = j′, and hs = s, which implies hs ≤ h′s. If i ≤ s,
then hs = max{j, s} ≤ max{j′, s} = h′s. Hence pij ≤D pi′ j′ . �

We remark that the type A-case of Lemma 2.20 follows also from [12, Theo-
rem 3.4].

Corollary 2.21. For n > 0 we have DA
n
∼= I

(
(TA

n ,≤)
)

and DB
n
∼= I

(
(TB

n ,≤
)
.

Proof. This follows from Theorems 2.7 and 2.16, and Lemma 2.20 using G. Birkhoff’s
representation theorem of finite distributive lattices [6, Theorem 5]. �

3. Formulas in the Heyting Algebra of Dyck Paths

We begin this section with the proof of Theorem 1.1, since we have already
gathered all the ingredients. Subsequently, we provide explicit, combinatorial
formulas for the computation of relative pseudocomplents and pseudocomple-
ments in the Heyting algebras of Dyck paths of type A and B, respectively, and
we identify the regular elements.

Proof of Theorem 1.1. The fact that both DA
n and DB

n are Heyting algebras follows
from Theorem 2.2 as well as Theorems 2.7 and 2.16, respectively. The fact that DA

n

is not a Heyting subalgebra of DB
n follows easily from Lemma 2.1. Pick p ∈ DA

n .
Said lemma implies p →A p = 1A and p →B p = 1B, but 1A

<D 1B in DB
n . The

fact that DA
n is a sublattice of DB

n is a straightforward computation.
For the last part, recall that {p ∈ DA

2n | ψ(p) = p
}

is precisely the equal-
izer Eq(id, ψ). Now, Lemma 2.17 states that DB

n is isomorphic (as a lattice) to
Eq(id, ψ). Proposition 2.3 implies that Eq(id, ψ) is a Heyting subalgebra of DA

2n,
and since the operation →A is defined completely in lattice-theoretic terms, the
claim follows. �

3.1. Monotone Lattice Paths. Before we compute the explicit formulas for the
height functions of (relative) pseudocomplements and regular elements in the
Heyting algebras of Dyck paths of type A and B, we consider a slightly more
general setting. More precisely, for the moment we consider all lattice paths from
(0, 0) to (n, m) consisting only of up- and right-steps, and denote the set of all
such paths by Ln,m. Any p ∈ Ln,m is uniquely determined by a height sequence

hp = (h1, h2, . . . , hn), where h1 ≤ h2 ≤ · · · ≤ hn ≤ m. Again, we consider
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Figure 5. The lattice L3,3. The highlighted paths are regular.

this set equipped with the dominance order, defined by p ≤D p′ whenever hp

is componentwise weakly smaller than hp′ . It is straightforward to verify that
the resulting poset Ln,m =

(
Ln,m,≤D

)
is a distributive lattice, and in view of

Theorem 2.2 it also forms a Heyting algebra. See Figure 5 for an illustration.
It is straightforward to verify that DA

n is isomorphic to the interval [0A, 1]
in Ln,n, where h0A = (1, 2, . . . , n) and h1 = (n, n, . . . , n). Moreover, DA

n+1 is
isomorphic to the interval [q, 1] in Ln,n, where hq = (0, 1, . . . , n). This is be-
cause if p ∈ DA

n+1 has height sequence hp = (h1, h2, . . . , hn+1), then hi ≥ i, and
hn+1 = n+ 1. So the sequence (h1 − 1, h2 − 1, . . . , hn − 1) is the height sequence of
some path in [q, 1], and this is clearly a bijection. The following theorem states an
explicit formula for the computation of the relative pseudocomplement in Ln,m
in terms of height sequences.

Theorem 3.1. Let p1, p2 ∈ Ln,m with height sequences hp1 =
(
h
(1)
1 , h

(1)
2 , . . . , h

(1)
n

)

and hp2 =
(
h
(2)
1 , h

(2)
2 , . . . , h

(2)
n

)
. The relative pseudocomplement p1 →D p2 is the path
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p ∈ Ln,m determined by the height sequence hp = (h1, h2, . . . , hn), with

hi =







m if i = n and h
(1)
i ≤ h

(2)
i ,

hi+1, if i < n and h
(1)
i ≤ h

(2)
i ,

h
(2)
i , if i ≤ n and h

(1)
i > h

(2)
i .

Proof. First of all we need to show that hp is indeed a height sequence of some
p ∈ Ln,m, which means that we need to show that hi ≤ hi+1 for all i ∈ [n − 1]
and hn ≤ m. The second condition is immediate from the construction. For
the first condition, we observe that there are two options. Either hi = hi+1, and

we are done, or hi = h
(2)
i . If hi = h

(2)
i , then we need to look at hi+1. Either

we have hi+1 = hi+2 = · · · = hn, where hn ∈ {m, h
(2)
n }, and we are done since

h
(2)
i ≤ h

(2)
n ≤ m by virtue of the fact that p2 ∈ Ln,m, or there is some minimal j > i

with hj = h
(2)
j . In that case we have hi+1 = hi+2 = · · · = hj = h

(2)
j , and again we

are done since h
(2)
i ≤ h

(2)
j .

Now we need to show that p satisfies p1 ∧D p ≤D p2. Since the meet in Ln,m is
given by taking the componentwise minimum of the height sequences, it suffices

to show that min
{

h
(1)
i , hi

}
≤ h

(2)
i for all i ∈ [n]. If h

(1)
i > h

(2)
i , then we have

min
{

h
(1)
i , hi

}
= min

{
h
(1)
i , h

(2)
i

}
≤ h

(2)
i ; and if h

(1)
i ≤ h

(2)
i , then we can check that

h
(1)
i ≤ hi, which yields min

{
h
(1)
i , hi

}
= h

(1)
i ≤ h

(2)
i as desired.

Now suppose that there is some other p′ ∈ Ln,m with p1 ∧D p′ ≤ p2, and let
hp′ = (h′1, h′2, . . . , h′n). If p <D p′, then there must be a maximal index i ∈ [n]
with hi < h′i. If i = n, then hn < h′n ≤ m, which rules out the option that

hn = m. By construction, we therefore have hn = h
(2)
n . This can only occur

if h
(1)
n > h

(2)
n . The choice of p′ requires min

{
h
(1)
n , h′n

}
≤ h

(2)
n , which yields the

contradiction h′n ≤ h
(2)
n = hn < h′n. Therefore, we have i < n. If h

(1)
i ≤ h

(2)
i , then

hi = hi+1, and the maximality of i implies h′i > hi+1 = h′i+1, which contradicts

the assumption that p′ ∈ Ln,m. If h
(1)
i > h

(2)
i , then h′i > hi = h

(2)
i , and hence

min
{

h
(1)
i , h′i

}
> h

(2)
i , which contradicts p1 ∧D p′ ≤D p2. Hence p is indeed the

relative pseudocomplement of p1 with respect to p2. �

The formula in Theorem 3.1 is inductive from the right. We can rephrase
Theorem 3.1 as follows.

Corollary 3.2. Let p1, p2 ∈ Ln,m with height sequences hp1 =
(
h
(1)
1 , h

(1)
2 , . . . , h

(1)
n

)
and

hp2 =
(
h
(2)
1 , h

(2)
2 , . . . , h

(2)
n

)
, and set

{
i ∈ [n] | h

(1)
i > h

(2)
i

}
= {i1, i2, . . . , is} as well as

i0 = 0. The relative pseudocomplement p1 →D p2 is the path p ∈ Ln,m determined by
the height sequence hp = (h1, h2, . . . , hn), with

hik−1+1 = hik−1+2 = · · · = hik
= h

(2)
ik

,

for k ∈ [s]. If is < n, then we additionally have his+1 = his+2 = · · · = hin = m.

Proof. Pick i ∈ [n]. If h
(1)
i > h

(2)
i , then hi = h

(2)
i . If h

(1)
i ≤ h

(2)
i , then hi = hi+1

whenever i < n, and hi = m, whenever i > is. These are precisely the conditions
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in Theorem 3.1 for the height sequence of the relative pseudocomplement of p1
with respect to p2. �

The following are immediate corollaries of Theorem 3.1.

Corollary 3.3. Let p ∈ Ln,m with height sequence hp = (h1, h2, . . . , hn). The pseudo-

complement of p is either the least element 0 whenever p 6= 0, or the greatest element 1
otherwise.

Proof. We observe that the least element 0 in Ln,m, which is given by the height
sequence (0, 0, . . . , 0), has a unique upper cover, namely the path a given by the
height sequence ha = (0, 0, . . . , 0, 1). Hence the greatest path q such that p ∧D

q ≤D 0 is q = 0, unless p = 0, in which case we get q = 1. �

Corollary 3.4. A path p ∈ Ln,m is regular if and only if p is either the least or the

greatest element of Ln,m.

Proof. By definition p ∈ Ln,m is regular if and only if (p → 0) → 0 = p. If
p = 0, then Corollary 3.3 implies (0 → 0) → 0 = 1 → 0 = 0, and if p 6= 0, then
Corollary 3.3 implies (p → 0) → 0 = 0 → 0 = 1, and hence p = 1 is the only
other regular element of Ln,m. �

3.2. Type A. As mentioned earlier, DA
n is an interval in Ln,n. Hence we can use

Theorem 3.1 to derive an explicit formula for the relative pseudocomplements in
DA

n .

Theorem 3.5. Let p1, p2 ∈ DA
n,n with height sequences hp1 =

(
h
(1)
1 , h

(1)
2 , . . . , h

(1)
n

)
and

hp2 =
(
h
(2)
1 , h

(2)
2 , . . . , h

(2)
n

)
, respectively. The relative pseudocomplement p1 →D p2 is

the path p ∈ DA
n determined by the height sequence hp = (h1, h2, . . . , hn), with

hi =

{

hi+1, if i < n and h
(1)
i ≤ h

(2)
i ,

h
(2)
i , if i = n, or i < n and h

(1)
i > h

(2)
i .

Proof. Recall that h
(1)
n = h

(2)
n = n, hence the simplification of the statement (com-

pared to Theorem 3.1) is justified. We only need to show that hp is indeed the
height sequence of some p ∈ DA

n . Proving that h1 ≤ h2 ≤ · · · ≤ hn = n works
analogously to the proof of Theorem 3.1. It remains to show that hi ≥ i for
i ∈ [n]. This is clearly satisfied for i = n. So choose i < n maximal such that
hi < i. We have two choices. Either hi = hi+1 and the maximality of i implies

that i > hi = hi+1 ≥ i + 1 which is a contradiction, or hi = h
(2)
i and since hp2 is

the height sequence of some p ∈ DA
n we conclude i > hi = h

(2)
i ≥ i which is a

contradiction as well. We conclude that hi ≥ i for all i ∈ [n], and according to
Lemma 2.4 hp is indeed the height sequence of some p ∈ DA

n . The fact that p is
the relative pseudocomplement of p1 with respect to p2 works almost verbatim to
the proof of Theorem 3.1. �

Corollary 3.6. Let p1, p2 ∈ DA
n with height sequences hp1 =

(
h
(1)
1 , h

(1)
2 , . . . , h

(1)
n

)
and

hp2 =
(
h
(2)
1 , h

(2)
2 , . . . , h

(2)
n

)
, and set

{
i ∈ [n] | h

(1)
i > h

(2)
i

}
= {i1, i2, . . . , is} as well
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as i0 = 0 and is+1 = n. The relative pseudocomplement p1 →D p2 is the path p ∈ DA
n

determined by the height sequence hp = (h1, h2, . . . , hn), with

hik−1+1 = hik+2 = · · · = hik
= h

(2)
ik

,

for k ∈ [s + 1].

Proof. This is the statement of Corollary 3.2 adapted to the current situation. Ob-

serve that we always have is < n and h
(2)
n = n. �

Corollary 3.7. Let p ∈ DA
n with height sequence hp = (h1, h2, . . . , hn). The pseudo-

complement of p is the Dyck path pc ∈ DA
n determined by the height sequence hpc =

(hc1, hc2, . . . , hcn) with

hci =

{

hci+1, if i < n and hi = i,

i, if i = n, or i < n and hi > i.

Proof. By definition the least element of DA
n is the Dyck path 0A determined by

the height sequence (1, 2, . . . , n), and the pseudocomplement of p is p → 0A. Now
the result follows by applying Theorem 3.5. �

Proposition 3.8. A Dyck path p ∈ DA
n is regular if and only if it its height sequence

hp = (h1, h2, . . . , hn) satisfies either hi = i or if hi > i, say hi = s, then hi = hi+1 =
· · · = hs = s.

Proof. Let p ∈ DA
n have height sequence hp = (h1, h2, . . . , hn), and let hpc =

(
hc1, hc2, . . . , hcn

)
and h(pc)c =

(
hcc1 , hcc2 , . . . , hccn

)
be the height sequences of pc and

(pc)c, respectively.
First suppose that p is regular. If p is the least element, its height sequence

clearly satisfies the desired conditions. So suppose that p is not the least element.
Hence we can find some i ∈ [n − 1] with hi > i. Corollary 3.7 implies that
hi = hcci = hcci+1 = hi+1, since p is regular. Since hn = n, there must be some
minimal index s > i such that hs = s, and we find that hi = hi+1 = · · · = hs = s
as desired.

Conversely, suppose that hp has the given properties. Then either hi = i for all
i ∈ [n], and p is the least element and hence regular. Or there is some i ∈ [n − 1]
with hi > i, say hi = s. By assumption we have hi = hi+1 = · · · = hs = s, and
Corollary 3.7 implies hcj = j for j < s and hcs = hcs+1. By using Corollary 3.7 once
again, we obtain hcci = hcci+1 = · · · = hccs = s as desired. �

Example 3.9. The highlighted Dyck paths in Figure 2 are the regular elements of
DA

4 . The Dyck path p ∈ DA
4 given by the height sequence hp = (2, 3, 3, 4) is for

instance not regular, since pc has height sequence hpc = (1, 2, 4, 4), and (pc)c has
height sequence h(pc)c = (3, 3, 3, 4).

A Dyck path p ∈ DA
n has a return at i if the coordinate (i, i) belongs to the path,

or equivalently if the prefix of wp having length 2i contains precisely i times the
letter u and i times the letter r. Two returns, say at i and j for i < j, are consecutive

if p does not have a return at some k with i < k < j. The returns at 0 and n are
trivial. We can now reformulate Proposition 3.8 as follows.
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Corollary 3.10. A Dyck path p ∈ DA
n is regular if and only if for every pair (i, j) with

0 ≤ i < j ≤ n the following is satisfied: if p has consecutive returns at i and j, then the
coordinate (i, j) belongs to the path.

Proof. Let p ∈ DA
n have height sequence hp = (h1, h2, . . . , hn) and suppose that p

has two consecutive returns at i and j for i < j.
First suppose that p passes through (i, j). If j = i + 1, then we have hi = i and

hi+1 = i + 1. If j > i + 1, then (since the path passes through (i, j)) we have hi = i

and hi+1 = hi+2 = · · · = hj = j. It follows that hp satisfies the conditions of
Proposition 3.8, and p is thus regular.

Conversely, suppose that p does not pass through (i, j). Then we have hi+1 =
j′ < j. Since i and j are consecutive returns it follows that hj′ > j′, and there must
be some minimal s ∈ [n] with i + 1 < s < j′ and hi+1 = hs < hs+1. Again since
i and j are consecutive returns, we obtain hi+1 = hi+2 = · · · = hs < s, which in
view of Proposition 3.8 implies that p is not regular. �

Since the regular elements of a Heyting algebra form a Boolean subalgebra,
it is immediately clear that the number of regular elements equals 2k for some
k ∈ N. In view of Corollary 3.10 we can be more precise.

Corollary 3.11. The number of regular elements of DA
n is 2n−1 for n > 0.

Proof. Corollary 3.10 implies that for every subset {i1, i2, . . . , ik} of [n − 1] there
exists a unique Dyck path p ∈ DA

n such that ij is a non-trivial return for j ∈ [k],
and these are precisely the regular paths of DA

n . This yields the claim. �

3.3. Type B. In this section we compute explicit formulas for the relative pseudo-
complement and the pseudocomplement in DB

n , and we characterize the regular
elements. In view of Theorem 1.1 we can view DB

n as a Heyting subalgebra of
DA

2n, and could in principle derive these formulas from Theorem 3.5. However,
the formula for the height function of the centrally symmetric Dyck paths in
Lemma 2.13 seems to be rather unhandy, so we prefer a direct computation.

Theorem 3.12. Let p1, p2 ∈ DB
n with height sequences hp1 =

(
h
(1)
1 , h

(1)
2 , . . . , h

(1)
k1

)
and

hp2 =
(
h
(2)
1 , h

(2)
2 , . . . , h

(2)
k2

)
, respectively. The relative pseudocomplement p1 → p2 is the

Dyck path p ∈ DB
n determined by the height sequence hp = (h1, h2, . . . , hk) with

k =

{

k2, if k1 < k2, or k1 ≥ k2 and h
(1)
k2

> h
(2)
k2

,

max
{

i ∈ [k2] | h
(1)
i > h

(2)
i

}
+ 1, if k1 ≥ k2 and h

(1)
k2

≤ h
(2)
k2

.

If k1 < k2, then

hi =

{

hi+1, if i ≤ k1 and h
(1)
i ≤ h

(2)
i ,

h
(2)
i , if i > k1, or i ≤ k1 and h

(1)
i > h

(2)
i ,

and if k1 ≥ k2, then

hi =







2n − k + 1, if i = k and h
(1)
k ≤ h

(2)
k ,

hi+1, if i < k and h
(1)
i ≤ h

(2)
i ,

h
(2)
i , if i ≤ k and h

(1)
i > h

(2)
i .
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Proof. Let us first verify that the chosen k is indeed the smallest possible value.
By definition of the dominance order, we observe that the length of the height
sequence of p1 ∧D p must be at least k2 in order to satisfy p1 ∧D p ≤D p2, and this
length is max{k1, k}. So, if k1 < k2, then we have to put k = k2. If k1 ≥ k2, then

we can make k as small as possible. First suppose that h
(1)
k2

> h
(2)
k2

. In view of
Lemma 2.15, this forces k1 = k2, and if we choose k < k1 = k2, then the entry at

position k2 in the height sequence of p1 ∧D p is larger than h
(2)
k2

, which contradicts
p1 ∧D p ≤D p2. Hence the smallest possible value is k = k2. Now suppose that

h
(1)
k2

≤ h
(2)
k2

. In order to guarantee that p1 ∧D p ≤D p2, we have to choose k at least

to be equal to max
{

i ∈ [k2] | h
(1)
i > h

(2)
i

}
, and say this value is j. If hj is the

last entry of a height sequence of some Dyck path of type B, then Lemma 2.12
implies hj ∈ {2n − j + 1, 2n − j}. At the same time, the condition on p being a

candidate for the relative pseudocomplement forces hj ≤ h
(2)
j , and since j < k2

Lemma 2.12 implies h
(2)
j ≤ 2n − k2. If we put these facts together, we obtain

hj ≤ h
(2)
j ≤ 2n − k2 < 2n − j ≤ hj, which is a contradiction. We therefore have

to choose k = j + 1, and can then make the corresponding value in the height
sequence of p as big as possible.

Now we verify that hp is indeed the height sequence of some p ∈ DB
n . By

construction, we have k ≤ k2 ≤ n, and either hk = 2n − k + 1 or hk = h
(2)
k2

. Next

we show that hi ≤ hi+1 for i ∈ [k]. If hi = hi+1, we are done, otherwise hi = h
(2)
i .

In this case we need to look at hi+1. If hi+1 = hi+2 = · · · = hk, then there are

two choices, either hk = h
(2)
k ≥ h

(2)
i = hi, and we are done, or hk = 2n − k + 1 ≥

2n − k2 + 1 ≥ h
(2)
k2

≥ h
(2)
i = hi since k ≤ k2. If there is some minimal s < k

with hs = h
(2)
s , then we obtain hi = hi+1 = · · · = hs = h

(2)
s ≥ h

(2)
i = hi, and

we are done. Lastly we show that hi ≥ i for i ∈ [k]. This is by construction
satisfied for hk. So choose i < k maximal such that hi < i. We have two choices,
either hi = hi+1 and the maximality of i implies i > hi = hi+1 ≥ i + 1 which is a

contradiction, or hi = h
(2)
i and the fact that p2 is a Dyck path of type B implies

i > hi = h
(2)
i ≥ i, which is a contradiction as well. Hence Lemma 2.12 implies

that hp is indeed the height sequence of some p ∈ DB
n .

Now we show that p satisfies p1 ∧D p ≤D p2, and let us write hp1∧p = (h̄1, h̄2, . . . , h̄k̄).
We distinguish two cases.

(i) Let k1 < k2. In this case we have k̄ = k2, and h̄i = hi = h
(2)
i for i > k1. For

i < k1, we have h̄i = min
{

h
(1)
i , hi

}
≤ h

(2)
i , and we are done.

(ii) Let k1 ≥ k2. Since k ≤ k2, we have k̄ = k1. If i > k, then by construction

h̄i = h
(1)
i ≤ h

(2)
i , and if i ≤ k, then h̄i = min

{
h
(1)
i , hi

}
≤ h

(2)
i .

It remains to show that p is indeed the relative pseudocomplement of p1 with
respect to p2. Suppose there is some p′ ∈ DB

n with p1 ∧D p′ ≤D p2 and p <D p′.
By the choice of k, we conclude that p′ has height sequence hp′ = (h′1, h′2, . . . , h′k),
and by definition of the dominance order there must be a maximal index i ∈ [k]
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with hi < h′i. If i = k, then by construction we have either h′k > 2n − k + 1, which

contradicts Lemma 2.12, or h′k > h
(2)
k , which contradicts the assumption p1 ∧D

p′ ≤D p2. If i < k, then we have two choices again. Either h′i > hi = hi+1 = h′i+1

by the maximality of i, and this contradicts Lemma 2.12, or h′i > hi = h
(2)
i , which

contradicts the assumption p1 ∧D p′ ≤D p2 again. This concludes the proof. �

The following corollary is immediate.

Corollary 3.13. Let p ∈ DB
n with height sequence hp = (h1, h2, . . . , hk). The pseudo-

complement of p is the Dyck path pc ∈ DB
n determined by the height sequence hpc =

(
hc1, hc2, . . . , hck′

)
with

k′ =

{

n, if k < n, or k = n and hn = n + 1,

max
{

i ∈ [n] | hi > i
}
+ 1, if k = n and hn = n.

If k < n, then

hci =

{

hci+1, if i ≤ k and hi = i,

i, if i > k, or i ≤ k and hi > i,

and if k = n, then

hci =







2n − k′ + 1, if i = k′ and hk′ = k′,

hci+1, if i < k′ and hi = i,

i, if i ≤ k′ and hi > i.

Proof. By definition, the pseudocomplement of p ∈ DB
n is p → 0, where 0 is

the least element of DB
n , whose height sequence is h0 = (1, 2, . . . , n). The result

follows by applying Theorem 3.12. �

Proposition 3.14. A Dyck path p ∈ DB
n is regular if and only if its height sequence

hp = (h1, h2, . . . , hk) satisfies one of the following conditions:

(1) hk = n, and for every i ∈ [k − 1] we have either hi = i or if hi > i, say hi = s, then
hi = hi+1 = · · · = hs = s; or

(2) hk = 2n − k + 1, hk−1 = k − 1, and for every i ∈ [k − 2] we have either hi = i or if
hi > i, say hi = s, then hi = hi+1 = · · · = hs = s.

Proof. Let p ∈ DB
n have height sequence hp = (h1, h2, . . . , hk), and let hpc =

(
hc1, hc2, . . . , hck′

)
and h(pc)c =

(
hcc1 , hcc2 , . . . , hcck′′

)
be the height sequences of pc and

(pc)c, respectively.

First suppose that p is regular. We distinguish two cases.
(i) Let hk = n. This can only happen if k = n. If hi = i for all i ∈ [n], then p is

the least element of DB
n , and it clearly satisfies Condition (1). Otherwise, there is

some i ∈ [n − 1] with hi > i. Since p is regular, it follows from Corollary 3.13 that
hi = hcci = hcci+1 = hi+1. Since hn = n, there must be some minimal index s ∈ [n]
with s > i such that hs = s, and we find that hi = hi+1 = · · · = hs = s, and hp

thus satisfies Condition (1).
(ii) Let hk > n. Suppose there is some i ∈ [k − 2] with hi > i. Since p is regular,

it follows from Corollary 3.13 that hi = hcci = hcci+1 = hi+1. For the moment we
claim that hk−1 = k− 1, which implies that there is some minimal index s ∈ [k− 1]
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with s > i such that hs = s, and we find that hi = hi+1 = · · · = hs = s. In order to
establish hk−1 = k − 1, we distinguish two more cases:
(iia) Let k = n. Then hn = n + 1, and Corollary 3.13 implies k′ = n and hcn = n.
Since p is regular, we have k′′ = k = n, and thus hcn−1 > n − 1, which in view of
Corollary 3.13 yields hccn−1 = n − 1. Thus hn−1 = n − 1, since p is regular.
(iib) Let k < n. Then hk = 2n− k+ 1, and Corollary 3.13 implies k′ = n and hcs = s

for s ≥ k. Since p is regular, we have k′′ = k, and thus hck−1 > k − 1, which in
view of Corollary 3.13 yields hcck−1 = k − 1. Thus hk−1 = k − 1, since p is regular.

Hence hp satisfies Condition (2).
Conversely, suppose first that hp has the properties given in Condition (1). In

view of Lemma 2.12, we conclude k = n, and Corollary 3.13 implies k′ ≤ n, and
hck′ > n, which in turn implies k′′ = n and hccn = n = hn. If i < n with hi = i,
then Corollary 3.13 implies hci = hci+1 ≥ i + 1, which in turn implies hcci = i. If
i < n with hi > i, then by assumption if hi = s, we have hi = hi+1 = · · · = hs = s.
The previous implies that hccs = s, and Corollary 3.13 implies hcct = hcct+1 for t ∈
{i, i + 1, . . . , s − 1}. Hence we have hcci = hcci+1 = · · · = hccc = c, and consequently
hp = h(pc)c , which implies that p is regular.

Now suppose that hp has the properties given in Condition (2). First say that
k = n. Corollary 3.13 implies k′ = n, hcn = n and hcn−1 = hcn = n. If we apply
Corollary 3.13 again, we get k′′ = n, hccn = n + 1 = hn and hccn−1 = n − 1 =
hn−1. Now say that k < n. Corollary 3.13 implies k′ = n, as well as hcs = s

for s ∈ {k, k + 2, . . . , n} and hck−1 = k. If we apply Corollary 3.13 again, we get
k′′ = k, hck = 2n − k + 1 = hk and hcck−1 = k − 1 = hk−1. For i < k − 2, we obtain
hi = hcci as in the previous paragraph. Hence we have hp = h(pc)c , which implies
that p is regular. �

Example 3.15. The highlighted Dyck paths in Figure 4 are the regular elements
of DB

3 . The Dyck path p ∈ DB
3 given by the height sequence hp = (2, 4) is for

instance not regular, since pc has height sequence hpc = (1, 2, 3), and (pc)c has
height sequence h(pc)c = (6).

For a Dyck path p ∈ DB
n define a return at i as in the type-A case. Additionally, p

has an upper end at i if the coordinate (i, 2n− i) belongs to the path and 0 ≤ i < n,
or equivalently if wp contains the letter u precisely 2n − i times. A return at i and
an upper end at j are consecutive if p does not have a return at some k for k > i.

Corollary 3.16. A Dyck path p ∈ DB
n is regular if and only if for every pair (i, j) with

0 ≤ i < j ≤ n the following is satisfied: if p has consecutive returns at i and j, then the

coordinate (i, j) belongs to the path, and if p has a return at i and an upper end at j which
are consecutive, then i = j < n.

Proof. Let p ∈ DB
n have height sequence hp = (h1, h2, . . . , hk).

First of all, we assume that p has no upper end (and hence it has a return at
n). Hence k = n and hn = n. Suppose that p has two consecutive returns at i and
j for i < j. Say that p passes through (i, j). If j = i + 1, then we have hi = i and
hi+1 = i + 1. If j > i + 1, then (since the path passes through (i, j)) we have hi = i

and hi+1 = hi+2 = · · · hj = j. Hence hp satisfies Condition (1) of Proposition 3.14,
and p is thus regular. Say now that p does not pass through (i, j). Then we have



20 HENRI MÜHLE

hi+1 = j′ < j. Since i and j are consecutive returns it follows that hj′ > j′, and
there must be some minimal s ∈ [n] with i + 1 < s < j′ and hi+1 = hs < hs+1.
Again since i and j are consecutive returns, we obtain hi+1 = hi+2 = · · · = hs < s,
which in view of Proposition 3.14 implies that p is not regular.

Now assume that p has a return at i and an upper end at j, which are con-
secutive. If i = j < n, then k = j + 1 and hk = 2n − k + 1 as well as hk−1 =
hi = i = k − 1. In view of the previous paragraph, hp satisfies Condition (2) of
Proposition 3.14, and p is thus regular. If i < j < n, then k = j and hk = 2n − k or
hk−1 > k − 1, which in view of Proposition 3.14 implies that p is not regular. �

Corollary 3.17. The number of regular elements of DB
n is 2n for n > 0.

Proof. First we observe that if p does not have an upper end, then p ∈ DA
n , and

in view of Corollary 3.11 there are 2n−1 such regular paths. For any such regular
p which has non-trivial returns at i1, i2, . . . , ik, we can create a regular Dyck path
p′ by turning the return at ik into an upper end at ik. In view of Proposition 3.14
this is a bijection. Hence the number of regular elements of DB

n is 2 · 2n−1 = 2n as
desired. �
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