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Abstract

A probabilistic characterization of the dominance partial order on the set
of partitions is presented. This extends work in ”Symmetric polynomials and
symmetric mean inequalities”. Electron. J. Combin., 20(3): Paper 34, 2013.

Let n be a positive integer and let ν be a partition of n. Let F be the Ferrers
diagram of ν, a table of rows of cells, the ith row containing ν(i) cells. Let m be
a positive integer and let p ∈ (0, 1). Fill each cell of F with balls, the number
of which is independently drawn from the random variable X = Bin(m, p).
Given non-negative integers j and t, let P (ν, j, t) be the probability that the
total number of balls in F is j and that no row of F contains more that t

balls. We show that if ν and µ are partitions of n, then ν dominates µ, i.e.
∑k

i=1 ν(i) ≥
∑k

i=1 µ(i) for all positive integers k, if and only if P (ν, j, t) ≤
P (µ, j, t) for all non-negative integers j and t. It is also shown that this same
result holds when X is replaced by any one member of a large class of random
variables.

Let p = {pn}
∞
n=0 be a sequence of real numbers. Let N be the set of non-

negative integers together with the usual order. Let Tp be the N by N matrix
with (Tp)i,j = pj−i for all i, j ∈ N. Here we take pn = 0 for all negative
integers n. For all i, j ∈ N, let (pi)j be the coefficient of xj in (p(x))i where
p(x) =

∑∞
n=0 pnx

n. Here we take (p(x))0 = 1. Let Sp be the N by N matrix with
(Sp)i,j = (pi)j for all i, j ∈ N. We say that a matrix M is totally non-negative
of order k if all of the minors of M of order k or less are non-negative. We
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show that if Tp is totally non-negative of order k then so is Sp. The case k = 2
of this result is a key step in the proof of the result on domination. We also
show that the case k = 2 would follow from a combinatorial conjecture that
might be of independent interest.

1 Introduction

Let N denote the set of non-negative integers. A partition is a function λ : N\{0} →
N that is non-increasing and has finite support, i.e. such that λ(s) ≥ λ(t) for all
s, t ∈ N with s < t and supp (λ) = {i ∈ N \ {0} : λ(i) 6= 0} is finite. The weight
of λ is |λ| =

∑∞
i=0 λ(i). If n ∈ N and λ is a partition we say that λ is a partition of

n if |λ| = n. Let P be the set of all partitions and for all n ∈ N, let Pn be the set of
partitions of weight n.
We define the dominance partial order, E, on P as follows. If λ, µ ∈ P , we say λ is

dominated by µ (or µ dominates λ) if and only if |λ| = |µ| and
∑j

i=1 λ(i) ≤
∑j

i=1 µ(i)
for all positive integers j. We denote this by λ E µ (or µ D λ).
The dominance order is a special case of the more general majorization order. If
m is a positive integer, the majorization order on R

m is defined as follows. If x ∈ R
m

let xp ∈ R
m be the non-increasing rearrangement of x. I.e. (xp)(i) = (xp)π(i) for all

i ∈ [m] where π ∈ Sm is chosen so that (xp)1 ≥ (xp)2 ≥ · · · ≥ (xp)m. If x, y ∈ R
m we

say x is majorized by y if and only if
∑m

i=1 xi =
∑m

i=1 yi and
∑j

i=1(xp)i ≤
∑j

i=1(yp)i
for all integers j with 1 ≤ j ≤ m. Evidently for all λ, µ ∈ Pm or Um, we have λ E µ
if and only if λ is majorized by µ.
The dominance and majorization orders frequently come up as definitions of key
importance in many disparate fields in mathematics from the social sciences to
representation theory, see [2, 4].
Continuing work begun in [3], the author presents a probabilistic characterization
of the dominance partial order, (P,E).
Let M be a finite or infinite matrix and let k ∈ N. We say M is totally non-negative
(respectively, totally positive) of order k if and only if every minor of M of size k
or less is non-negative (respectively, positive). We will abbreviate this by writing
M ∈ TNk (respectively, M ∈ TPk). See [1, 5].
Let p = {pn}

∞
n=0 be a sequence of real numbers. We define the N by N matrix Tp

with (Tp)i,j = pj−i for all i, j ∈ N. Here we take pn = 0 for negative integers n.
We say that p is totally non-negative (respectively, totally positive) of order k if and
only if Tp ∈ TNk (respectively, Tp ∈ TPk) and denote this by p ∈ TNk (respectively,
p ∈ TPk).
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Let R[[x]] be the ring of formal power series over R. If p = {pn}
∞
n=0, then the

ordinary generating function of p is the element p(x) =
∑∞

n=0 pnx
n of R[[x]]. We say

p(x) is TNk (respectively, TPk) if and only if p has the same property.
Let X be an N-valued random variable. We say p = pX = {P (X = n)}∞n=0 is the
sequence of probabilities of X and pX(x) = ExX =

∑∞
n=0 P (X = n)xn is the probability

generating function of X . We say X is TNk (respectively, TPk) if pX (or, equivalently,
pX(x)) has the same property. We define the range of X to be range(X) = {n ∈ N :
P (X = n) 6= 0}.
If n ∈ N and ν is a partition of n, let Y(ν) = (Yi : i ∈ N \ {0}) be a sequence of
independent random variables where, for each i ∈ N, Yi is distributed as the sum
of ν(i) independent copies of X . If ν(i) = 0, we define Yi to be identically 0. If
j, t ∈ N, let E(ν,X, j, t) be the event that Yi ≤ t for all i ∈ N \ {0} and

∑∞
i=1 Yi = j.

If λ and µ are partitions, let C(λ, µ,X) be the condition that

P (E(λ,X, j, t)) ≤ P (E(µ,X, j, t)), for all j, t ∈ N. (1)

Our main theorems are Theorems 1.1, 1.2 and 1.4, listed below.

Theorem 1.1. Let X be an N-valued random variable. Suppose X ∈ TN2 and range(X) =
{0, 1 . . . , r} for some positive integer r. Then, for all n ∈ N and all partitions λ and µ of
n, λ D µ if and only if C(λ, µ,X).

Theorem 1.2. For all n ∈ N and all partitions λ and µ of n, λ D µ if and only if we have
C(λ, µ,X) for all N-valued random variables X with X ∈ TN2.

The line of investigation that led to Theorems 1.1 and 1.2 began in [3] where it was
proved that for any p ∈ (0, 1) if X = Bin(1, p) then λ D µ implies C(λ, µ,X).
Corollary 1.3, listed below, is a pictorial description of two special cases of The-
orem 1.1. Let F (λ) = {(i, j) : i ∈ Z>0, 1 ≤ j ≤ λ(i)} be the Ferrers diagram of λ.
Customarily, the (i, j)th cell of F (λ) is represented as the box [−(i−1),−i]×[j−1, j]
in R

2 so that F (λ) represents the parts of λ as a left-aligned stack of rows of cells
in R

2, the ith topmost row corresponding to λ(i) in that it consists of λ(i) cells.
Let r be a positive integer and let p ∈ (0, 1). Let Ur be the random variable that is
distributed uniformly on {0, 1, . . . r}. Let Bin(r, p) be the random variable X with
P (X = k) =

(

n

k

)

pk(1− p)n−k for 0 ≤ k ≤ r and P (X = k) = 0 for k > r.

Corollary 1.3. Independently fill each cell of the Ferrers diagrams of λ and µ with balls,
the number put in each cell drawn from the distribution Ur. Then λ D µ if and only if for
all integers j, t ≥ 0 the probability that the Ferrers diagram for λ contains j balls with at
most t balls in each row is less than or equal to the corresponding probability for µ. The
same remains true if Ur is replaced by Bin(r, p).
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We prove Theorems 1.1 and 1.2 via the case k = 2 of Theorem 1.4, listed below.
Let p = {pn}

∞
n=0 be a sequence of real numbers. For all i, j ∈ N, let (pi)j be the

coefficient of xj in (p(x))i where p(x) =
∑∞

n=0 pnx
n. Here we take (p(x))0 = 1. Let

Sp be the N by N matrix with (Sp)i,j = (pi)j for all i, j ∈ N.

Theorem 1.4. Let k ∈ N and let p = {pn}
∞
n=0 be a sequence of real numbers. If Tp ∈ TNk,

then Sp ∈ TNk. Also, if Tp ∈ TPk, then Sp ∈ TPk.

The case k = 2 of Theorem 1.4 is implied by Conjecture 1.5, listed below, a combi-
natorial conjecture that might be of independent interest.
If m is a positive integer, let [m] = {1, 2, . . . , m}. Let [0] = ∅. If λ : [m] → N,
we say λ is a composition with m non-negative parts. If λ is also non-increasing, i.e.
λ(i) ≥ λ(j) for all integers i and j with 1 ≤ i < j ≤ m, then we say λ is a partition
with m non-negative parts. Let Um (respectively, Pm) be the sets of compositions
(respectively, partitions) with k non-negative parts. If λ ∈ Um, let |λ| =

∑

i∈[m] λ(i)

be the weight of λ. If λ ∈ Um and |λ| = n, we say λ is a composition of n. If λ ∈ Um

and |λ| = n, we say λ is a partition of n. If m,n ∈ N, let Um
n = {λ ∈ Um : |λ| = n}

and Pm
n = {λ ∈ Pm : |λ| = n}.

If λ, µ ∈ Um, let λp, µp be the non-increasing rearrangements of λ and µ into parti-
tions. We define the dominance partial order on Um (and Pm), E, by setting λ E µ
if and only if λp E µp.
Let A, a, B, b ∈ N. If λ ∈ UA

a and µ ∈ UB
b , let λµ ∈ UA+B

a+b be the concatenation of
λ and µ, defined by setting (λµ)(i) = λ(i) for i ∈ [A] and (λµ)(i) = µ(i − A) for
i ∈ [A+B] \ [A].

Conjecture 1.5. For all integer A, a, B, b with A ≥ B ≥ 0 and a ≥ b ≥ 0 there is an
injection γ : UA

b × UB
a →֒ UA

a × UB
b such that for all (λ1, µ1) ∈ UA

b × UB
a , (λ2, µ2) =

γ((λ1, µ1)) ∈ UA
a × UB

b satisfies λ1µ1 D λ2µ2.

In Section 2, we give two useful characterizations of TN2 in Lemma 2.1 and prove
Lemma 2.3 which states a number of basic results on how the properties TN2, non-
negativity, positivity, unimodality and log-concavity of a sequence p relate to one
another. In Section 3, we will prove Theorem 1.4 and discuss how Conjecture 1.5
implies the case k = 2 of this theorem. In Section 4, we will use this case to prove
Theorems 1.1 and 1.2. In Section 5, we record some observations on the roles of
the assumptions in Theorem 1.1.
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2 Basic Results on TN2

Let p = {pn}
∞
n=0 be a sequence of real numbers. We say p is non-negative (respec-

tively, positive) if pn ≥ 0 (respectively, pn > 0) for all n ∈ N. If λ ∈ Pm, let
pλ =

∏m

i=1 pλ(i).

Lemma 2.1. Let p = {pn}
∞
n=0 be a sequence of real numbers. Then the following state-

ments are equivalent.

(i) p ∈ TN2

(ii) p is non-negative and papd ≤ pbpc for all integers a, b, c, d with a ≥ b ≥ c ≥ d ≥ 0
and a+ d = b+ c.

(iii) p is non-negative and for all positive integers m, if λ, µ ∈ Pm and λ D µ, then
pλ ≤ pµ.

In order to prove this lemma, we need some basic results on the cover relation in
the dominance order.
Let (P,≤) be a partially ordered set. If a, b ∈ P we say a is covered by b or, equiv-
alently, b covers a if a ≤ b and {x ∈ P : a ≤ x ≤ b} = {a, b}. The following
lemma, stated without proof, is a standard characterization of the cover relation
⊳· corresponding to the dominance order E on P .

Lemma 2.2. (See [2], 1.4.21, p.28) Let λ, µ be partitions. Then λ · ⊲µ if and only if there
exist integers i, j with j > i ≥ 1 such that (a), λ(j) = µ(j) − 1 and λ(i) = µ(i) + 1,
while for ν 6∈ {i, j} we have λ(ν) = µ(ν), and (b), i = j − 1 or µ(j) = µ(i).

Let A be an N by N matrix. If x, y, z, w ∈ N with x < y and z < w, let A{x,y}×{z,w} be
the 2 by 2 submatrix of A whose rows are indexed by x and y and whose columns
are indexed by z and w. We define the following 2 by 2 minor of Tp, M{x,y}×{z,w} =
det((Tp){x,y}×{z,w}).
Proof of Lemma 2.1. We will first show that (i) and (ii) are equivalent.
Suppose we have (i). Suppose a, b, c, d ∈ N, a ≥ b ≥ c ≥ d ≥ 0 and a + d = b + c.
If a = b then c = d and pbpc − papd = 0. Suppose a > b. Let x = 0, y = a − b, z =
c, w = a. Then 0 ≤ x < y and 0 ≤ z < w and pbpc − papd = M{x,y}×{z,w} ≥ 0. Thus
we have (ii).
Now we assume (ii). If x, y, z, w ∈ N with x < y and z < w, M{x,y}×{z,w} =
pbpc − papd where a = w − x, b = z − x, c = w − y, d = z − y, Note a > b, c > d,
and a + d = b + c. If d < 0 then pd = 0 and M{x,y}×{z,w} = pbpc ≥ 0. If d ≥ 0 then
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M{x,y}×{z,w} = pbpc − papd ≥ 0. Thus we have (i). Note that the non-negativity of p
is necessary: if pn = (−2)n then the second condition of (ii) holds but p 6∈ TN2.
The condition in (iii) for m = 2 is the condition in (ii), thus (iii) implies (ii). Now
we assume (ii). This implies the cases m = 1 and m = 2 of (iii) are true. We now
assume m ≥ 3. Since λ D µ implies |λ| = |µ| and since Pm

n is finite, we need only
show pλ ≤ pµ if λ · ⊲µ.
Let j > i ≥ 1 be the indices witnessing λ · ⊲µ, i.e. those satisfying (a) and (b) of
Lemma 2.2. Since (a) implies λ(i) > µ(i) ≥ µ(j) > λ(j) ≥ 0 and µ(i) + µ(j) =
λ(i) + λ(j), (ii) implies pλ(i)pλ(j) ≤ pµ(i)pµ(j). Thus pλ = (

∏

ν 6∈{i,j} pλ(ν))pλ(i)pλ(j) =

(
∏

ν 6∈{i,j} pµ(ν))pλ(i)pλ(j) ≤ (
∏

ν 6∈{i,j} pµ(ν))pµ(i)pµ(j) = pµ. The second equality holds
by (a) of Lemma 2.2 while the inequality holds by the non-negativity of p. Thus
we have (iii).
We say that p is unimodal if there is a k ∈ N such that pi ≤ pj ≤ pk ≥ pl ≥ pm
for all i, j, l,m ∈ N with i ≤ j ≤ k ≤ l ≤ m. Alternatively, p is unimodal if and
only if there are no i, j, k ≥ 0 such that i < j < k and pi > pj < pk. We say say
that p is log-concave (respectively, strictly log-concave) if and only if p2k ≥ pk+1pk−1

(respectively, p2k > pk+1pk−1) for all positive integers k. We say that p is k-non-
negative (respectively, k-positive) if and only if Tp has all minors of order k non-
negative (respectively, positive).

Lemma 2.3. Let p = {pn}
∞
n=0 be a sequence of real numbers. Then the following state-

ments hold.

(i) If p is 2-non-negative, then p is log-concave. If p is 2-positive, then p is strictly
log-concave.

(ii) If p ∈ TN2 then p is unimodal.

(iii) Suppose p is non-negative. If p is unimodal or log-concave then p is not necessarily
TN2.

(iv) Suppose p is positive. If p is log-concave, then p is TN2. If p is strictly log-concave,
then p is TP2.

Proof of Lemma.
We prove (i). Suppose p is 2-non-negative. Let k be a positive integer. Then
p2k − pk+1pk−1 = M{0,1}×{k,k+1} ≥ 0 and thus p is log-concave. If p is 2-positive
p2k − pk+1pk−1 = M{0,1}×{k,k+1} > 0 and p is strictly log-concave.
We now prove (ii). Suppose that p ∈ TN2. Suppose, for the sake of deriving a
contradiction, that p is not unimodal. Then there must be i, j, k ∈ N with i < j < k

6



such that pi > pj < pk. Let d = max{x ∈ N : (i ≤ x < j) and (px ≥ pi)}. Let
a = min{y : (i < y ≤ k) and (px ≥ pk)}. Let b = a − 1 and c = d + 1. Since
d < j < a, a > b ≥ c > d ≥ 0. Also a + d = b + c. But 0 ≤ pc < pd and 0 ≤ pb < pa
so papd > pbpc, a contradiction to Lemma 2.1 (ii).
We prove (iii) by noting that the sequence pn = 2n + 1 is unimodal but not log-
concave and the sequence (1, 0, 0, 1, 1, . . .) is log-concave but not 2-non-negative.
We now prove (iv). Let a ≥ b ≥ c ≥ d ≥ 0 with a + d = b + c. Let t = a − c =
b − d. If t = 0, a = b = c = d and we are done. Now suppose t ≥ 1. Since
p is positive and log-concave, pk/pk−1 > 0 and pk/pk−1 ≥ pk+1/pk for all k ≥ 1.
Since c > d, pd+i/pd+i−1 ≥ pc+i/pc+i−1 for all integers i with 1 ≤ i ≤ t. Thus
pb/pd =

∏t

i=1(pd+i/pd+i−1) ≥
∏t

i=1(pc+i/pc+i−1) = pa/pc, hence pbpc − papd ≥ 0.
Thus p ∈ TN2 by Lemma 2.1 (ii). The proof that p ∈ TP2 when p is strictly log-
concave is analogous.

3 Proof of Theorem 1.4

Proof of Theorem 1.4.
If p(x) =

∑

n≥0 pnx
n ∈ R[[x]], we define T (x) = Tp(x)(x), an N by N matrix with

entries in R[[x]], by setting

(T (x))i,j =
1

(j − i)!

(

d

dx

)j−i

p(x)

if j ≥ i and (T (x))i,j = 0 otherwise. Here, we define (d/dx)0p(x) = p(x). Let
S(x) = Sp(x)(x) be an N by N matrix with entries in R[[x]] defined by

(S(x))i,j =
1

j!

(

d

dx

)j

pi(x),

where p0(x) = 1. The derivatives that occur in the definition of T and S are
iterations of the purely formal operation d/dx : R[[x]] → R[[x]] defined by

d

dx

(

∞
∑

n=0

pnx
n

)

=

∞
∑

n=0

(n+ 1)pn+1x
n.

Note that T (0) = Tp and S(0) = Sp.
Suppose M is an N by N matrix with entries in a set E . Let ℓ ≥ 1 and let A, a ∈ N

ℓ.
We define MA×a to be the ℓ by ℓ matrix with (MA×a)i,j = MA(i),a(j) for all 1 ≤ i, j ≤
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ℓ. If A and a are strictly increasing (i.e. A1 < · · · < Aℓ and a1 < · · · < aℓ) then
MA×a(x) is just the size ℓ square sub-matrix of M restricted to the rows in A and
the columns in a.
By assumption, we have k ∈ N and det(T (0)A×a) ≥ 0 for all strictly increasing
A, a ∈ N

ℓ for all integers ℓ with 0 ≤ ℓ ≤ k. We wish to show det(S(0)A×a) ≥ 0 for
all strictly increasing A, a ∈ N

ℓ for all integers ℓ with 0 ≤ ℓ ≤ k. We will prove this
by induction successively on k, ℓ, and A1.
Since there is nothing to show when ℓ = 0 we may assume k, ℓ ≥ 1. If Tp is TN1

then p is non-negative and thus Sp is TN1. Thus we may assume that k, ℓ ≥ 2.
Suppose A1 = 0. If a1 = 0 as well, the first row of S(0)A×a has a 1 as its first entry
and every other entry 0. Thus, det(S(0)A×a) = det(S(0)(A2,...,Al)×(a2,...,al)) and we
have the result by induction on ℓ. If a1 > 0 then the first row of S(0)A×a is the zero
row and det(S(0)A×a) = 0. Thus we may now assume that A1 ≥ 1.
LetB, b ∈ N

ℓ. Let σ ∈ Sℓ such that Bσ1 ≤ Bσ2 ≤ · · · ≤ Bσℓ. LetB′ = (Bσ1, Bσ2, . . . , Bσℓ).
We define sgn(B) to be 0 if B has a repeated entry and, otherwise, sgn(B) =
sgn(σ) where sgn(σ) = 1 if σ is an even permutation and −1 if σ is an odd
permutation. We define b′ and sgn(b) analogously. Note that det(S(x)B×b) =
sgn(B)sgn(b) det(S(x)B′×b′(x)).
Since the formal derivative d/dx on R[[x]] satisfies the product rule, we also have
the generalized product rule on R[[x]], namely

(

d

dx

)n

(p(x)q(x)) =
n
∑

k=0

(

n

k

)

(

(

d

dx

)n−k

p(x)

)(

(

d

dx

)k

q(x)

)

for all p(x), q(x) ∈ R[[x]]

where (d/dx)0p(x) = p(x). For each i, j ∈ [ℓ], we use this rule to write

(S(x)A×a)i,j =
1

aj !

aj
∑

bj=0

(

aj
bj

)

(

(

d

dx

)aj−bj

p(x)

)(

(

d

dx

)bj

pAi−1(x)

)

=
∑

bj≥0

1bj≤aj

(

1

(aj − bj)!

(

d

dx

)aj−bj

p(x)

)(

1

bj !

(

d

dx

)bj

pAi−1(x)

)

where 1bj≤aj = 1 when bj ≤ aj and 0 otherwise. Let B = (A1−1, . . . , Aℓ−1). Since
det(S(x)A×a) is multilinear in its columns, we get

det(S(x)A×a) =
∑

b∈Nℓ

ℓ
∏

j=1

(

1bj≤aj

(aj − bj)!

(

d

dx

)aj−bj

p(x)

)

det(S(x)B×b)

8



=
∑

b∈Nℓ

det(S(x)B×b′)

ℓ
∏

j=1

sgn(b)

(

1bj≤aj

(aj − bj)!

(

d

dx

)aj−bj

p(x)

)

=
∑

0≤b1<···<bℓ

det(S(x)B×b)
∑

σ∈S({b1,...,bℓ})

sgn(σ)
ℓ
∏

j=1

(

1σj≤aj

(aj − σj)!

(

d

dx

)aj−σj

p(x)

)

Thus
det(S(x)A×a) =

∑

0≤b1<···<bℓ

det(S(x)B,b) det(T (x)b×a).

It is important to realize that this is a finite sum: when bℓ > aℓ all entries in the bℓ
row of T (x)b×a are 0 and thus det(T (x)b×a) = 0. Setting x = 0 gives

det(S(0)A×a) =
∑

0≤b1<···<bℓ

det(S(0)B,b) det(T (0)b×a).

By induction on A1, all of the minors appearing in this last sum are non-negative.
It is easily seen that with a little modification this argument will also furnish a
proof of the fact that Tp ∈ TPk implies Sp ∈ TPk.

Theorem 3.1. Conjecture 1.5 implies the case k = 2 of Theorem 1.4.

Proof. By Lemma 2.1 (ii), Sp ∈ TN2 if and only if (pA)b(p
B)a ≤ (pA)a(p

B)b for all
A,B, a, b ∈ N with A ≥ B and a ≥ b. We have

(pA)b(p
B)a =





∑

λ1∈UA
b

pλ1









∑

µ1∈UB
a

pµ1



 =
∑

(λ1,µ1)∈UA
b
×UB

a

pλ1µ1

and
(pA)a(p

B)b =
∑

(λ2,µ2)∈UA
a ×UB

b

pλ2µ2
.

Conjecture 1.5 would imply there is an injection γ : UA
b ×UB

a →֒ UA
a ×UB

b such that if
(λ2, µ2) = γ((λ1, µ1)) then λ1µ1 D λ2µ2. By Lemma 2.1 (iii) this means that pλ1µ1

≥
pλ2µ2

. But this means (pA)b(p
B)a ≤ (pA)a(p

B)b as every term pλ1µ1
in (pA)b(p

B)a is
matched by γ to its own distinct term pλ2µ2

of (pA)a(p
B)b with pλ1µ1

≤ pλ2µ2
.
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4 Proofs of Theorems 1.1 and 1.2

Theorems 1.1 and 1.2 are immediate corollaries of Theorems 4.1 and 4.2 below.

Theorem 4.1. Let X be an N-valued random variable with X ∈ TN2. Then, for all
partitions λ and µ, λ D µ implies C(λ, µ,X).

Theorem 4.2. Let X be a N-valued random variable with range(X) = {0, 1 . . . , r} for
some positive integer r. Then, for all partitions λ and µ with |λ| = |µ|, C(λ, µ,X) implies
λ D µ.

In order to prove Theorems 4.1 and 4.2 we will rephrase the condition C(λ, µ,X)
as a condition on pX(x), its probability generating function.
Let p(x) =

∑∞
n=0 pnx

n ∈ R[[x]]. For any t ∈ N, we define the truncation of p(x) =
∑∞

n=0 pnx
n ∈ R[[x]] to degree t to be p(x)|t =

∑t
n=0 pnx

n. Given a positive integer m,
λ ∈ Pm and t ∈ N, let

f(λ, p(x), t, x) =
m
∏

i=1

(pλ(i)(x)|t),

where p0(x) = 1 by definition.
Let R≥0[[x]] = {

∑∞
n=0 pnx

n : pn ≥ 0 for all n ∈ N}. Given p(x) ∈ R≥0[[x]] let p(1) =
∑∞

n=0 pn. If p(1) ∈ (0,+∞), we say X is distributed according to p(x) if and only if
pX(x) = p(x)/p(1). We denote this by X ∼ p(x).
If we also have q(x) =

∑∞
n=0 qnx

n ∈ R[[x]], we say p(x) coefficient-wise dominates
q(x) if and only if pn ≥ qn for all n ∈ N. We denote this by q(x) ⊑ p(x) or,
equivalently, p(x) ⊒ q(x).
Let C(λ, µ, p(x)) be the condition that

∀t ∈ Z≥0, f(λ, p(x), t, x) ⊑ f(µ, p(x), t, x).

Lemma 4.3. If p(x) ∈ R≥0[[x]] with p(1) ∈ (0,∞) and X is an N-valued random variable
with X ∼ p(x) then C(λ, µ, p(x)) is equivalent to C(λ, µ,X).

Proof. It is easy enough to see that f(λ, p(x), t, x) =
∑∞

j=0(p(1))
|λ|P (E(λ,X, j, t))xj

for all t ∈ N.

Proof of Theorem 4.1. Let X be an N-valued random with X ∈ TN2. For all
n ∈ N, let pn = P (X = n). Then p(x) = pX(x) =

∑∞
n=0 pnx

n and p = pX = {pn}
∞
n=0.
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Since X ∈ TN2, Tp ∈ TN2 by definition. By Theorem 1.4 Sp is TN2. (This would
also follow from Conjecture 1.5 if it were true.) This means

(pA)b(p
B)a ≤ (pA)a(p

B)b for all A ≥ B ≥ 0 and a ≥ b ≥ 0. (2)

We now mimic the proof of Lemma 2.1 (ii). To show that λ D µ implies C(λ, µ,X)
for all λ, µ ∈ Pn we may assume λ · ⊲µ. Let j and i with j > i ≥ 1 witness this fact
as in Lemma 2.2. Let A = µ(i) and B = λ(j). Then A > B and λ(i) = A + 1 and
µ(j) = B + 1.
We now show that that for all A > B ≥ 0 and for all t ∈ N,

(pA+1(x)|t)(p
B(x)|t) ⊑ (pA(x)|t)(p

B+1(x)|t). (3)

This will be enough to prove C(λ, µ, p(x)) and hence, by Lemma 4.3, C(λ, µ,X).
It is easy enough to verify that if f(x) ∈ R≥0[[x]] and g(x), h(x) ∈ R[[x]] with g(x) ⊑
h(x) then f(x)g(x) ⊑ f(x)h(x). Since (3) implies pλ(i)(x)pλ(j)(x) ⊑ pµ(i)(x)pµ(j)(x),

f(λ, p(x), t, x) =





∏

ν 6∈{i,j}

(pλ(ν)(x)|t)



 (pλ(i)(x)|t)(p
λ(j)(x)|t)

=





∏

ν 6∈{i,j}

(pµ(ν)(x)|t)



 (pλ(i)(x)|t)(p
λ(j)(x)|t)

⊑





∏

ν 6∈{i,j}

(pµ(ν)(x)|t



 (pµ(i)(x)|t)(p
µ(j)(x)|t) = f(µ, p(x), t, x).

The first equality holds by (a) of Lemma 2.2.
It remains to show (3). Fixing i ∈ N, we must show that the corresponding coeffi-
cients of xi in the two polynomials in (3) satisfy

∑

b+c+a=i,b+c≤t,a≤t

(pA)bpc(p
B)a ≤

∑

b+c+a=i,b≤t,c+a≤t

(pA)bpc(p
B)a.

In this last inequality and in the ones that follow, the indices a, b, c range over N.
Canceling the terms that appear in both summations, we get

∑

b+c+a=i,b+c≤t,a≤t,c+a>t

(pA)bpc(p
B)a ≤

∑

b+c+a=i,b≤t,c+a≤t,b+c>t

(pA)bpc(p
B)a.
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Exchanging the role of the variables a, b in the summation on on the right of this
last inequality, we get

∑

b+c+a=i,b+c≤t,a≤t,c+a>t

(pA)bpc(p
B)a ≤

∑

b+c+a=i,b+c≤t,a≤t,c+a>t

(pA)apc(p
B)b.

Fix c. For the tuples (b, c, a) in the summations, we have b ≤ t − c < a and (2)
implies (pA)bpc(p

B)a ≤ (pA)apc(p
B)b as pc ≥ 0.

We complete the paper by giving a proof of Theorem 4.2.
Given λ ∈ P , let λ′ ∈ P be the dual partition given by

λ′(i) = |{j : (j ≥ 1) and (λ(j) ≥ i)}|, for all positive integers i.

It is a standard result that for all λ, µ ∈ P , λ D µ if and only if λ′ E µ′, see [2],
1.4.11, p.26.
Proof of Theorem 4.2. Let X and r be as in the statement of the theorem. Let
p(x) = pX(x) =

∑r

n=0 pnx
n. By Lemma 4.3, we need to prove f(λ, p(x), t, x) ⊑

f(µ, p(x), t, x) implies λ D µ. Since range(X) = {0, 1, . . . , r}, for any a, t ∈ N

and λ ∈ P , p(x), pa(x), pa(x)|t and f(λ, p(x), t, x) will all have their coefficients
supported on initial segments of N. Let 1 ≤ t ≤ λ(1). Note that

deg
(

∏

(pλ(i)(x)|rt)
)

=
∑

λ(i)≥t

rt+
∑

λ(i)<t

rλ(i) = r
t
∑

k=1

λ′(k).

Since
∏

(pλ(i)(x)|rt) ⊑
∏

(pµ(i)(x)|rt),

deg(
∏

(pλ(i)(x)|rt) ≤ deg(
∏

(pµ(i)(x)|rt)

or

r

t
∑

k=1

λ′(k) ≤ r

t
∑

k=1

µ′(k).

Thus λ′ E µ′, and hence, λ D µ.

5 Notes

We record the following observations on the assumptions of Theorem 1.1.
Let X be an N-valued random variable. If range(X) = {0, 1}, then X is auto-
matically 2-non-negative and C(λ, µ,X), i.e. (1), always holds. If range(X) =
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{0, 1, 2}, some evidence suggests that C(λ, µ,X) holds without the restriction that
X be 2-non-negative. If range(X) = {0, 1, . . . , r} for an integer r with r ≥ 3,
some additional constraint on X is necessary for C(λ, µ,X) to hold. For exam-
ple, if Y is uniformly distributed on {0, 1, 3}, then even though (4, 2) D (3, 3),
P (E((4, 2), Y, 12, 6)) = 10/729 > 9/729 = P (E((3, 3), Y, 12, 6)). For q ∈ [0, 1),
define the random variable X with range(X) = {0, 1, 2, 3} by setting P (X =
k) = q/3 if k ∈ {0, 1, 3} and P (X = 2) = 1 − q. For q sufficiently close to 1,
P (E((4, 2), X, 12, 6)) > P (E((3, 3), X, 12, 6)).
If |range(X)| ∈ {1, 2} then X ∈ TN2. However some additional restriction on X
is still needed C(λ, µ,X) to hold. For example, if P (X = 0) = 1 then for every
λ ∈ P , P (E(λ,X, j, t)) = 1 if j = 0 and is 0 otherwise. Thus in this case C(λ, µ,X)
holds for any partitions λ and µ. If P (X = 1) = 1, then C(λ, µ,X) holds if and
only if |λ| = |µ| and µ(1) ≤ λ(1).
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