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TAYLOR’S MODULARITY CONJECTURE AND RELATED

PROBLEMS FOR IDEMPOTENT VARIETIES

JAKUB OPRŠAL

Abstract. We provide a partial result on Taylor’s modularity conjecture,
and several related problems. Namely, we show that the interpretability join
of two idempotent varieties that are not congruence modular is not congruence
modular either, and we prove an analogue for idempotent varieties with a cube
term. Also, similar results are proved for linear varieties and the properties
of congruence modularity, having a cube term, congruence n-permutability for
a fixed n, and satisfying a non-trivial congruence identity.

1. Introduction

An interpretation ι of a variety V in a variety W is a mapping that maps basic
operations of V to terms of W of the same arity such that for every algebra A ∈ W ,
the algebra (A, (ι(f)A)f∈σ) (where σ is the signature of V) is an algebra in V . We
say that a variety V is interpretable in a variety W if there exist an interpretation
of V in W . The lattice of interpretability types of varieties (see [Neu74, GT84]) is
then constructed by quasi-ordering all varieties by interpretability, and factoring
out varieties that are interpretable in each other. This gives a partially ordered
class such that every set has a join and a meet. The lattice of interpretability types
of varieties is a suitable object for expressing properties of Mal’cev conditions (for
a formal definition see [Tay73]): The varieties that satisfy a given Mal’cev condi-
tion form a filter in this lattice, thus, e.g. implications among Mal’cev conditions
translate into inclusions among the corresponding filters.

In this paper, we contribute to the line of research whose aim is to understand
which of the important Mal’cev conditions are indecomposable in the following
strong sense: if two sets of identities in disjoint languages together imply the Mal’cev
condition, then one of the sets already do. An equivalent formulation using the in-
terpretability lattice is especially simple: which of the important Mal’cev conditions
determine a prime filter? Some of the Mal’cev conditions with this property have
been described in the monograph by Garcia and Taylor [GT84], e.g. having a cyclic
term of given prime arity. Garcia and Taylor conjectured that the filter of congru-
ence permutable varieties and the filter of congruence modular varieties are prime.
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2 J. OPRŠAL

For congruence permutability, this was confirmed by Tschantz [Tsc96]. Unfortu-
nately, this proof has never been published. The congruence modular case is still
open:

Conjecture 1.1 (Taylor’s modularity conjecture). The filter of congruence mod-

ular varieties is prime, that is, if V and W are two varieties such that V ∨ W is

congruence modular, then either V or W is congruence modular.

In [BS14], Bentz and Sequeira proved that this is true if V and W are idem-
potent varieties that can be defined by linear identities (such varieties are called
linear idempotent varieties), and later in [BOP15], Barto, Pinsker, and the author
generalized their result to linear varieties that do not need to be idempotent. In
this paper we generalize Bentz and Sequeira’s result in a different direction.

Theorem 1.2. If V, W are two idempotent varieties such that V∨W is congruence

modular then either V or W is congruence modular.

Several similar partial results on primeness of some Mal’cev filters have been
obtained before. Bentz and Sequeira in [BS14] also proved for two linear idempotent
varieties: if the join of the two varieties is congruence n-permutable for some n,
then so is one of the two varieties; and similarly if their join satisfies a non-trivial
congruence identities, then so does one of the two varieties. Stronger versions of
these results also follow from the work of Valeriote and Willard [VW14], who proved
that every idempotent variety that is not n-permutable for any n is interpretable in
the variety of distributive lattices, and the work of Kearnes and Kiss [KK13], who
proved that any idempotent variety which does not satisfy a non-trivial congruence
identity is interpretable in the variety of semilattices. Recently, a similar result
has been obtained by Kearnes and Szendrei [KS16] for the filter of varieties having
a cube term.

Theorem 1.3. Suppose that n ≥ 2, and let V and W be two idempotent varieties

such that V ∨W has an n-cube term. Then so does either V or W.

We provide an alternative proof of this result using the fact (obtained in [KS16]
and recently also by [MM17]) that idempotent varieties that do not have a cube
term contain an algebra with a cube term blocker.

All of the filters mentioned so far share the following property: the varieties from
their complements have a so-called strong coloring of their terms by a finite rela-
tional structure that depends on the particular filter. The precise definition is given
in Section 3.2. The notion is a reformulation of colorings described in [BOP15],
and a generalization of compatibility with projections introduced in [Seq01]. In the
present manuscript, we describe these coloring structures. These characterizations
by the means of colorings allow us to give analogous results for linear varieties.
Moreover, we are also able to connect these results with their analogues for idem-
potent varieties (when those are available).

Theorem 1.4. Let V and W be two varieties such that each of them is either linear

or idempotent.

(i) If V ∨W is congruence modular, then so is either V or W;

(ii) if V ∨W is congruence k-permutable for some k, then so is either V or W;

(iii) if V ∨W satisfies a non-trivial congruence identity, then so does either V
or W;
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(iv) for all n ≥ 2: if V ∈ W has an n-cube term, then so does either V or W.

Theorem 1.5. Let n ≥ 2. If V and W are two linear varieties such that V ∨W is

congruence n-permutable, then so is either V or W.

However, we are not able to answer the following. (Note that the case n = 2 has
been resolved in [Tsc96] as well as Theorem 1.4(iv).)

Problem 1.6. Given n > 2 and two idempotent varieties V and W such that V∨W
is n-permutable. Is it always true that either V or W is n-permutable?

2. Varieties, clones, and relational structures

Before we get to prove the results of this paper, we would like to recall another
constructions of a class-size lattices that is equivalent to the lattice of interpretabil-
ity types of varieties. That is the lattice of (homomorphism classes of) clones
ordered by an existence of a clone homomorphism: We start with a preorder on
clones defined by the existence of a clone homomorphism between the two clones,
and follow by factoring out the homomorphically equivalent clones. The equiva-
lence of the two construction is implicitly given by Birkhoff’s theorem. There is
also a third construction that lacks being completely equivalent to the two: taking
relational structures and pp-interpretability between them. Those are connected
to clones by the Galois correspondence between relations and function clones on
a fixed (finite) set. Even though this construction of the lattice of interpretability
types lacks to be equivalent in general, we will often describe some function clones
as clones of polymorphisms of a relational structure.

2.1. Function clones. A function clone (or just a clone) is a set of operations A

on a fixed set A that contains projections and is closed under composition. We will
always use the same letter in italic font to denote the underlying set of the clone.
By a clone homomorphism from a function clone A to a function clone B we mean
a mapping ξ : A → B that preserves composition and projections.

The correspondence between clones and varieties is given by the following: Any
clone A can be naturally understood as an algebra A = (A, (f)f∈A ) having the
signature A ; the corresponding variety is then the variety generated by A. The
same variety can be also understood as the variety of all actions of A on sets (each
action of A gives an algebra in HSPA). We will call this variety the variety of

actions of A . For the other way, to obtain a clone corresponding to a variety V
we take the clone of term functions of its countably-generated free algebra F , or
in fact a clone of term functions of any generator of V (any two such clones are
isomorphic). When we refer to a clone of a variety we mean the function clone F

above.

2.2. Relational structures and pp-interpretations. We say that a relation R
is pp-definable in the structure B if there is a primitive positive formula (using only
conjunction and existential quantifiers) ψ such that (b1, . . . , bk) ∈ R if and only if
B |= ψ(b1, . . . , bn), and we say that a structure A is pp-interpretable in B if there is
a pp-definable relation R and a surjective mapping f : R → A such that the kernel
of f and the relations f−1(SA), where S is a relation S of A, are pp-definable in B.

The following relation between pp-interpretations and clone homomorphisms
for finite underlying sets is a consequence of the Galois correspondence between
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function clones and pp-closed systems of relations (see e.g. [Gei68]) and Birkhoff’s
HSP theorem.

Theorem 2.1. Let A, B be finite relational structures and A, B, respective, their

polymorphism clones. Then the following are equivalent.

(i) B is pp-interpretable in A.

(ii) There exists a clone homomorphism from A into B. �

For infinite structures, there are a few issues that can be resolved by restricting
to countable ω-categorical structures and considering uniformly continuous clone
homomorphisms, or relaxing a definition of relational structure to allow infinitary
relations and allow infinite ‘pp-definitions’ (see [BP15] and [Rom77]). Nevertheless,
the implication (i) → (ii) is valid in general, i.e., if the structures A and B are infinite
and not necessarily ω-categorical.

2.3. Notation. We use letters in italic for underlying sets of clones, algebras, and
relational structures that are denoted by the same letters. That means the symbol
A is used to denote an underlying set of: an algebra A, a clone A , and a relational
structure A. We will keep this consistent, i.e., if we denote two structures (algebraic
and relational) by the same letter, they have the same underlying set. Moreover, A
denotes the clone of polymorphisms of the relational structure A. We will also keep
some consistence between algebras, relational structures, and clones: all operations
of an algebra A will be compatible with relations of A and belong to the clone A .

We also say that an algebra A is compatible with a relational structure B, if the
above is the case, that is, they share a universe (A = B) and each operation of A
is compatible with every relation of B.

3. Overview of the method

Each of the Mal’cev filters given by one of the conditions mentioned in Theo-
rems 1.4 and 1.5 can be described as the class of varieties that do not contain an
algebra that has some compatible relations with a special property (e.g. congruence
modular are those varieties that do not contain an algebra having three congruences
that do not satisfy the modular law, finitely generated varieties with cube terms
are those that do not contain an algebra with ‘too many subpowers’, etc.). In order
to prove that these filters are prime, we have to prove that for any two varieties V ,
W that contain such ‘ugly’ algebras, also V ∨ W contains such an algebra. More
precisely, Taylor’s modularity conjecture in fact states that for any two varieties V ,
W that are not congruence modular, there exists an algebra A in V ∨W that has
congruences α, β, and γ that do not satisfy the modularity law. Such an algebra
has two natural reducts A1 ∈ V , A2 ∈ W which are obtained by taking only those
basic operations of A that belong to the signature of the respective variety. Both
these algebras share a universe and the three congruences α, β, and γ. Therefore,
Taylor’s conjecture states that for any two congruence non-modular varieties, there
exist a set A and equivalence relations α, β, γ on A such that both varieties con-
tain an algebra with the universe A and congruences α, β, and γ. In other words
(see Lemma 3.1), both varieties are interpretable in the variety of actions of the
polymorphism clone A of the relational structure (A;α, β, γ). Although it would
be convenient, we cannot find a single relational structure B such that a variety is
not congruence modular if and only if it is interpretable in the variety of actions
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of B. This is due to the fact, that congruence non-modular varieties can omit alge-
bras of size smaller then any fixed cardinal. Instead, we will find a chain of clones
Pκ indexed by cardinals, that are polymorphism clones of relational structures of
increasing sizes, such that every non-modular idempotent variety is interpretable
in the variety of actions of Pκ for every big enough cardinal κ. The same method
is also applied for the other filters in the interpretability lattice with the only dif-
ference being use of different relational structures.

Contrary to the general case, in the case that a variety V is linear and not
congruence modular, we are able to prove that it is interpretable in the vari-
ety of actions of the clone P0, that is defined as the clone of polymorphisms of
P0 = ({0, 1, 2, 3}, α, β, γ) where α, β, and γ are equivalences defined by partitions
01|23, 03|12, and 0|12|3, respectively. This is due to the fact that non-modular
varieties can be described as those varieties whose terms are colorable by P0 (see
Proposition 4.5). This turns out to be, in the case of linear varieties, equivalent to
any of the conditions in Lemma 3.1 for the relational structure P0 (see Lemma 3.5).
Moreover, we will also show that there is a clone homomorphism from P0 to Pκ

for any infinite cardinal κ, connecting the results for linear varieties and idempotent
varieties.

The rest of this section is dedicated to describing several general results to be
used in the following sections.

3.1. Varieties of actions of polymorphism clones. Our method is based on
the following lemma that describes the class of varieties that are interpretable in
the variety of actions of the polymorphism clone of a relational structure. Here, we
denote the signature of a variety V by σ(V).

Lemma 3.1. Let V be a variety, F the clone of its countably generated free algebra,

B be a relational structure. The following are equivalent:

(1) There is a clone homomorphism from F to B;

(2) V is interpretable in the variety of actions of B;

(3) V contains an algebra compatible with B.

Proof. (1) → (2): Let F denote the countable generated free algebra, and let
ξ : F → B be a clone homomorphism. We will use it to define an interpreta-
tion ι from V to the variety of action of B. Note that the signature of the variety
of actions of B is the set B. For a k-ary symbol f in the signature of V , we
define ι(f) = ξ(fF). We get that (B; ι(f)f∈σ(V)) ∈ V since ξ preserves identities,
and consequently, since (B; (f)f∈B) generates the variety of actions of B, ι is an
interpretation.

(2) → (3): Suppose that ι is an interpretation of V in the variety W of actions
of B. Note that, since B is closed under compositions, we can without loss of
generality suppose that ι maps basic operations of V to basic operations of W
(i.e., the elements of B). From the definition of an interpretation, we have that
for any action of B on a set C, (C, (ι(f))f∈σ(V)) is an algebra in V (here ι(f) is
understood as the action of the element ι(f) ∈ B). Considering in particular the
natural action of B on B, we claim that A = (B, (ι(f))f∈σ(V)) has the required
properties. Indeed, it has the right universe, and moreover for any f ∈ σ(V), the
function ι(f) is a polymorphism of B.

(3) → (1): Let A be the algebra satisfying the condition (3), and let F be the
countably generated free algebra in V . Define ξ : F → B by putting ξ(fF) = fA
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for every term f of V . This mapping is well-defined since A satisfies all identities
that are satisfied in F and every term operation of A is a polymorphism of B. It is
also a clone homomorphism since it preserves projections and composition. �

Also from the above, we get the following property of the interpretability join of
two varieties.

Lemma 3.2. Let B be a relational structure, and let V and W be two varieties

such that both contain an algebra compatible with B. Then also the interpretability

join V ∨W contains an algebra compatible with B.

Proof. From the previous lemma, we get that both V andW are interpretable in the
variety of actions of B, therefore also V ∨W is by the definition of interpretability
join. Again by the previous lemma, this implies that V ∨ W contain an algebra
compatible with B.

Alternatively, we can construct such an algebra directly: Suppose that C ∈ V
and D ∈ W are compatible with B (in particular C = D = B). The algebra B in
V∨W compatible with B is obtained by putting the structures of these two algebras
on top of each other, i.e., as B = (B; (fC)f∈σ(V), (g

D)g∈σ(W)). �

3.2. Colorings of terms by relational structures. Usually we are unable to
find a single relational structure B such that variety falls in the complement of a
filter if and only if it is interpretable in the variety of actions of B. Nevertheless,
we can relax from taking clone homomorphism, corresponding to interpretation of
varieties, to h1 clone homomorphisms. An h1 clone homomorphism is a mapping
between two clones that preserves identities of height 1 in a similar way as clone
homomorphism preserves all identities [BOP15, Definition 5.1]. Existence of an h1
clone homomorphism from the clone of a variety V to the polymorphism clone of
a relational structure B is described by an existence of a coloring described below.
As noted in [BOP15], h1 clone homomorphisms encapsulate not only the usual
algebraical (primitive positive) construction, but also homomorphic equivalence
of relational structures. This said, coloring is defined as a homomorphism from
a certain ‘freely generated’ relational structure given by V and B to the relational
structure B. There will always be a natural homomorphism from B to this freely
generated structure.

Definition 3.3. Given a variety V and B a relational structure. We define a free

structure generated by B to be a relational structure F of the same signature as
B whose underlying set is the universe of the free B-generated algebra F, and
a relation RF is the smallest compatible relation on F containing RB.

As for a free algebra, the elements of F are represented by terms of V over the
set B as their set of variables. Therefore, it is sensible to denote the elements of
the copy of B in F as variables xb, b ∈ B. Another way is to define F as being
generated by the set {xb : b ∈ B} rather then B itself, and RF being the relations
generated by {(xb1 , . . . , xbk) : (b1, . . . , bk) ∈ RB}. It is clear that both relational
structures are isomorphic, moreover they are also isomorphic as (mixed) structures
with both relations RF and operations fF.

Definition 3.4. A coloring of terms of a variety V by B (or B-coloring of terms)
is any homomorphism from the free structure generated by B to B. A coloring is
strong if its restriction to B is an indentity mapping (maps xb to b).
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The following is a consequence of the theory developed in [BOP15]; it follows
from Propositions 7.4 and 7.5 of the mentioned paper. Nevertheless, we present
a variant of the proof of equivalence of (3) and (5) for completeness.

Lemma 3.5. Let V be a linear variety, F its clone, and B a relational structure.

The following are equivalent:

(1) There is a clone homomorphism from F to B;

(2) there is a strong h1 clone homomorphism from F to B;

(3) the terms of V are strongly B-colorable;

(4) V is interpretable in the variety of actions of B;

(5) V contains an algebra compatible with B.

Proof. The equivalence of (1), (4), and (5) follows from Lemma 3.1. The implication
(1) → (2) is trivial, and its converse is given by [BOP15, Proposition 7.5]. To finish
the proof, we show that (3) and (5) are equivalent. We denote FB, the free algebra
in V generated by B, and FB, the free structure generated by B.

(3) → (5): A strong coloring is a mapping c : FB → B. We define a structure of
a V-algebra on the set B as a retraction (see [BOP15, Definition 4.1]) of FB by i
and c where i : B → FB is an inclusion (i(b) = xb, resp.), i.e.,

fB(b1, . . . , bn) = c(fFB (xb1 , . . . , xbn)).

One can observe that operations defined this way satisfy all linear identities satisfied
by FB (see also [BOP15, Corollary 5.4]), therefore B ∈ V . To prove that B is
compatible with B, we consider a relation RB of B and b1, . . . ,bn ∈ RB. Then
by the definition of FB, b1, . . . ,bn ∈ RFB , therefore fFB (b1, . . . ,bn) ∈ RFB , and
c(fFB (b1, . . . ,bn)) ∈ RB from the definition of coloring. This shows that fB defined
as above is a polymorphism of B, and hence B is compatible with B.

(5) → (3): LetB be an algebra in V compatible with B, and let c : FB → B be the
natural homomorphism from FB that extends the identity mapping (the mapping
xb 7→ b, resp.). We claim that this mapping is a coloring. Indeed, if f ∈ RFB then
there is a term f and b1, . . . ,bn ∈ RB such that f = fFB (b1, . . . ,bn), therefore

c(f) = c(fFB (b1, . . . ,bn)) = fB(b1, . . . ,bn) ∈ RB,

since B is compatible with B. The coloring c is strong by definition. �

3.3. Coloring by transitive relations. Some of the relational structures we use
for coloring have binary transitive relations, or even equivalence relations. In these
cases, we can refine the free structure F generated by a relational structure B in
the following way.

Lemma 3.6. Let B be a relational structure, V a variety, F the free structure in V
generated by B, and let F′ be a structure obtained from F by replacing every relation

RF, for which RB is transitive, by its transitive closure. Then a mapping c : F → B
is a coloring if and only if it is a homomorphism c : F′ → B.

Proof. This directly follows from the corresponding result about relational struc-
tures in general. In detail, given that A and B are relational structures sharing
a signature such that RB is transitive, then every homomorphism from A to B

maps transitive closure of RA to RB. Conversely, if A′ is obtained from A as de-
scribed in the proposition, then any homomorphism from A′ to B is automatically
a homomorphism from A to B. �
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Following the notation of the lemma, note that, if the relation RB is symmetric
binary relation, then also RF is. This follows from the fact that if (f, g) ∈ RF then
there is a term t of V and tuples (a1, b1), . . . , (an, bn) ∈ RB such that t(a1, . . . , an) =
f and t(b1, . . . , bn) = g. Applying the same term t to pairs (b1, a1), . . . , (bn, an) ∈
RB, we get that (g, f) ∈ RF. From this observation and the lemma above, we get
that if RB is an equivalence relation, we can take RF to be the congruence generated
by RB. This case is further described in the following lemma.

Lemma 3.7. Let B be a finite relational structure with B = {1, . . . , n}, αB an equiv-

alence relation, F the free B-generated algebra, and F the free structure in V gen-

erated by B. Then the the following three definitions give the same relation:

(1) the transitive closure of αF,

(2) the congruence of F generated by αB,

(3) the set of all pairs (fF(1, . . . , n), gF(1, . . . , n)) where f, g are terms of V
such that f(x1, . . . , xn) ≈ g(x1, . . . , xn) is satisfied in V whenever xi ≈ xj
for all (i, j) ∈ αB.

Proof. Let us denote the relation defined in the item (i) of the above list by αi.
Clearly, α1 ⊆ α2 since α2 is transitive and contains αF. We will prove α2 ⊆ α3 ⊆ α1.
α2 ⊆ α3: Clearly, α3 is symmetric, transitive, and reflexive. It is straight-

forward to check that it is compatible with operations of F. Finally, we claim
that αB ⊆ α3. Indeed, pick (i, j) ∈ αB and choose f(x1, . . . , xn) = xi and
g(x1, . . . , xn) = xj . Clearly, f and g satisfies the condition in (3), therefore
(i, j) = (fF(1, . . . , n), gF(1, . . . , n)) ∈ α3. We proved that α3 is a congruence of
F containing αB, which concludes α2 ⊆ α3.
α3 ⊆ α1: Let (f

F(1, . . . , n), gF(1, . . . , n)) be a typical pair in α3. Fix a represen-
tative for each αB class, and let ik denote the representative of the class contain-
ing k. From the definition of αF, we obtain (fF(1, . . . , n), fF(i1, . . . , in)) ∈ αF and
(gF(i1, . . . , in), g

F(1, . . . , n)) ∈ αF. Since f(xi1 , . . . , xin) ≈ g(xi1 , . . . , xin) is true in
V , we get that fF(i1, . . . , in) = gF(i1, . . . , in), and consequently

(

fF(1, . . . , n), gF(1, . . . , n)
)

∈ αF ◦ αF ⊆ α1

which concludes the proof of α3 ⊆ α1. �

As a consequence of the previous lemma, we also obtain that coloring by a re-
lational structure B whose all relations are equivalence relation is equivalent to
having terms compatible with projections as defined in [Seq06] (compare item (3)
with Definition 5.2 of [Seq06]). The corresponding set (α1, . . . , αk) of projections
can be obtained from the relations of B.

3.4. Tarski’s construction. In this section we describe a transfinite construction
that appeared in [Bur72] and is attributed to Tarski. This construction is an
algebraical version of Löwenheim-Skolem theorem, and we will use it to show that
the chains of clones Pκ, Bκ, and Cκ defined in the following sections are indeed
chains as ordered by an existence of a clone homomorphism.

Given an algebraA, we define a sequenceAλ indexed by ordinals by the following
transfinite construction: We start with A0 = A. For an ordinal successor λ + 1
define Aλ+1 as an algebra isomorphic to A2

λ while identifying the diagonal with
Aλ, i.e., take Aλ+1 ⊆ Aλ with a bijection fλ : A

2
λ → Aλ+1 such that fλ(a, a) = a,

and define the structure of Aλ+1 in such a way that fλ is an isomorphism. For
a limit ordinal λ, we set Aλ =

⋃

α<λ Aα. This construction produces algebras
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in the variety generated by A of all infinite cardinalities larger than |A|. Indeed,
one can observe that |Aλ| = max{|λ|, |A|} for all infinite λ. We can also follow
this construction to get from a fixed proper subset U ⊂ A, U 6= ∅ a set Uλ ⊆ Aλ

such that both its cardinality and cardinality of its complement is |λ| (given that
|λ| ≥ |A|): We put U0 = U ; for ordinal successor λ+1, we take Uλ+1 = fλ(Aλ×Uλ)
(observe that Uλ+1 ∩ Aλ = Uλ); and for limit λ, we take Uλ =

⋃

α<λ Uα.

4. Taylor’s conjecture

In this section, we prove Theorem 1.2 about Taylor’s conjecture on congruence
modular varieties. Congruence modular varieties have been thoroughly investi-
gated, and they have many nice properties, nevertheless we need only the definition
and the following Mal’cev characterization of these varieties by A. Day [Day69]:

Theorem 4.1. The following are equivalent for any variety V.

(1) Every algebra in V has modular congruence lattice;

(2) there exists n, and quaternary terms d0, . . . , dn such that the following iden-

tities are satisfied in V:

d0(x, y, z, w) ≈ x and dn(x, y, z, w) ≈ w,

di(x, y, y, z) ≈ di+1(x, y, y, z) for even i,

di(x, x, y, y) ≈ di+1(x, x, y, y) and di(x, y, y, x) ≈ di+1(x, y, y, x) for odd i.

A sequence of terms satisfying the identities in (2) is referred to as Day terms ;
we will also say that some functions (or polymorphisms) are Day functions if they
satisfy these identities.

4.1. Pentagons. For the description of a cofinal chain of clones in the complement
of the filter of clones containing Day terms, we will use relational structures of the
form P = (P ;α, β, γ) where α, β, and γ are equivalence relations on P that do not
satisfy the modularity law. A very similar structures have been used in [BCV13]
to prove that the problem of comparison of pp-formulae is coNP-hard for algebras
that do not generate congruence modular varieties; it was also used in [McG09].
The following definition of a pentagon is almost identical to the one in [BCV13] (we
focus on those pentagon which are by themselves ‘interesting’). For our purpose we
need pentagons of even more special shape; we call them special and very special
pentagons.

Definition 4.2. A pentagon is a relational structure P in the signature {α, β, γ}
with three binary relations that are all equivalence relations on P satisfying:

• αP ∧ βP = 0P ,
• αP ◦ βP = 1P ,
• γP ∨ βP = 1P , and
• γP < αP.

The first two items in this definition ensure that every pentagon naturally fac-
tors as a direct product P = A × B in such a way that α and β are kernels of
projections on the first and the second coordinate, respectively. In this setting, γ
is an equivalence relation that relates some pairs of the form ((a, b), (a, c)). For
an equivalence γ on a product A×B, and a ∈ A, we define γa to be the following
equivalence on B:

γa := {(b, c) : ((a, b), (a, c)) ∈ γ}.
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A pentagon on the set A × B (with α and β being the two kernels of projections)
is said to be special if γa for a ∈ A gives exactly two distinct congruences with one
of them being the full congruence on B, i.e., there exists η < 1B such that

{γa : a ∈ A} = {1B, η}.

Such pentagon is very special if the above is true for η = 0B. When defining
a special, or a very special pentagon P on a product A × B, we will usually speak
only about the relation γP since the other two relations are implicitly given as the
kernels of projections.

In this section we will use pentagons P0 and Pκ where κ is an infinite cardinal.
All of these pentagons are either themselves very special, or isomorphic to a very
special pentagon.

Definition 4.3. We define P0 as the smallest possible pentagon. In detail: P0 =
{0, 1, 2, 3} and αP0 , βP0 , and γP0 are equivalences defined by partitions 12|03, 01|23,
and 12|0|3, respectively.

0 1

23

α α γ

β

β

Figure 1. The pentagon P0

The pentagon P0 is isomorphic to a very special pentagon on the set P = {0, 1}×
{0, 1} with γ0 = 0{0,1} and γ1 = 1{0,1}; an isomorphism is given by the map:
0 7→ (0, 0), 1 7→ (1, 0), 2 7→ (1, 1), and 3 7→ (0, 1).

Definition 4.4. For an infinite cardinal κ, we define a pentagon Pκ: Fix Uκ ⊆ κ
with |Uκ| = |κ \ Uκ| = κ, and define Pκ = κ× κ, αPκ and βPκ to be the kernels of
the first and the second projection, respectively, and

γPκ = {((a, b), (a, c)) : a, b, c ∈ κ such that a ∈ Uκ or b = c}.

4.2. Coloring and linear varieties. Using Day terms, we obtain a characteriza-
tion of congruence non-modular varieties by the means of coloring by the pentagon
P0 defined above.

Proposition 4.5. A variety V does not have Day terms if and only if it has strongly

P0-colorable terms.

Proof. Let F denote the structure obtained from the free structure in V generated
by P0 by replacing every its relation by its transitive closure, and note that all three
relations of F are equivalences (see Lemma 3.7), and also that c : F → P0 is a color-
ing if and only if it is a homomorphism from F to P0 (see Lemma 3.6). To simplify
the notation we identify a 4-ary term d with the element d(x0, x1, x2, x3) ∈ F .

First, we prove the implication from left to right. For a contradiction, sup-
pose that V has Day terms d0, . . . , dn, and that there is a strong coloring c : F →
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P0. Any strong coloring c maps x0, and therefore also d0, to 0, and it satisfies
(c(di), c(di+1)) ∈ γ for even i, and (c(di), c(di+1)) ∈ α ∧ β for odd i; this follows
from Day identities that can be reformulated as: (di, di+1) ∈ γF for even i and
(di, di+1) ∈ αF ∧ βF for odd i. Using these observations, we obtain by induction
on i that c maps di to 0 for all i, in particular c(x3) = c(dn) = 0. This gives us
a contradiction with c(x3) = 3.

For the converse, we want to prove that Day terms are the only obstruction
for having strongly P0-colorable terms. We will do that by defining a valid strong
coloring of terms of any V that does not have Day terms. Observe that even in
this case we can repeat the argumentation from the above paragraph to get that
c(f) = 0 for any f that is connected to x0 by a Day-like chain, i.e., terms d0, . . . ,
dn satisfying Day identities where dn ≈ x3 is replaced by dn ≈ f . Therefore, we
put c(f) = 0 if this is the case. Furthermore, for any f with (f, g) ∈ βF for some
g having the property above, we have c(f) ∈ {0, 1}. We put c(f) = 1 if this is
the case and we have not defined the value c(f) yet. Similarly, if (f, g) ∈ αF for
some g with c(g) = 0 and c(g) undefined, we put c(f) = 3 following the rule that
c(f) ∈ {0, 3}. Note that in this step we have defined c(x3) = 3 since (x0, x3) ∈ αF.
Finally, for the remaining f ∈ F we put c(f) = 2. This definition is summarized as
follows: c(f) = 0 if (f, x0) ∈ (αF ∧ βF) ∨ γF, otherwise:

c(f) =











1 if (f, g) ∈ βF for some g with c(g) = 0,

3 if (f, g) ∈ αF for some g with c(g) = 0, and

2 in all remaining cases.

Note that if f satisfies both the first and the second row of the above, say there
are g1, g2 with c(gi) = 0, (f, g1) ∈ βF, and (f, g2) ∈ αF, then also (f, g1) ∈ αF since
(αF ∧ βF) ∨ γF ≤ αF, and c(f) is assigned value 0 in the first step. Therefore, c is
well-defined.

We claim that c defined this way is a homomorphism from F to P0, and therefore
a coloring. To prove that we need to show that c preserves all α, β, and γ. First,
let (f, g) ∈ αF. Then either there is h ∈ F with c(h) = 0 in the αF-class of f and g,
and both c(f) and c(g) are assigned values in {0, 3}, or there is no such h and both
c(f) and c(g) are assigned values in {1, 2}. Either way (c(f), c(g)) ∈ αP0 . The same
argument can be used for showing (c(f), c(g)) ∈ βP0 given that (f, g) ∈ βF. Finally,
suppose that (f, g) ∈ γF. If c(f) ∈ {1, 2}, we immediately get that c(g) ∈ {1, 2}
since c preserves α. If this is not the case, and f and g are assigned values that
are not in the same class of γP0 , then c(f) = 0 and c(g) = 3, or vice-versa. But
this implies that (f, g) /∈ γF as otherwise both would be assigned the value 0. This
concludes that c is a coloring.

We are left to prove that c is strong, i.e., c(xi) = i for i = 0, 1, 2, 3. We know
(from the defintion of c) that c(x0) = 0 and c(x3) = 3. Now, x1 and x2 are
assigned values that are in the same class of γP0, and moreover (c(x1), c(x0)) ∈ βP0

and (c(x3), c(x2)) ∈ βP0 . This leaves us with the only option: c(x1) = 1 and
c(x2) = 2. �

Note that in the previous proof we use the same three congruences (αF, βF, and
γF) of the free algebra generated by a four element set that also appeared in the
original proof of Day’s results. This is not a pure coincidence, we will use a very
similar method of deriving a suitable structure for coloring in Section 5.
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4.3. Idempotent varieties. In this subsection, we prove a generalization of the
following theorem of McGarry [McG09] for idempotent varieties that do not need
to be locally finite.

Theorem 4.6 ([McG09]). A locally finite idempotent variety is not congruence

modular if and only if it contains and algebra compatible with a special pentagon. �

Throughout this proof we will work with several variants of special and very
special pentagons P defined on a product A × B for two algebras A, B in our
idempotent variety, and in particular with the corresponding relations γP. We say
that γ is a modularity blocker if P = (A×B;α, β, γ) is a special pentagon given that
α and β are kernels of the two projections, and γ is a special modularity blocker if
P is a very special pentagon.

The first step of the proof coincides with McGarry’s proof. Nevertheless, we
present an alternative proof for completeness.

Lemma 4.7. Let V be an idempotent variety, and F the free algebra in V generated

by {x, y}. Then V is congruence modular if and only if
(

(y, x), (y, y)
)

∈ CgF×F{
(

(x, x), (x, y)
)

}. (∗)

Proof. Given that V is congruence modular, one obtains (∗) from the modularity
law applied on the two kernels of projections and the congruence on the right hand
side of (∗).

To show that (∗) also implies congruence modularity, we will prove that (∗)
is not true in any V that is idempotent and not congruence modular. First, we
consider the free algebra F4 in V generated by the four-element set {x0, x1, x2, x3}
and its congruences α = Cg{(x0, x3), (x1, x2)}, β = Cg{(x0, x1), (x2, x3)}, and
γ = Cg{(x1, x2)}. Note that this is the structure F that has been used in the proof
of Proposition 4.5. Either from this proposition, or by a standard argument from
the proof of Day’s result, we obtain that α, β, and γ don’t satisfy the modularity
law, and in particular, (x0, x3) /∈ γ ∨ (α ∧ β).

Next, we shift this property to the second power of the two-generated free al-
gebra; consider the homomorphism h : F4 → F × F defined on the generators
by x0 7→ (y, x), x1 7→ (x, x), x2 7→ (x, y), and x3 7→ (y, y). The homomor-
phism h is surjective, since for every two binary idempotent terms t, s we have
h
(

t(s(x1, x2), s(x0, x3))
)

=
(

t(x, y), s(x, y)
)

. Finally, since the kernel of h is α ∧ β,
we get that

h−1
(

CgF×F{((x, x), (x, y))}
)

= γ ∨ (α ∧ β) 6∋ (x0, x3),

and consequently ((y, x), (y, y)) = (h(x0), h(x3)) /∈ CgF×F{((x, x), (x, y))}. �

Lemma 4.8. Let V be an idempotent variety which is not congruence modular,

and F = FV(x, y). Then there is a modularity blocker γ in F × F such that

((x, x), (x, y)) ∈ γ and ((y, x), (y, y)) /∈ γ,

Proof. Let γ0 = CgF×F{
(

(x, x), (x, y)
)

}. From the previous lemma, we know that
((y, x), (y, y)) /∈ γ0. Let η be a maximal equivalence relation on F such that

(

(y, x), (y, y)
)

/∈ γ0 ∨ Cg{
(

(y, a), (y, b)
)

: (a, b) ∈ η}

(such equivalence exists from Zorn’s lemma). We claim that the equivalence on the
right-hand side, let us call it γ, is a modularity blocker. This is proven in two steps:

Claim 1. γp ≥ η for all p ∈ F .
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Let f be binary term such that f(x, y) = p. Observe that γx = 1F ≥ η and γy =
η, therefore we obtain that

(

(p, a), (p, b)
)

=
(

f
(

(x, a), (y, a)
)

, f
(

(x, b), (y, b)
))

∈ η
for all (a, b) ∈ η. Which shows that γp ≥ η. △

Claim 2. If γp > η for some p ∈ F then γp = 1F .

Let e = e′ × 1F, where e
′ : F → F is the homomorphism defined by x 7→ x and

y 7→ p, and consider the congruence γ1 = e−1(γ). From this definition, we obtain
that γy1 ≥ γp > η and moreover γ1 ≥ γ0 since (e(x, x), e(x, y)) = ((x, x), (x, y)) ∈
γ. Therefore, from the maximality of η, we obtain that ((y, x), (y, y)) ∈ γ1, and
as a consequence thereof, ((p, x), (p, y)) = (e(y, x), e(y, y)) ∈ γ. This shows that
γp = 1F and completes the proof of the second claim. △

By combining both claims, we get that γp ∈ {η, 1F}, therefore γ is a modularity
blocker. �

The above proof was inspired by the proof of Lemma 2.8 from [KT07].

Corollary 4.9. Every idempotent variety that is not congruence modular is com-

patible with a very special pentagon.

Proof. Following the notation of the previous lemma, we know that (F ×F, α, β, γ)
is a special pentagon for kernels of projections α, β. To obtain a very special
pentagon P, first observe that γy is a congruence on F: by idempotence we get
that {y} × F is a subalgebra of F2 isomorphic to F, and γy is the image of the
restriction of γ to {y}×F under this isomorphism. We set A = F, B = F/γy, and
P = A×B. Finally, the relation γP is defined as the image of γ under the natural
epimorphism from F2 to A×B. �

The next step is to show that we can increase the size of compatible very spe-
cial pentagons. In other words, that every variety compatible with a very special
pentagon is compatible with Pκ’s for all big enough cardinals κ.

Proposition 4.10. If a variety V contains an algebra compatible with a very special

pentagon P, then it contains an algebra compatible with Pκ for all κ ≥ ℵ0 + |P |.

Proof. Let A and B be two algebras in V such that P is compatible with A ×B,
let U ⊆ A denote the set {a ∈ A : γa = 1B}, and let κ ≥ ℵ0 + |P | be a cardinal.

We will construct a pentagon which is isomorphic to Pκ by a variation on Tarski’s
construction described in Section 3.4. Let Aλ and Uλ be the algebra and its subset
obtained by the construction from A and U in λ steps, and let Bλ be the algebra
obtained by the construction from B in λ steps. We define an equivalence relation
γλ on Aλ ×Bλ by

γλ = {((a, b), (a′, b′)) : a = a′ and if a 6∈ Uλ then b = b′}.

We will prove that γλ is a congruence of Aλ × Bλ by a transfinite induction:
γ0 = γ is a congruence. For the induction step, suppose that γλ is a congruence.
The algebras Aλ+1 and Bλ+1 are defined as being isomorphic to the second powers
of Aλ and Bλ respectively. Let us suppose that they are in fact the second powers
themselves and Uλ+1 = Aλ×Uλ. Then γλ+1 can be described as relating those pairs
of pairs

(

(a1, a2), (b1, b2)
)

and
(

(a′1, a
′
2), (b

′
1, b

′
2)
)

that satisfy: a1 = a′1, a2 = a′2, and
if a2 6∈ Uλ then b1 = b′1 and b2 = b′2. Rewriting this condition, we get
((

(a1, a2), (b1, b2)
)

,
(

(a′1, a
′
2), (b

′
1, b

′
2)
))

∈ γλ+1 if and only if

a1 = a′1, a2 = a′2,
(

(a2, b1), (a
′
2, b

′
1)
)

∈ γλ, and
(

(a2, b2), (a
′
2, b

′
2)
)

∈ γλ
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which is clearly compatible with the operations, since γλ is. Also note, that if we
restrict γλ+1 to Aλ ×Bλ, we get γλ. For limit ordinals λ, the compatibility of γλ
is obtained by a standard compactness argument. This way, we obtain for every λ
a very special pentagon P′

λ with P ′
λ = Aλ ×Bλ and γPλ = γλ.

The final step is to prove that the pentagon P
′
λ is isomorphic to Pκ for κ = |λ|.

Indeed, Pκ = κ× κ, P ′
λ = Aλ ×Bλ with |Aλ| = |Bλ| = κ. Also compare

γPκ = {((a, b), (a′, b′)) : a = a′ and if a 6∈ Uκ then b = b′ }

with the above definition of γλ. From these observations, it is immediate that any
bijection a× b : κ× κ→ Aλ ×Bλ defined by components a and b such that a maps
Uκ onto Uλ is an isomorphism between Pκ and P

′
λ. �

4.4. Proof of Theorem 1.4(i). Given a variety V that is not congruence mod-
ular, we distinguish between two cases: V is linear; and V is idempotent. If it
is the first case, we get from Proposition 4.5 and Lemma 3.5 that V contains an
algebra compatible with a very special pentagon PV = P0. In the second case, V
is idempotent, we obtain a very special pentagon P

V compatible with an algebra
from V by Corollary 4.9.

Given that both V and W are not congruence modular, and either linear, or
idempotent, we have very special pentagons PV and PW compatible with algebras
from the corresponding varieties. Choosing an infinite cardinal κ larger than the
sizes of both PV and PW . Proposition 4.10 yields that both varieties contain alge-
bras compatible with the pentagon Pκ, therefore by Lemma 3.2, the interpretability
join V ∨ W contains an algebra compatible with Pκ witnessing that V ∨ W is not
congruence modular. �

4.5. Cofinal chain. Here we investigate properties of the transfinite sequence P0,
Pℵ0

, Pℵ1
, . . . of polymorphism clones of pentagons P0,Pℵ0

, . . . ; in particular, we
show that this sequence form a strictly increasing chain in the lattice of clones, and
as a corollary thereof, we obtain that there is no maximal (in the interpretability
order) idempotent variety that is not congruence modular. For the rest of this
section, κ and λ will denote either infinite cardinals, or 0.

The fact that the chain is increasing follows from the following corollary of Propo-
sition 4.10.

Corollary 4.11. There is a clone homomorphisms from Pλ to Pκ for all λ ≤ κ.

Proof. If we use Proposition 4.10 on the variety of actions of Pλ, we obtain that
it contains an algebra compatible with Pκ. But such an algebra corresponds to
an action of Pλ on Pκ by polymorphisms, therefore to a clone homomorphism
from Pλ to Pκ. �

Before we proceed further, we need a better description of polymorphisms of the
pentagons Pκ.

Lemma 4.12. Let κ be an infinite cardinal, and consider the pentagon Pκ, and

let f : P k
κ → Pκ be a functions defined by components f1, f2 : κk → κ. Then the

following are equivalent:

(1) f is a polymorphism of Pκ,

(2) if f1(a1, . . . , an) /∈ U for some a1, . . . , an ∈ κ then f2 does not depend on

any coordinate i such that ai ∈ U .
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Proof. (1) → (2) Since f is defined component-wise, if is compatible with αPκ

and βPκ . For compatibility with γPκ , recall that ((a, b), (a′, b′)) ∈ γPκ if and only
if a = a′, and a ∈ U or b = b′. Therefore, if f is compatible with γPκ and
f1(a1, . . . , an) /∈ U then f2(b1, . . . , bn) = f2(b′1, . . . , b

′
n) for all bi, b

′
i where bi = b′i

whenever ai /∈ U (observe that ((ai, bi), (ai, b
′
i)) ∈ γPκ for all i). This means that

f2 does not depend on any coordinate i with ai ∈ U . The implication (2) → (1) is
given by reversing this argument. �

Instead of proving that the chain of Pκ’s is strictly increasing, we prove the
following stronger statement which will allow us to show that there is no maximal
(in the ordering by interpretability) idempotent non-modular variety.

Proposition 4.13. The idempotent reducts of Pκ’s form a strictly increasing chain

in the lattice of clones.

Proof. Let P id
κ denote the idempotent reduct of Pκ. We need to show two facts:

(1) there is a clone homomorphism from P id
λ to P id

κ for all λ ≤ κ, and (2) there is
no clone homomorphism from P id

κ to P id
λ for any λ < κ. (1) follows directly from

Corollary 4.11, since any clone homomorphism from Pλ to Pκ has to preserve
idempotent functions.

To prove (2) suppose that κ > λ. We will find identities that are satisfied in P id
κ

but are not satisfiable in P id
λ . In fact they are not satisfiable in any clone on a set

of cardinality strictly smaller than κ except the one-element set. The identities use
binary symbols fi for i ∈ κ and ternary symbols pi,j , qi,j , ri,j for i, j ∈ κ, i 6= j:

x ≈ pi,j(x, fj(x, y), y),

pi,j(x, fi(x, y), y) ≈ qi,j(x, fj(x, y), y),

qi,j(x, fi(x, y), y) ≈ ri,j(x, fj(x, y), y),

ri,j(x, fi(x, y), y) ≈ y

for all i 6= j, and fi(x, x) ≈ x for all i.
We will define functions in P id

κ that satisfy these identities coordinatewise (recall
Pκ = κ×κ); this will assure that these functions are compatible with αPκ and βPκ .
We fix c1 ∈ Uκ and c2 ∈ κ. The functions fi are defined, unless required by
idempotence otherwise, as constants while choosing different constants for different
i’s. In detail, we pick c1i ∈ Uκ to be pairwise distinct, and c2i ∈ κ as well. Then
fu
i (x, y) = cui if x 6= y and fu

i (x, x) = x for u = 1, 2. The components of pi,j , qi,j ,
and ri,j are defined as follows:

p1i,j(x, y, z) =

{

x if y = f1
j (x, z),

c1 otherwise;
p2i,j(x, y, z) = x;

q1i,j(x, y, z) =

{

x if x = y = z,

c1 otherwise;
q2i,j(x, y, z) =











x if y = f2
j (x, z),

z if y = f2
i (x, z),

c2 otherwise;

r1i,j(x, y, z) =

{

z if y = f1
i (x, z),

c1 otherwise;
r2i,j(x, y, z) = z;

It is straightforward to check that these functions satisfy the identities. The com-
patibility with αPκ and βPκ is immediate from defining them component-wise. The
compatibility with γPκ follows from Lemma 4.12: the only case when p1i,j(x, y, z) /∈
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Uκ is when x /∈ Uκ and y = f1
j (x, z) but p2i,j does not depend on the second

and third variable, therefore pi,j is compatible; the argument for ri,j is analogous;
q1i,j(x, y, z) falls in Uκ unless x = y = z /∈ Uκ, so qi,j is also compatible.

Next, we claim that the above identities are not satisfied in any non-trivial
algebra A of size strictly less than κ. Indeed, if A contains two distinct elements a
and b, then fi(a, b), i ∈ κ are pairwise distinct, since if fA

i (a, b) = fA
j (a, b), then

a = pAi,j(a, fj(a, b), b) = pAi,j(a, fi(a, b), b) = qAi,j(a, fj(a, b), b) =

qAi,j(a, fi(a, b), b) = rAi,j(a, fj(a, b), b) = rAi,j(a, fi(a, b), b) = b.

This shows in particular that these identities are not satisfiable in P id
λ . �

Corollary 4.14. The class of all interpretability classes of idempotent varieties

that are not congruence modular does not have a largest element.

Proof. For a contradiction, suppose that there is a largest interpretability class
among those containing a non-modular idempotent variety, and let V be a variety
from this class. By Corollary 4.9 and Proposition 4.10, we know that V is inter-
pretable in the variety of actions of Pκ for some κ. Fix any such κ, and let λ > κ
be a cardinal. By the maximality of V , we have that the variety of actions of P id

λ

(the idempotent reduct of Pλ) is interpretable in V , therefore also in the variety
of actions of Pκ which contradicts the previous proposition. �

5. Having n-permutable congruences

In this section, we will investigate both the strong Mal’cev conditions for being
congruence n-permutable (every two congruences α, β of a single algebra satisfy
α ◦n β = β ◦n α) for a fixed n, and a general condition of being congruence n-
permutable for some n. Therefore, we will speak about a countable chain of filters
in the interpretability lattice and its limit. The primeness of the limit filter would
be implied by primeness of each of the filters from the chain. Unfortunately, we are
not able to establish the version of Theorem 1.4(ii) for the filters from the chain.
We would also like to note that the condition of being n-permutable for some n
can be also formulated as ‘having no nontrivial compatible partial order’; this have
been attributed to Hagemann, for a proof see [Fre13].

Theorem 5.1. A variety V is not congruence n-permutable for any n if and only if

it contains an algebra compatible with a partial order that is not an antichain. �

There are two well-known Mal’cev characterizations of the discussed conditions,
the older (n+1)-ary terms by Schmidt [Sch69] and refined ternary terms by Hage-
mann and Mitschke [HM73] (items (2) and (3), respectively):

Theorem 5.2. The following are equivalent for any variety V and every positive

integer n.

(1) V is n-permutable;

(2) there are (n+ 1)-ary V-terms s0, . . . , sn such that the identities

s0(x0, . . . , xn) ≈ x0, sn(x0, . . . , xn) ≈ xn,

si(x0, x0, x2, x2, . . . ) ≈ si+1(x0, x0, x2, x2, . . . ) for odd i, and

si(x0, x1, x1, x3, . . . ) ≈ si+1(x0, x1, x1, x3, . . . ) for even i

are satisfied in V;
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(3) there are ternary V-terms p0, . . . , pn such that the identities

p0(x, y, z) ≈ x, pn(x, y, z) ≈ z, and

pi(x, x, y) ≈ pi+1(x, y, y) for every i < n

are satisfied in V. �

5.1. Colorings and linear varieties. For the characterization of congruence n-
permutable varieties in the means of coloring, we will use the smallest structures
with two equivalence relations that do not n-permute (denoted Wn) for the strong
conditions, and the two-element chain for the general condition.

Definition 5.3. For n ≥ 2, we define the structure Wn as the relational structure
on {0, . . . , n} with two binary equivalence relations α and β defined by partitions
01|23| . . . and 0|12|34| . . . , respectively.

The the following is a variation on a result of Sequeira [Seq01], who provided
a very similar characterization by the means of compatibility with projections.

Proposition 5.4. Let n ≥ 2. A variety is not congruence n-permutable if and only

if has strongly Wn-colorable terms.

Proof. First we fix some notation. Let F denote the structure obtained from the free
structure in V generated by Wn by replacing each of its relations by its transitive
closure. Again, as in the proof of Proposition 4.5, we obtain that all relations of F
are equivalences, and c : F →Wn is a coloring if and only if it is a homomorphism
from F to Wn. Also, to simplify the notation, we identify an (n + 1)-ary term s
with s(x0, . . . , xn).

To prove the first implication, suppose that V has Schmidt terms s0, . . . , sn.
Our objective is to prove that terms of V are not strongly Wn-colorable. For the
contrary, suppose that there is a strong coloring c : F → Wn. Any such coloring
maps x0, and therefore also s0, to 0. Further, from Schmidt identities we get that
(s1, s0) ∈ βF, therefore also c(s1) = 0. Following a similar argument for pairs
(si+1, si) alternating between βF and αF, we obtain c(si) < i for all i > 0 which in
particular implies that c(xn) = c(sn) < n, a contradiction with c(xn) = n.

For the other implication, suppose that V does not have Schmidt terms. Similarly
as in the proof of Proposition 4.5, we define a coloring c by setting c(x0) = 0 and
then, following Schmidt-like chains of terms, extend this definition as we are forced,
and finally, setting c(f) = n for all elements that have not been reached. This is
summarized in the following definition:

c(f) = min{i : (x0, f) ∈ βF ◦i+1 α
F}

if the set on the right hand side is non-empty, and c(f) = n, otherwise. By defini-
tion, we have that for each i, c(xi) ≤ i. First, we need to show that c is well-defined,
in particular that c(f) ≤ n for all f . Suppose that f satisfies (x0, f) ∈ βF ∨ αF.
Immediately, we get that f is idempotent, i.e., f(x0, . . . , x0) = x0. Also, since
(x0, xi) ∈ αF ◦i βF ⊆ βF ◦n+1 α

F for all i, and βF ◦n+1 α
F is a subuniverse,

(x0, f) ∈ βF ◦n+1 α
F. Therefore, the aforementioned set contains n, and we have

c(f) ≤ n.
Next, we show that c is compatible with α and β. Suppose that (f, g) ∈ αF and

both f and g are idempotent. Without loss of generality, suppose that c(f) ≤ c(g).
If c(f) is an odd number, then c(g) ≤ c(f); if c(f) is even, then c(g) ≤ c(f) + 1.
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Altogether, we have that (c(g), c(f)) differ by at most 1, and if they do, then c(f)
is odd and c(g) = c(f) + 1. This gives that (c(f), c(g)) ∈ αWn . Similarly, we get
that c is compatible with β, therefore c is a coloring.

Lastly, we need to show that c is strong. As mentioned before, (x0, xi) ∈ βF ◦i+1

αF, therefore c(xi) ≤ i for all i. For a contradiction suppose that c(xi) < i for some
i, i.e., (x0, xi) ∈ βF ◦i αF. This implies that there are terms x0 = t0, t1, . . . , ti = xi
with (tj , tj+1) ∈ βF for even j and (tj , tj+1) ∈ αF for odd j. Now, define (i+1)-ary
terms s0, . . . , si by putting:

sj(x0, . . . , xi) = tj(x0, . . . , xi, xi, . . . , xi).

We claim that these terms satisfy Schmidt identities. Indeed, s0 = x0, si = xi,
sj(x0, x0, x2, . . . ) = sj+1(x0, x0, x2, . . . ) for odd j, since (tj , tj+1) ∈ αF for such
j, and sj(x0, x1, x1, . . . ) = sj+1(x0, x1, x1, . . . ) for even j, since (tj , tj+1) ∈ βF for
such j. This gives is a contradiction with the fact that V is not even congruence
n-permutable. �

The corresponding result for the general Mal’cev condition was proven in [BOP15].

Proposition 5.5 ([BOP15, Proposition 7.2]). A variety is not n-permutable for

any n if and only if it has strongly ({0, 1},≤)-colorable terms. �

5.2. Idempotent varieties. The fact, that the interpretability join of two idem-
potent varieties that are not congruence n-permutable for any n is not congruence
n-permutable either, follows from a result of Valeriote and Willard [VW14]. No
similar result about the corresponding strong Mal’cev conditions is known.

Theorem 5.6 ([VW14]). An idempotent variety is not n-permutable for any n if

and only if it is interpretable in the variety of distributive lattices. �

An important step to unify this result with the similar for linear varieties is the
observation that the variety of actions of idempotent polymorphisms of ({0, 1},≤) is
interpretable in the variety of distributive lattices and vice-versa. This is implicitly
hidden in [VW14]: The key reasons are that the clone of the two-element lattice on
{0, 1} coincides with the clone of idempotent polymorphisms of ≤, and that the two
element lattice generates the variety of ditributive lattices. As a direct consequence
of this observation and the above theorem, we get:

Corollary 5.7. An idempotent variety is not n-permutable for any n if and only

if it contains an algebra compatible with ({0, 1},≤). �

5.3. Proofs of Theorems 1.4(ii) and 1.5. First, we address Theorem 1.4(ii):
We have showed that if a variety is not n-permutable for any n and it is either
linear, or idempotent then it contains an algebra compatible with ({0, 1},≤) (the
linear case follows from Proposition 5.5 and Lemma 3.5, the idempotent case from
Corollary 5.7). Therefore, given V and W that are not n-permutable for any n
and are both linear, or idempotent, we know that both contain an algebra that is
compatible with ({0, 1},≤). Lemma 3.2 then gives that there is an algebra in V∨W
that is compatible with this partial order, and therefore witnesses that V ∨ W is
not n-permutable for any n (see Theorem 5.1).

Theorem 1.5 is obtained in a similar way: Using Proposition 5.4 and Lemma 3.5,
we get that any linear variety, that is not n-permutable for a fixed n, contains an
algebra that is compatible with Wn, therefore also the join of two such varieties
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contains an algebra compatible with Wn. Having such an algebra contradicts being
congruence n-permutable. �

6. Satisfying a non-trivial congruence identity

There are several Mal’cev characterizations of varieties that satisfy some non-
trivial congruence identity. An older one, called a Hobby-McKenzie term (for the
definition we refer to [HM88] or [KK13]), and more recent by Kearnes and Kiss
[KK13]:

Theorem 6.1 ([KK13, Theorems 5.28 and 7.15]). The following is equivalent for

a variety V.

(1) V satisfies a non-trivial congruence identity,

(2) V satisfies an idempotent Mal’cev condition that fails in the variety of semi-

lattices,

(3) there exists 4-ary terms t0, . . . , tn such that the identities

t0(x, y, z, w) ≈ x and tn(x, y, z, w) ≈ w,

ti(x, y, y, y) ≈ ti+1(x, y, y, y) for even i,

ti(x, x, y, y) ≈ ti+1(x, x, y, y) and ti(x, y, y, x) ≈ ti+1(x, y, y, x) for odd i

are satisfied in V. �

We will refer to the terms in item (3) as to Kearnes-Kiss terms. Also note that as
a byproduct of this characterization, Kearnes and Kiss proved that an idempotent
variety satisfies a non-trivial congruence identity if and only if it is not interpretable
in the variety of semilattices (this follows from the equivalence of (1) and (2) in the
above theorem).

6.1. Coloring and linear varieties. Kearnes and Kiss also proved that item (1)
of Theorem 6.1 implies that the variety contains an algebra A with a compati-
ble (sometimes called commuting) semilattice operation, i.e., there is a semilattice
operation ∨ on A such that its graph—the relation {(a, b, a∨b) : a, b ∈ A} is a com-
patible relation. This suggests a relational structure to be used in the coloring
description of this Mal’cev condition: the structure S on {0, 1} with one ternary
relation JS = {(x, y, x ∨ y) : x, y ∈ {0, 1}}. Note that the idempotent reduct of S

is the same as the clone of term operations of the semilattice ({0, 1},∨) (see also
[KK13, Lemma 5.25]).

Proposition 6.2. A variety V does not have Kearnes-Kiss terms if and only if it

has strongly S-colorable terms.

Proof. As usual, let F denote the free structure in V generated by S. We will
also identify a binary term b with an element b(x0, x1) ∈ F . Observe that, the
relation JF consists of triples (r, s, t) such that there exists a 4-ary term f satisfying
f(x, x, y, y) ≈ r(x, y), f(x, y, x, y) ≈ s(x, y), and f(x, y, y, y) ≈ t(x, y).

First, suppose that V has Kearnes-Kiss terms. We want to proof that there is no
strong coloring c : F → S. By the definition of a coloring and the relation J , we can
deduce that for every triple (r, s, t) ∈ JF if c(r) = 0 and c(s) = 0 then also c(t) = 0,
and similarly if c(t) = 0 then both c(r) and c(s) are also 0. By combining these two
observations, one can prove by induction on i that for any coloring c with c(x0) = 0
and any an term ti from Kearnes-Kiss chain we have that c(ti(x0, x0, x1, x1)) = 0,
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c(ti(x0, x1, x0, x1)) = 0, and c(ti(x0, x1, x1, x1)) = 0. This shows that any such
coloring c has to satisfy c(x1) = 0 which contradicts that c is strong.

For the other implication, suppose that the variety V does not have Kearnes-Kiss
terms. We define a mapping c : F → J in such a way that c(t) = 0 if and only if
this fact is forced by the argument in the previous paragraph, that is, there exists
tuples (si, ti, ri) ∈ JV , i = 1, . . . , n such that s0 = t0 = x0, ri = ri+1 for even i,
si = si+1 and ti = ti+1 for odd i, and t = rn for n odd, or t ∈ {sn, tn} for n even.
We claim that c is a coloring. Indeed, if c(t) = 0 and (r, s, t) ∈ JV for some r, s ∈ F ,
then also c(r) = c(s) = 0 by the definition, and if c(t) = 1 and (r, s, t) ∈ JV then
either c(r) = 1, or c(s) = 1, otherwise we would have defined c(t) = 0. In either
case, we have c(s) ∨ c(r) = c(t) which is what we wanted to prove.

The coloring c is strong: it maps x0 to 0 by definition, and also c(x1) = 1, since
the variety does not have Kearnes-Kiss terms. �

The fact that Kearnes-Kiss terms are not colorable by S can be also argued
using the arguments of [KK13]: having Kearnes-Kiss terms is an idempotent linear
Mal’cev condition that is not satisfiable in the variety of semilattices, and existence
of a strong coloring would imply that it is satisfied in S , therefore also in the
semilattice ({0, 1},∨).

6.2. Idempotent varieties. There is not much left to prove for idempotent vari-
eties in this case. Let us just once more reformulate results of Kearnes and Kiss in
the following way:

Corollary 6.3. An idempotent variety does not satisfy a non-trivial congruence

identity if and only if it contains an algebra compatible with S.

Proof. Suppose that an idempotent variety V does not satisfy a non-trivial congru-
ence identity. Then by Theorem 6.1, it is interpretable in the variety of semilattices.
Therefore, it contains an algebra S with S = {0, 1} whose basic operations are term
operations of the two-element semilattice (S;∨). But all such term operations are
compatible with the relation JS which means that S is compatible with S.

For the other implication, suppose that V contains an algebra S compatible with
S. If this is the case, one can directly see that the terms of V are S-colorable (define
the coloring by taking the natural homomorphism from the free algebra generated
by S to S), and therefore it does not satisfy a non-trivial congruence identity by
Proposition 6.2. �

6.3. Proof of Theorem 1.4(iii). The argumentation here follows a familiar pat-
tern. First, we argue that any variety V that is either linear, or idempotent has
an algebra compatible with S: the linear case follows from Proposition 6.2 and
Lemma 3.5, the idempotent case from Corollary 6.3.

Next, given that both V andW do not satisfy a congruence identity and are either
linear, or idempotent, we know that both varieties contain an algebra compatible
with S, therefore also V ∨ W does. This shows in particular that V ∨ W has S-
colorable terms, therefore it does not satisfy a non-trivial congruence identity by
Proposition 6.2. �

7. Having a cube term

Cube terms describe finite algebras having few subpowers (i.e., with a polynomial
bound in n on the number of generators of subalgebras of n-th power). This result
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and many more interesting properties of algebras with cube terms can be found in
[BIM+10], [AMM14], and [KS12]. There are several Mal’cev conditions equivalent
to having a cube term, e.g. having an edge term, or having a parallelogram term.
For our purpose, the most useful of these equivalent conditions is the cube term
itself.

Fix a variety, and let F be an algebra that is freely generated by the set {x, y}.
An n-cube term is a (2n − 1)-ary term c such that

cF
n

(x1, . . . ,x2n−1) = (x, . . . , x)

where x1, . . . ,x2n−1 are all the n-tuples of x’s and y’s containing at least one y. For

example, a Mal’cev term q is a 2-cube term since it satisfies qF
2

((x, y), (y, y), (y, x)) =
(x, x). The order of variables in cube terms will not play any role for us.

Although for the main result for cube terms, we only need to study the corre-
sponding strong Mal’cev conditions, we will continue to formulate all results also for
the general Mal’cev condition of having a cube term of some arity. The reason for
that is that the construction we use for the general Mal’cev condition is a simpler
variant of the constructions we use for the strong Mal’cev conditions.

Throughout the rest of the section, fix n ≥ 2.

7.1. Cube term blockers and crosses. The notion of cube term blocker was
introduced by by Marković, Maróti, and McKenzie [MMM12] to describe finite
idempotent algebras that do not have a cube term. We define a cube term blocker

to be a proper subset U of A such that for every k ∈ N, Ak\(A\U)k is a subuniverse
of Ak.

Theorem 7.1 ([MMM12, Theorem 2.1]). A finite idempotent algebra A has a cube

term if and only if none of its subalgebras has a cube term blocker. �

This theorem was recently generalized to idempotent varieties that are not nec-
cessarily finitely generated by Kearnes and Szendrei [KS16]. They also proved
a similar characterization for cube terms of fixed arity using crosses, that is, rela-
tions of the form

Cross(U1, . . . , Uk) = {(x1, . . . , xk) : xi ∈ Ui for some i}.

Note that U is a cube term blocker if and only if U is a proper subset of A and
Cross(U, . . . , U) is a subuniverse ofAk for any k. The result of Kearnes and Szendrei
can be formulated as follows.

Theorem 7.2 ([KS16, Theorems 2.5 and 3.1]). Suppose that V is an idempotent

variety, F denotes the free algebra generated by the set {x, y}, and let n ≥ 2.

(i) V does not have an n-cube term if and only if there exist U1, . . . , Un ⊂ F
such that x ∈ Ui, y /∈ Ui for all i, and Cross(U1, . . . , Un) is a subuniverse

of Fn.

(ii) V does not have a cube term if and only if there exist a cube term blocker

U in F such that x ∈ U , y /∈ U . �

The item (ii) above was also proved by McKenzie and Moore [MM17].
Next, we define concrete relational structures that we will use later. Unlike in

[KS16], we understand crosses as multi-sorted relational structures; we encode them
as 1-sorted structures whose universes are products of the original sorts.
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Definition 7.3. We say that a structure C = (C1 × · · · × Cn;α1, . . . , αn, R) is
an n-cross if α1, . . . , αn are kernels of projections on the corresponding coordinate,
and for each i ∈ {1, . . . , n}, there exists Ui ⊆ Ci such that

R = {(a1, . . . , an) ∈ C1 × · · · × Cn : ai ∈ Ui for some i}.

When defining or talking about n-crosses, we will usually only speak about the
relation R since the other relations are implicitly given as kernels of projections.

Definition 7.4. We say that a relational structure B = (B; (Rk)k∈N) is a cube term

blocker if there exists U ⊂ B, U 6= ∅ such that

Rk = {(a1, . . . , ak) ∈ Bk : ai ∈ U for some i}.

To distinguish between the above definition and the original definition of cube
term blockers, we will always say ‘an algebra has a cube term blocker’ or ‘U is
a cube term blocker of an algebra A’ if we refer to the original definition. Note
that an algebra A has a cube term blocker U ⊆ A if and only if it is compatible
with some cube term blocker B.

The two transfinite chains of clones will be defined using the following relational
structures:

Definition 7.5. Let κ be an infinite cardinal, and fix Uκ ⊆ κ with |Uκ| = |κ\Uκ| =
κ. We define a relation Rk ⊆ κk as

Rk = {(a1, . . . , ak) ∈ κk : ai ∈ Uκ for some i}.

The special cube term blocker is defined as Bκ = (κ; (Rk)k∈N), and the special

n-cross as Cκ = (κn;αCκ

1 , . . . , αCκ

n , Rn) where α
Cκ

i is a kernel of the i-th projection.

For coloring we will use the smallest cube term blocker B0 and its reduct Bn:

Definition 7.6. We define B0 to be the cube term blocker on the set {0, 1} defined
by U = {1}, i.e.,

RB0

k = {0, 1}k \ {(0, . . . , 0)}

for k ∈ N. We define Bn to be the relational structure ({0, 1};RBn) with RBn = RB0

n .

7.2. Coloring and linear varieties. We provide characterizations in the means
of colorings both for the Mal’cev condition of having a cube term of some arity and
the strong Mal’cev condition of having an n-cube term.

Proposition 7.7. The following is true for every variety V and all n ≥ 2.

(i) V does not have an n-cube term if and only if it has strongly Bn-colorable

terms.

(ii) V does not have a cube term if and only if it has strongly B0-colorable terms.

Proof. (i) Let Fn denote the free structure generated by Bn. Observe that tuples in
RFn are exactly those n-tuples that can be the result of applying some term f coor-
dinatewise to all n-tuples consisting of x0’s and x1’s except the tuple (x0, . . . , x0).

To prove the first implication, suppose that V does not have a cube term, and
define a mapping c : Fn → Bn by:

c(f) =

{

0 if f = x0, and

1 otherwise.
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Since V does not have a cube term, RFn does not contain the tuple (x0, . . . , x0),
therefore c is clearly a coloring from Fn to Bn. It is also strong by definition.

For the other implication, suppose that V has an n-cube term t. Therefore, in
particular (x0, . . . , x0) ∈ RFn . Any mapping that maps x0 to 0 maps this tuple
to the tuple (0, . . . , 0), therefore there is no homomorphism c : Fn → Bn with
c(x0) = 0, and in particular no strong coloring of terms of V .

(ii) Let F denote the free structure generated by B0, and note that F is an
expansion of every Fk (the free structure generated by Bk). Therefore, if a variety
V has a k-cube term then its terms are not strongly B0-colorable since they are not
even Bk-colorable. This yields one implication. For the other implication, suppose
that V does not have a cube term. We define a mapping c the same way as in the
proof of (i). The argument that this is really a strong coloring is identical. �

As a corollary of the above, we get the following.

Corollary 7.8. If V is a linear variety that does not have an n-cube term, then it

contains an algebra compatible with an n-cross of size 2n.

Proof. From the above and Lemma 3.5, we know that V contains an algebra Bn

compatible with Bn. Let C = Bn
n. We claim that C is compatible with an n-cross

C with RC = RBn where RC is understood as a unary relation on C. Indeed, the
operations of C are compatible with kernels of projections since they are defined
component-wise; they are also compatible with RC since component-wise they act
as operations of Bn and are therefore compatible with RBn . Finally, |C| = 2n since
|Bn| = 2. �

7.3. Idempotent varieties. We encounter a similar problem as in Section 4.3:
we are unable to find a largest idempotent variety without a cube term (or n-cube
term). We will circumvent this problem in a similar way. The first step is the
following corollary of Theorem 7.2.

Corollary 7.9. Fix n ≥ 2 and let V be an idempotent variety.

(i) If V does not have an n-cube term, then it contains an algebra compatible

with an n-cross.
(ii) If V does not have a cube term, then it contains an algebra compatible with

a cube term blocker.

Proof. (i) Suppose that V does not have an n-cube term, and let F denote the
two-generated free algebra in V . From Theorem 7.2(i), we know that there are
U1, . . . , Un ⊆ F such that Cross(U1, . . . , Un) is a compatible relation of F. We
obtain an algebra compatible with an n-cross by repeating the argument from the
proof of Corollary 7.8: Let A = Fn, and define an n-cross A by taking RA =
CrossF(U1, . . . , Un).

(ii) This is immediate from Theorem 7.2(ii): the algebra is F, and the cube term
blocker is F = (F ;

(

Fn \ (F \ U)n
)

n∈N
). �

Proposition 7.10. Let V be a variety and n ≥ 2.

(i) If V contains an algebra compatible with an n-cross C, then it contains an

algebra compatible with Cκ for all κ ≥ ℵ0 + |C|
(ii) If V contains an algebra compatible with a cube term blocker B, then it

contains an algebra compatible with Bκ for all κ ≥ ℵ0 + |B|.
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Proof. Again, we will use Tarski’s construction. First, we prove (ii): Suppose that
B is an algebra in V with a cube term blocker U (recall that having a cube term
blocker is equivalent to being compatible with a relational structure which is a cube
term blocker). Put B0 = B and U0 = U , and let Bλ and Uλ denote the algebra and
the set obtained by Tarski’s construction in λ steps. We claim that Uλ is a cube
term blocker of Bλ. We will prove that by transfinite induction on λ: It is true
for λ = 0. For ordinal successor λ + 1, we identify Bλ+1 with B2

λ, and Uλ+1 with
Bλ × Uλ. We need to prove that Rk = Bk

λ+1 \ (Bλ+1 \Uλ+1)
k is compatible for all

k ∈ N. But this is true since Bk
λ \ (Bλ \ Uλ)

k is and

Rk = {((a1, b1), . . . , (ak, bk)) ∈ (B2
λ)

k : (b1, . . . , bn) ∈ Bk
λ \ (Bλ \ Uλ)

k}.

For limit λ, we get the statement by the standard compactness argument. In
particular, we proved that Uλ is a cube term blocker in Bλ for |λ| = κ. For such
λ, we get that the structure (Bλ, (Rk,λ)k∈N), where Rk,λ = Bk

λ \ (Bλ \ Uλ)
k, is

isomorphic to Bκ. This is given by the definition of Rk,λ and that |Bλ| = |Uλ| =
|Bλ \ Uλ| = κ. This completes the proof of item (ii).

The item (i) is obtained by repeating the above argument while using Tarski’s
construction for all n sorts of the n-cross. Let C be the algebra compatible with C,
let Ui for i = 1, . . . , n be the sets defining the relation RC, and let C1 × · · · ×Cn

be the factorization of C so that αC
i is the kernel of projection to Ci. We define

algebras Ci,λ (where i = 1, . . . , n and λ ranges through all ordinals) together with
sets Ui,λ by Tarski’s construction starting with Ci,0 = Ci and Ui,0 = Ui. By
a similar argument as for item (ii), we obtain a structure of n-cross C′

λ on the set

C1,λ × · · · × Cn,λ with RC
′

λ being the relation

{(c1, . . . , cn) ∈ C1,λ × · · · × Cn,λ : ci ∈ Ui,λ for some i },

and also that this structure is compatible with C1,λ × · · · ×Cn,λ for all λ. Finally,
given that λ satisfies |λ| = κ, we claim that C′

λ is isomorphic to Cκ. One such
isomorphism can be defined component-wise, taking for the i-th component ai any
bijection from Ci,λ to κ that maps Ui,λ onto Uκ. �

Lemma 7.11. If a variety contains an algebra compatible with an n-cross, it does
not have an n-cube term.

Proof. For the contrary, suppose that t is a cube term and let C be an n-cross.
We claim that no algebra C in the variety is compatible with C. To prove that,
suppose that C is an algebra on C whose operations are compatible with αC

i for
i = 1, . . . , n. Therefore, C factors as C1 × · · · ×Cn with αC

i being the kernels of
projections. Let U1 ⊂ C1, . . . , Un ⊂ Cn be such that

RC = {(c1, . . . , cn) ∈ C1 × · · · × Cn : ci ∈ Ui for some i },

and choose ai ∈ Ui and bi ∈ Ci \ Ui. If we apply tC on the tuples from the set

{{a1, b1} × · · · × {an, bn}} \ {(b1, . . . , bn)} ⊆ RC,

we obtain (b1, . . . , bn) /∈ RC. This is due to the fact that tC acts coordinate-wise as
tCi and t is a cube term of the variety. This concludes that tC is not compatible
with RC, and consequently C is not compatible with C. �
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7.4. Proof of Theorem 1.4(iv). We have proven that, given a variety V that is
either linear, or idempotent and does not have an n-cube term, V has an algebra
compatible with an n-cross CV (see Corollaries 7.8 and 7.9(i)). Given two such
varieties V and W , and n-crosses CV and CW , we know from Proposition 7.10(i)
that both V andW contain an algebra compatible with the n-cross Cκ for all infinite
cardinals κ ≥ |CV |+ |CW |. Therefore, by Lemma 3.2 also their interpretability join
does. Finally, Lemma 7.11 gives that V ∨W does not have an n-cube term. �

7.5. Cofinal chains. We will discuss some properties of the transfinite sequences
B0,Bℵ0

,Bℵ1
, . . . and Cℵ0

,Cℵ1
, . . . where Bκ are polymorphism clones of cube term

blockers Bκ, and Cκ are polymorphism clones of the n-crosses Cκ for a fixed n ≥ 2.
We show that these sequences form strictly increasing chains in the lattice of clones,
and as a corollary thereof, we obtain that there is no maximal (in the interpretability
order) idempotent variety without an n-cube term.

Corollary 7.12. Let λ < κ be two infinite cardinals, and n ≥ 2. Then

(i) there is a clone homomorphism from Cλ to Cκ, and

(ii) there is a clone homomorphism from Bλ to Bκ.

Proof. The statement follows from Proposition 7.10 in the same way as Corol-
lary 4.11 follows from Proposition 4.10. �

In order to prove that there is no largest idempotent variety without a cube
term, we need to restrict to idempotent reducts of the discussed clones.

Lemma 7.13. Let κ be an infinite cardinal. The idempotent reduct of Bκ has no

action on any set C with 1 < |C| < κ.

Proof. Let Bid
κ denote the idempotent reduct of B. We will show that if Bκ has

an action on a set C of size at least 2 then |C| ≥ κ.
To prove that we find identities that are satisfied in Bid

κ but cannot be satisfied
by functions on a set of size smaller then κ unless this set has only one element.
These identities are very similar to those used in Proposition 4.13. They use binary
symbols fi, i ∈ κ and ternary symbols pi,j , qi,j , i, j ∈ κ:

x ≈ pi,j(x, fj(x, y), y),

pi,j(x, fi(x, y), y) ≈ qi,j(x, fj(x, y), y),

qi,j(x, fi(x, y), y) ≈ y

for all i 6= j, and fi(x, x) ≈ x for all i. Note that these identities force that all the
functions are idempotent.

We claim that Bκ has polymorphisms satisfying these equations: Fix c ∈ Uκ,
put fi(x, y) = i for x 6= y, fi(x, x) = x, and define pi,j and qi,j by:

pi,j(x, y, z) =

{

x if y = fj(x, z), and

c otherwise;

qi,j(x, y, z) =

{

z if y = fi(x, z), and

c otherwise.

Clearly, these operations satisfy the required identities. To prove that they are also
compatible with Bκ, observe that any operation t which has a coordinate i such that
t(x1, . . . , xn) ∈ Uκ whenever xi ∈ Uκ is a polymorphism of Bκ. The corresponding
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coordinates for our functions are: the first for p’s, the last for q’s, and arbitrary
for f ’s.

The last part is to prove that these identities are not satisfiable in any non-
trivial algebra of size strictly less than κ. This follows from the same argument as
Proposition 4.13. In fact, these identities are a stronger version of those used in
the mentioned proof. �

Corollary 7.14. Let λ < κ be two infinite cardinals, n ≥ 2, and let A id denote

the idempotent reduct of a clone A . Then

(i) there is no clone homomorphisms from C id
κ to C id

λ , and

(ii) there is no clone homomorphisms from Bid
κ to Bid

λ .

Proof. The item (ii) follows directly from the above lemma. To prove item (i), we
first observe that there is a clone homomorphism ξ from Bid

κ to C id
κ : define ξ(f)

to be the component-wise action of f on κn. Indeed, if f ∈ Bid
κ , ξ(f) preserves

RCκ since it preserves RBκ

n . Now, if there was a clone homomorphism from C id
κ to

C id
λ , we would get one from Bid

κ to C id
λ by composing it with ξ which contradicts

Lemma 7.13. �

By analogous proofs as 4.14 we obtain the following.

Corollary 7.15. Fix n ≥ 2.

(i) The class of all interpretability classes of idempotent varieties that do not

have an n-cube term does not have a largest element.

(ii) The class of all interpretability classes of idempotent varieties that do not

have a cube term does not have a largest element. �

7.6. Remark(s). The presented proof of Theorem 1.4 was developed indepen-
dently of Kearnes and Szendrei after their announcement of Theorem 7.2, and
before the final manuscript [KS16] was available.

Acknowledgements. The results of the present paper are a part of the author’s
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