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Abstract

An interval k-graph is the intersection graph of a family Z of intervals of
the real line partitioned into at most k classes with vertices adjacent if and
only if their corresponding intervals intersect and belong to different classes. In
this paper we discuss the interval k-graphs that are the incomparability graphs
of orders; i.e., cocomparability interval k-graphs or interval k-orders. Interval
2-orders have been characterized in many ways, but we show that analogous
characterizations do not carry over to interval k-orders, for k > 2. We describe
the structure of interval k-orders, for any k, characterize the interval 3-orders
(cocomparability interval 3-graphs) via one forbidden suborder (subgraph), and
state a conjecture for interval k-orders (any k) that would characterize them
via two forbidden suborders.
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1 Introduction

We discuss finite simple graphs and use the notation G = (V, E) to denote a graph
with vertex set V' = V(G) and edge set E = E(G). For the complement of graph G
we use the notation G.

An ordered set (or strict partial order) is a pair P = (X, <) consisting of a ground
set X and a binary relation < on X that is irreflexive, transitive and therefore anti-
symmetric. If neither z < y nor y < = occurs in P, we say z and y are incomparable
and write x||y, otherwise they are comparable. Two graphs are naturally associated
to the order P: its comparability graph and its incomparability graph. The graph
G = (V, E) is the comparability graph of P if V.= X and, for z,y € X, zy € F if
and only if x and y are comparable. The incomparability graph of P has vertex set
X and vertices z and y adjacent if and only if x|y in P. Note that although z||z for
any z € X, we choose not to clutter the incomparability graphs with loops so z||z
does not yield an edge, and of course the complement of GG is the incomparability
graph of P if G is the comparability graph of P. When the edges of G can be given
a transitive orientation, GG is the comparability graph of some order and when the
edges of G can be transitively oriented, G is called a cocomparability graph and is
hence the incomparability graph of some order. Most of the graphs we discuss in this
paper are cocomparability graphs.

A family of sets F = {S1,Ss,...,5,} is an intersection representation of a graph
G if V(G) can be put into one-to-one correspondence with F so that S; N S; # O if
and only if vertices u and v are adjacent in G. For example, if graph G is from the
well-studied class of interval graphs, then G is a graph which can be represented so
that F is a family of intervals of the real line. In this paper we investigate graphs
which can be represented as intersection graphs of intervals of the real line, but unlike
interval graphs, with the property that certain subsets of intervals’ intersection in-
formation does not correspond to adjacency in the graph. Specifically, we investigate
graphs G = (V, E) for which there is a one-to-one correspondence between V' and
a collection of intervals of the real line Z partitioned into what we will call interval
classes or simply classes so that vertices are adjacent if and only if their correspond-
ing intervals intersect and belong to different classes. We use I, to denote the interval
corresponding to vertex v. If for G = (V| E) there is such a representation Z parti-
tioned into at most k classes Z =7, UZy U - - - UZy, with vertices u and v adjacent in
G if and only if I, N I, # O and I, I, belong to different interval classes, then G is
an interval k-graph. The collection Z with the partition into classes will be called an
interval k-representation or simply a representation if the context precludes ambigu-
ity. Note that the set of vertices corresponding to intervals from any class induce an
independent set. In the case &k = 2, this class has been called the interval bigraphs
and has enjoyed considerable attention recently, see for example [6, 10, 17] and their



references for more. Our focus is on the interval k-graphs that are cocomparability
graphs and hence those interval k-graphs which give rise to a strict partial order we
will call an interval k-order.

The class of probe interval graphs is another class of intersection graphs that has
enjoyed recent attention. See for example [7, 8, 20, 19, 22]. A probe interval graph is
another interval-intersection graph in which certain intervals’ intersection information
is ignored. A graph G is a probe interval graph if its vertices can be partitioned into
sets P (probes) and N (nonprobes) with an interval of the real line corresponding to
each vertex, and vertices adjacent if and only if their corresponding intervals intersect
and at least one is a probe. In [4] the probe interval graphs that are cocomparability
graphs, and hence incomparability graphs of probe interval orders, are characterized
in various ways. One characterization states the collection of intervals corresponding
to the nonprobes has the property that no interval contains another properly while the
probes’ intervals are not restricted. If a probe interval graph has such a representation,
it is called a nonprobe-proper probe interval graph.

Theorem 1.1 (Brown, Langley, [4]) The graph G is a cocomparability graph whose
vertices can be partitioned into sets P and N with N an independent set, and every 4-
cycle alternates between N and P if and only if G is a nonprobe-proper probe interval
graph.

The results we develop here are similar to those in [4] in that we are (1) trying to do
for interval k-orders what Fishburn did for interval orders (see [13]) and (2) we show
that the mechanism by which an interval k-graph may contain an obstruction to being
a cocomparability graph is having an interval from some interval class contain another
from that class properly. Whence we define the following restricted class of interval
k-graphs. Let G be an interval k-graph with an interval representation Z partitioned
into classes Zy,Zs, . .., Z; so that no interval from any class contains another from its
class properly. We call such an interval k-graph a class-proper interval k-graph, and
the collection of intervals representing it a class-proper representation.

Thanks to the monumental characterization of transitively orientable graphs by
Gallai (Theorem [1.2| below) we can find interval k-graphs which are not cocompara-
bility graphs by identifying odd asteroids. An odd asteroid is a sequence vg, Py, vq, Py,
Vg, ..., Uap, Pop, v, where vy, vy, ..., vy, are distinct vertices, P; is a v;, v;41-path, and
N(v;) N Py, = @, where subscripts are taken modulo 2n + 1. If a graph has a set
of 2n + 1 vertices on which an odd asteroid exists, we will call the set of vertices a
(2n + 1)-asteroid. The graph, which we refer to as T, in Figure || has a 3-asteroid
(also known as an asteroidal triple) on the vertices a, b, and c¢. The graph G of Figure
has a 5-asteroid on vy = ¢,v; = x,v9 = a,v3 = ¢, and vy = b, whence it is not a
cocomparability graph, and neither is 75, via the theorem of Gallai we mentioned.



Theorem 1.2 (Gallai, [I5]) The complement of a graph G has a transitive orienta-
tion if and only if G has no odd asteroid.

But G and T, have interval k-representations as illustrated and so the class of in-
terval k-graphs is not contained in the class of cocomparability graphs. The converse
containment relationship also does not hold; this will be shown below.
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Figure 1: An interval 2-graph with an asteroidal triple and interval representation
illustrating how an asteroidal triple requires some interval to contain another from
the same class properly.

Figure 2: An interval 3-graph which is not a cocomparability graph and its represen-
tation showing it is not class-proper.

Any probe interval graph is an interval k-graph, as was shown in [6], but in
Figure |3| we have a cocomparability interval 3-graph M which is not a probe interval
graph. The poset P corresponds to a transitive orientation of the complement of
M. Therefore the class of cocomparability interval k-graphs contains the class of
cocomparability probe interval graphs.

A beautiful characterization of cocomparability graphs by Golumbic, Rotem, and
Urrutia (Theorembelow) shows they are precisely the function graphs. A function
graph G is the intersection graph of a family of curves of continuous functions f; :
la,b] — R; that is, vertices ¢ and j are adjacent if and only if f;(z) = f;(z) for some
x € [a,b]. It is easy to see that every function graph is a cocomparability graph:
orient i — j in G if fi(y) < f;(y) for all y € [a, b).
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Figure 3: A cocomparability interval 3-graph M which is not a probe interval graph,
its class-proper interval representation, and the Hasse diagram of the strict order P
obtained from a transitive orientation of M by the methods in Theorem

Theorem 1.3 (Golumbic, Rotem, Urrutia, [16]) A graph is a function graph if and
only if it is a cocomparability graph.

A graph is weakly chordal if neither it nor its complement contains an induced cycle
on five or more vertices as an induced subgraph.

Theorem 1.4 (Brown, [6]) If G is an interval k-graph, then G is weakly chordal.

In Figure [4] we have a function representation of the complement of a 6-cycle, which
is not an interval k-graph, by Theorem [I.4} therefore there is no containment rela-
tionship between interval k-graphs and cocomparability graphs.

[§S]
(=2

Figure 4: A function representation of the complement of a 6-cycle, which is not an
interval k-graph by Theorem [T.4]

2 Interval 2-Graphs and Orders

In the next section, we show that if an interval k-graph, for £ > 3, has a class-proper
representation, then it is a cocomparability graph. In this section we show that the
well-known and well-studied classes of bipartite cocomparability graphs, bipartite



permutation graphs, and proper and unit interval bigraphs are precisely the class-
proper interval 2-graphs. We also show that for £ > 2 none of the characterizations
in Theorem extend to proper interval k-graphs or class-proper interval k-graphs.
Furthermore, for £ > 2, the classes proper, unit, and class-proper interval k-graphs
are different.

To prove that class-proper interval 2-graphs are precisely the cocomparability
interval 2-graphs, we will take the circuitous route of proving the following cycle of
implications, referring to statements in Theorem ] = 2 = 8 = /4
— 5 = 1. In so doing we will establish a characterization via the existence of
an ordering of the graph’s vertices, statement 5, which is stronger than the strong
ordering referred to in statement 6. This is the most efficient way we could prove
this, possibly due to the fact that the class-proper restriction is not much of one; to
wit, intervals in one interval class could be distinct points while those in the other be
unit-length intervals for example. In the interest of brevity we will direct the reader
to the literature where the results and all definitions can be found; we will give only
the essential ones.

A bipartite graph G is a unit interval bigraph if it is an interval 2-graph which
has a representation where all intervals have identical length. G is a proper interval
bigraph if G is an interval 2-graph which has a representation in which no interval
contains another properly. A graph H is a permutation graph if V(H) ={1,2,...,n}
and there is a permutation (my,mg,...,m,) of the numbers V(H) such that vertices
are adjacent if and only if the numbers are in reversed order in the permutation.
Equivalently, and this is the definition we will use, a permutation graph G may be
defined as the intersection graph of line segments {¢, : v € V(G)} contained in the
space between parallel line segments L; and Lo, we will call channels. For the point
where /, intersects L; we will use p(v; 7). For the intervals in an interval representation,
whether it be unit, proper, or class-proper, we will use I(v) = [L(v), R(v)] to denote
the interval corresponding to vertex v.

Theorem 2.1 Let G be a bipartite graph. The following are equivalent:

(1) G is a unit interval bigraph [T, 2, 17, 21];

(2) G is a proper interval bigraph [17];

(8) G is a class-proper interval 2-graph;

(4) G is a permutation graph [1, [17];

(5) V(G) can be ordered (vi, v, ...,v,) so that whenever vv, € E(G) and i < j <k,
v; is adjacent to whichever of {v;, v} is not in its partite set;

(6) G has a strong ordering [1];

(7) The bipartite adjacency matriz of G has a monotone consecutive arrangement
[21];

(8) G is the comparability graph of a poset of dimension at most 2 [12] [17);



(9) G s the incomparability graph of a poset of dimension at most 2 [12, 17];
(10) G is a proper circular arc graph [17];
(11) G is contains no asteroidal triple [17].

Proof. (1 = 2) A unit representation is a proper representation.

(2 = 3) A proper interval bigraph is clearly a class-proper interval bigraph.

(3 = 4) Place a copy of the class-proper interval representation for G on
each of the channels L; and L,. With Zy and Zy the intervals corresponding to G’s
bipartition, create £,, for v € X, by connecting I(v) on L; with r(v) on Ls, and for
v €Y, connect r(v) on Ly with [(v) on Ls. The line segments for vertices from the
same partite set will not cross because the interval representation is class proper, and
xy € B(GQ), for x € X, y € Y, if and only if r(x) > l(y) and r(y) > l(x) if and only
if £, crosses ¢,. Thus, the line segments {¢, : v € X UY} between the channels form
a permutation representation for G.

(4 = 5) Given a segment representation of a bipartite permutation graph,
consider the vertex ordering vy, vy, ..., v, given by the order of p(v; 1), the endpoints
of the segments on channel Ly. That is, i < j if p(v;;1) is left of p(v;;1). Consider
v;, v, v With @ < j < k and vu, € E(G). The segments ¢, and ¢, intersect before
reaching the other channel. Since /,; starts between /,, and ¢,,, it cannot reach the
other side without intersecting one of them. It does not intersect the segment for the
vertex in its own partite set, so it intersects the other. We have the vertex ordering
desired.

(5 = 1) Suppose the bipartite graph G’s vertices have been ordered (vy, vo, . .., vy,)
in accord with the statement 5 and label the partite sets X = {v;,,v;,,...,v;.} and
Y = {vj,,vj,,...,v;,} so that the indices respect the ordering (e.g., v;,v;, € E(G)
implies v;,v;, if i, < j, < jp). For convenience, drop the indices on the indices and
put v, = x; for 1 < ¢ < r, and v;, = y, for 1 < g < s. We construct a class-
proper representation for G by induction on n = r + s creating the set of intervals
{I, = [L(v), L(v) + 1] : v € V(G)} with left end-points distinct and respecting the
ordering; i.e., L(v1) < L(vg) < --- < L(v,). If min{r,s} = 1, the construction is
obvious. Also, since the intervals of isolated vertices are easy to incorporate we will
assume there are none. Now, assume a class-proper representation has been created
for G induced on {z1,..., 2.} U{y1,...,ys—1}, switching the roles of X and Y if
necessary.

Lemma A: If z;y;, 2y, € E(G) and i <t and q < j, then x;y,, vy; € E(G).

Proof of lemma: This is essentially the observation that the ordering restricted
to each partite set is the strong ordering developed in [I]. By symmetry we may
assume z; is first among {x;, x;, y;, y,}. The possible orderings of these four elements
are (i, Yg, Yj, Tt), (Ti, Ygs 1, Y5), and (x;, 24, Yq, y;). In each case z;y,, 2,y; € E(G) in
virtue of the properties of the ordering. This proves the lemma.



Define ¢ and j to be the smallest and largest index, respectively, for which
.y, € E(G) and z,y; € E(G). Define i and ¢ to be the smallest and largest in-
dex, respectively, for which z;ys € E(G) and 2y, € E(G). If t < r, then ¢ = s
and x441,...,x, are isolated (vis-a-vis z,11ys1 € E(G) = 9, € E(G) by
Lemma A); hence t = r. Similarly, if j < s, then y;41,...,y, are isolated; so j = s.
Note that by the properties of the ordering, vy, is adjacent to each of x;, x;y1,..., 2,
and z, is adjacent to each of y,,...,ys. Then by Lemma A the graph induced on
{zi, ..., 2.} U{yg, ..., ys} is a biclique and hence the intersection of all the intervals
corresponding to these vertices is not empty. Furthermore, since all endpoints are
distinct, this intersection is not a point. Therefore there is a point p in this inter-
section with p > L(ys_1), and defining I(ys) = [p,p + 1] completes the unit interval
construction. [ ]

Theorem could be extended with at least seven more statements (cf. [5])
and we would like to see a proof incorporating all (at least) eighteen statements
characterizing cocomparability interval 2-graphs into a cycle of implications using no
extraneous results. Indeed, we have tried to produce such a proof, but statements
10 and 11 have been prohibitive. So far statement 11 has only tedious proofs with
exhaustive case analysis or an appeal to Theorem [1.2] Statement 10 so far requires
an appeal to a result of Spinrad in [23].

3 Autopsy of Theorem [2.1]s attempted extension
to k> 2

Although the classes of unit interval k-graphs and proper interval k-graphs are iden-
tical, see [3], the analogues of statements in Theorem [2.1| extend no further for proper
interval k-graphs with k& > 2. In this section we show that the statements 3, 4, 5, 8,
9, 10, and 11 of Theorem do not necessarily hold for a proper interval k-graph,
k> 2.

First we show that the vertices of any proper (or unit) interval k-graph can be
ordered as in statement 5 of Theorem but the ordering does not characterize
proper interval k-graphs.

Theorem 3.1 If a k-partite graph G is a proper or unit interval k-graph, then V(G)
can be labeled vy,vs, ..., v, so that, fori < j <k, if viu, € E(G), then v; is adjacent
to each of {v;, v} in a different partite set than v;.

Proof. Suppose G is a proper or unit interval k-graph with interval representation
{I(v) = [€(v),r(v)] : v € V(G)}. Label the vertices vy, vs, ..., v, so that {(v;) < £(v;)



if and only if i < j. Suppose v;vy € E(G), where ¢ < k, and consider v; with
i < j < k. Since {(v;) < £(v;) < €(v}) and no interval properly contains another,
we know 7(v;) < r(v;) < r(vg) and r(v;) > €(vg) since I(v;) N I(vg) # O. So
I(v;) N I(vj) # @ and I(v;) N I(vg) # ©@. Therefore v; is adjacent to whichever of
{vi, vy} is in a different partite set than v;. n

The graph in Figure |5 is not a unit or proper interval k-graph (straightforward to
verify, or see [3] or [6]), but is labeled in accord with Theorem [3.1]

3

Figure 5: An obstruction for a proper interval k-graph with vertices labeled in accord
with Theorem [B.1]

The next theorem follows from a result of Corneil and others [9] and since proper
interval k-graphs are asteroidal triple free [6], but we give a short proof following from
the ordering of Theorem [3.1} A dominating pair of vertices in a graph G is a pair of
vertices that belong to a path P of G such that every vertex of G belongs to P or is
adjacent to a vertex of P.

Theorem 3.2 If G is a connected proper or unit interval k-graph then G has a
dominating pair of vertices.

Proof. Suppose G is a connected proper or unit interval k-graph and that the
vertices have been labeled vy, vs,...,v, as in Theorem We claim {vy,v,} is a
dominating pair. Since G is connected there is a path between v, and v,; suppose
the path is P = (v1 = vy, Vi, , Vig, - - -, Vi, = Up). For each k € {0,1,2,...,p — 1} and
any j satisfying i, < j < ipqq, since v;,v;,,, € E(G), v; is adjacent to at least one
of v;, or v, because v;,,v;, and v;, ,, belong to at east two different partite sets.
We have proved every vertex of G either belongs to P or is adjacent to a vertex of P. m

The converse of Theorem is not true since the vertices in the graph of Figure
labeled 2 and 5 are a dominating pair. It is an open problem to determine what
property characterizes those graphs which have a dominating pair of vertices.



Let F' be the graph of Figure . We use F' and F — 3 (the graph F' with vertex 3
deleted) to show that the class of class-proper interval 3-graphs is distinct from the
classes of proper (or unit) interval 3-graphs, and permutation graphs. See Figure @,
first row, in which F', a class-proper representation for is is given as well as a permuta-
tion representation (the interval for 4 contains that for 5, but they are from different
classes). The graph F' — 3 shows there are interval 3-graphs whose complements are
not circular arc graphs, Figure [0 third row. The second row of Figure [6] shows that
F is a cocomparability graph since F has been given a transitive orientation shown
via Fy,.

F 3
4 256 3
4 4 — T~
2 5 | == 5 ==
2 0T = A
D ° 3 6 53 4
F 3 F
4. r 4'
2 5 2 ® 5
1 6 1 6
F-3, =3 1q
l 6 1 6

Figure 6: Unit (or proper) interval 3-graphs are not equivalent to class-proper interval
3-graphs, permutation graphs, are not equivalent to cocomparability graphs of posets
of dimension three, and are not the complements of (proper) circular arc graphs.

The vertices in the complement of a cocomparability interval k-graph can be
covered with k cliques and hence any poset corresponding to a transitive orientation
can be partitioned into k chains. So the width of the poset is at most k& and by a
theorem of Hiraguchi, the dimension of the corresponding poset is less than or equal
to k. But the converse is not true; that is, a poset of dimension less than or equal
to k does not necessarily have an interval k-graph as an incomparability graph. For
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Figure 7: The Hasse diagram of a poset of dimension 3 that doesn’t correspond to
any cocomparability interval k-graph.

example the graph in Figure , C, is the incomparability graph of the 3-crown in
Figure E], which has dimension three. Furthermore, since C has no asteroidal triple,
the analog to statement 11 of Theorem does hold for interval k-graphs, k > 2.

We have achieved the goal of this section: to show that essentially no statement
of Theorem can be extended to unit or proper interval k-graphs, for k£ > 2.

4 Interval k-Graphs and Orders, k£ > 3

In this section we focus attention on k& > 3 and will describe the structure of orders
corresponding to class-proper interval k-graphs. We give two proofs that class-proper
interval k-graphs are cocomparability graphs, one using Theorem [I.3]

Theorem 4.1 If G = (V, E) is a class-proper interval k-graph, for k > 3, then G is
a cocomparability graph.

Proof. Assume G is a class-proper interval k-graph with representation such that
all interval endpoints are distinct. We now use I, = [I(v),r(v)] to denote the interval
for vertex v. for vertex v. Index V(G) as vy, vs,...,v, so that i < j if and only
if 7(v;) < r(v;). Now orient the edge v,v, € E(G) as v, — vy, if r(v,) < I(vp) or
r(ve) < 7r(vp) and v, vy belong to the same interval class.

We claim that this orientation is transitive. First, suppose v, — vy, vy — v,
and v,v. € E(G). We have r(v,) < r(v) < r(ve) and so [(v.) < r(v,) in order for
I,, NI, # @. But this means I, NI, # O, and so I,,, [, belong to the same interval
class. Hence I,,, I,, belong to different interval classes. Now, unless I(v,) < l(v.), the
representation is not proper and v,v, € F(G), a contradiction.

Now suppose v, — v — Ve — U is assigned to G. Then 7(v,) < 7(vy) < 1r(v,) <
r(v,), clearly a contradiction. Therefore the orientation is transitive.

(Alternatively:) We prove this via constructing a function representation for Gj
since function graphs are cocomparability graphs, the result follows.

11
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Figure 8: A function representation for a class-proper interval k-graph.

Begin with class-proper interval k-graph G = (V| F) and find its interval represen-
tation Z = {Z; UZ, U - - - UZ;} in which each interval endpoint is distinct. Now take
k+ 1 horizontal lines Lg, L1, ..., L; placed some distance apart from one another and
place Z on each one. Define a function line f, corresponding to v € V with [, € Z,.
The construction differs according to ¢ € {1,...,k —2},i =k —1, and ¢« = k. Each
function line is defined by k line segments, one with negative slope, one with positive
slope, and the rest vertical. For i € {1,2,...,k — 2}, connect via line segments [(v)
on L; to r(v) on L;yy and 7(v) on L;4q to I[(v) on L;; o, and use vertical line segments
connecting (v)s between the horizontal lines where f, has not been defined. For
i = k—1, construct f, with a line segment connecting [(v) on Ly_; to r(v) on Lj and
a line segment connecting r(v) on Ly to [(v) on Ly, then using vertical line segments
to complete f,. For i = k, connect [(v) on Ly to r(v) on Ly and r(v) on L; to I(v) on
L, and then vertical line segments for the rest of f,. See Figure |8 for a depiction of
this construction with k£ = 3.

It is easy to verify that, for u,v € V, if uv € E, then f, and f, do not intersect
because I, I, € Z;, or I, and I, are in different classes and do not intersect. If uv € F,
then f, and f, intersect twice. Now, orient G via u — v if and only if f,(y) < f.(y)
for all y in the domain (on the vertical axis) of the functions. Clearly, this is a transi-
tive orientation of G in fact it gives the same orientation as the one obtained above. m

We now describe a vertex elimination scheme for class-proper interval k-graphs

which in a sense generalizes the notion of consecutive orderability of maximal cliques
in interval graphs (cf. [14]). Let G be a class-proper interval k-graph with class-proper
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representation Z in which all interval endpoints are distinct. Order the vertices of G
as vy, Vg, ..., v, so that r(v;) < r(v;) if and only if ¢ < j. Now, observe that in G
all intervals containing r(v;), including I, , induce a complete multipartite subgraph
in G. Deleting the interval I,, produces a class-proper representation for G — vy,
and now the intervals containing r(vs) induce a complete multipartite subgraph in
G — v;. Clearly, this process may be repeated so that Ny[v;] is complete multipartite
in H=G\ {vy,vq,...,v,1}. We record this observation below.

Proposition 4.1 Let G be an n-vertex class-proper interval k-graph with class-proper
representation {I,, : 1 < i < n} where V(G) = {vy,v,...,v,} with r(v;) < r(v;) if
and only if i < j. Then, for 1 < i < n, Ng[v;| is complete multipartite in H =
G\ {vi,v2,...,v;1}.

With P = (V, <) the strict partial order obtained from a class-proper interval
k-graph G = (V, F) and vertices ordered as in the proposition above, we have v; <
v; = 1 < j. Also, translating the above proposition into ordered set parlance, we
have Corollary 4.1, Denote by Np(x) the set of elements incomparable with z in P.
When we say an order (or suborder) has a decomposition into chains, we mean that
the elements of the order (or suborder) may be partitioned into chains Cy, Cs, . .., Cy,,
with x € C; incomparable to y € C; whenever i # j.

Corollary 4.1 Let P = (V, <) be a strict partial order whose incomparability graph
is a class-proper interval k-graph G = (V, E) and V is indezed as in Proposition
4.1l Then, with P' = P\ {v1,va,...,vi_1}, v; is minimal in P' and Np/(v;) can be
decomposed into chains.

Remark. In Figure |3| an ordering of V(M) which corresponds to the prescriptions
of Proposition 4.1]is v; = a,vy = x,v3 = p,vy = y,v5 = b,vg = q. Note that this
order may be obtained also from P via Corollary .1l Begin by finding a minimal
element whose set of incomparable elements can be partitioned into chains with no
comparabilities between chains. For example a has Np(a) = {z,y,p} with C; being
the 2-chain x < y, and C the 1-chain p. So a is a suitable first element. The next ele-
ment in the ordering must be z, since Np_g,y(p) = {z,y,b} and z < y, z < b, and yb.

We now proceed from the other perspective to the end of characterizing interval
k-orders. However, and in distinction to the k£ = 2 case, the assignment of elements
of the order to classes (vertices of the incomparability graph to color/interval classes)
must be done with care, since the class assignment (coloring of the incomparability
graph) is not forced in the k > 2 circumstance. Figure |§| is intended to illustrate this
problem. In spite of this we will prove the following theorem after we prove that an
appropriate color/interval assignment can be found.
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Theorem 4.2 Let P = (V, <) be a strict order with V labeled vy, vy, . .., v, so that v;
is minimal in P' = P\ {vy,v,...,v;_1} and N p/(v;) can be decomposed into chains.
Then the incomparability graph of P is a class-proper interval k-graph.

To prove this theorem, we give a class-proper interval representation derived from
an order satisfying the hypothesis of Theorem as follows. Define pu(v;) = min{j :
villv;}, and put I, = [p(i) — (1 — %) ,i]. Note that i € {j : v;||lv;} since < is strict,
and so [,, is well-defined. We may assume, appealing to Dilworth’s theorem [I1]
and the fact that cocomparability graphs are perfect (which follows essentially from
Dilworth’s theorem and the fact that the class of perfect graphs is closed under com-
plementation, see [I§]), that width(P) = x(G) = k, and that the independent sets
of G correspond to the k chains that cover P. Now, referring to Figure [9] the order
M can be partitioned into chains in three different ways. One of these partitions
together with the above interval representation construction will not give back the
order desired. In particular Ps, the third covering of M in the figure, yields vz in-
comparable to the rest of the order when we should have vz < v5. Consequently we
must choose the covering carefully, whence the following claim.

Claim: There exists a covering of P by chains such that the chains in the decompo-
sition of N p/(v;) are each contained in a unique class. That is, no chain of N p/(v;)
contains vertices of two or more classes.

Proof of Claim. Suppose we have any covering. Let ¢ be the smallest subscript
where v; fails the conditions of the claim. We will change the covering so vy, ..., v;
meet the conditions of the claim, by successively increasing i.

Let # < y be two vertices in a chain in the decomposition of Np: (v;) where z
and y are in different classes, there are no vertices between x and y, but all vertices
that precede z in the chain are in the same class as . Let the class that contains
rbe X =21 <2y <+ <x; =2 < -+ < Tp, and the class that contains y be
Y=y <p<-<yu=y=<-=<Yn

Observe that x;4; (if it exists) must satisfy v; < xj11, or y < x;11; otherwise
Npr (v;) would contain a component that is not a chain.

Observe also that, if y;_; exists, either y;_1 < v;, y;—1 < z; or, if neither of those
are true, y;_1 is contained among vy, vy ...v;_1. For each of these cases, if both y;_;
and x4 exist, y,-1 < x;4; by transitivity and the observation above.

We form a new covering by replacing X and Y with two new classes as follows:
X=n < <2<y<-<yp,and Y =y; <+ <y1 <Tj41 <...Tp.

We need to check that the new covering has several properties. First observe that,
because of the structure of N pr (v;), no other chain in the decomposition of Np (v3)
has vertices in X or Y, so their classes remain unaltered at this step. Second observe
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Figure 9: The order M and corresponding intervals constructed in accord with The-
orem [£.2] Also the different interval k-orders as a function of the three ways M
can be partitioned into chains. (We have solid, double-solid, and dashed intervals to
represent the class assignment given by the indicated partition into chains.)

that, in the chain in Np/ (v;) that contains z and y, all of the vertices that precede
x must be in X and consequently become part of X’ (and thus we can repeat this
process until the entire chain is in a single class, if necessary). Finally we need to
make certain that, for any v, with r < 4, all chains in N ps (v,) stay in unique classes.

Suppose a chain in Nps (v,) does break into two classes. Then this chain must
contain either x = x; < x4 or y—1 < Y.

Case 1: The chain contains z; < ;4. Recall that either y; < x;,1 or v; < xj41.
In the first case since z; < y < 7.1, there would be a chain in N ps (v,) split between
X and Y which contradicts our choice of . In the second case, since v,||z;4; it follows
that v,||v; (since r < 7, we know that v; < v, is impossible). However the vertices
T, Tjt1,v; are all in Np: (v,) but do not form a chain, contradicting our labeling.

Case 2: The chain contains y;—1 < y. If yi1 < z;, then y1 < z; < y for
part of the chain in Np (v,) that is divided between X and Y, contradicting our
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choice of 7. Suppose then that y;_; and = are incomparable. By the ordering of the
vertices © £ v, however, since y||v,, v, A x either. Consequently the vertices y;_1,
Y1, and x; are part of a component of Nps (v,) which is not a chain, contradicting our
assumptions.

By successively forming these new coverings we make each chain of Np/ (v;) fit
in a unique class and ultimately find a covering that satisfies the conditions of the
claim. This proves the claim. [l

We return to the proof of Theorem and verify that the interval representation has
the requisite properties.

Claim: The intervals are class proper.

Proof of Claim. Note that no interval is empty or trivial. Now, suppose some interval
contains another from its class. That is, suppose there are elements v,,vy from
the same chain of P with v, < vg and b = u(vg), pu(v,) = ¢, and b < ¢. Hence,
l(vg) < l(vy). But vy must be comparable to all elements v; with ¢ < b, and v, must
be comparable with all elements v;, with ¢+ < ¢. So v, < v, and transitivity forces
vy < vy, contradicting p(vg) = c.

Claim: If v;||v;, then I,, N 1, # O.

Proof of Claim. Suppose v; and v; are distinct vertices with v;||v; and @ < j. Then
w(i), u(7) < i and both intervals contain the segment [i — (1 — j/n),1].

Claim: If v; and v; are comparable, then v,v; & E(G).
Proof of Claim. If v;,v; belong to the same chain in P, then their intervals belong to

the same class and do not induce adjacency regardless of whether they intersect. So
suppose v; € Cy, v; € Cy, where r # s, and say v; < v;, hence 7 < j.

Claim: If z <y or y < z, then I, N I, = O, unless I, I, € Z;.

Proof of Claim. Suppose z < y and x and y are in different classes. Let x = v; and
y = v; (and necessarily 7 < j). We need to check that i < p(j). Let k = u(j), and
suppose i > k. Since vi|ly, x # vg, so k < ¢ < j. In this case, x = v; £ v, by
the structure of the labeling. On the other hand if v, < z, by transitivity v, < v,
a contradiction. Consequently v ||z as well. However, now x and y are in the same

chain of Np (v;,), and therefore must be in the same class.
The proof of the theorem is complete. [ ]
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4.1 Characterization of Interval 3-Orders by One Obstruc-
tion

We have identified the mechanism by which a transitive orientation of the comple-
ment of an interval k-graph is prohibited: that an interval contain another from its
class properly. In this section we characterize interval 3-graphs that are cocompara-
bilty graphs via one forbidden induced subgraph (the complement of a 6-cycle) and
consequently also the interval 3-orders by one forbidden suborder (the order often
referred to as the 3-crown).

Theorem 4.3 A 3-chromatic cocomparability graph is a class-proper interval 3-graph
if and only if it contains no subgraph isomorphic to Cg of Figure @

Proof. Let G be a 3-chromatic cocomparability graph and note that no vertex of
Cs has an induced complete multipartite neighborhood, so G' cannot have Cjg as
an induced subgraph. Also note that any cocomparability graph on fewer than six
vertices is an interval k-graph, so suppose |V (G)| > 6.

Now assume G is minimal counterexample to the result in that the neighborhood
of no vertex of G induces a complete multipartite neighborhood. Let P = (V(G), <)
be the poset obtained from Corollary 3.1. Since G is 3-chromatic, and by Dilworth’s
theorem, P can be decomposed into three maximal chains, say C7, Cs, and C5. Now
we argue by the number of minimal elements of P.

If P has one minimal element, say z, then z is isolated in GG and its neighborhood
is complete multipartite. If P has two minimal elements, say = and y with (relabeling
if necessary) = € €7 and y € Cy. Let z be the minimal element of C3, but z is not
minimal in P, so without loss of generality x < z. Then z is incomparable with a
subchain of Cy and is complete multipartite. [Details: Suppose z is minimal in C}
and y is minimal in Cy. By design z||y. Let Cy consist of y < 43 < -+ < yx. Then we
may suppose yy > &, and so z||y, y1, Y2, - - ., Yp—1. N[z] = K;,-1.] By dual arguments
we can also determine that P must have 3 maximal elements.

Suppose P has exactly three minimal elements, x € C1,y € (s, z € C3. P must
have exactly 3 maximal elements as well. None of x,y, 2z have induced complete
multipartite neighborhoods in GG, otherwise GG is not minimal as assumed. We know
that each of C}, (5, and C5 have more than one element, otherwise x or y or z is
both a minimal and maximal element of P. Suppose z is such an element. Then x is
isolated in P, and either y or z has a complete multipartite neighborhood in G.

Suppose C consists of v < xq < -+ < x,, Cy consists of y < y; < --- < ys, and
Cj5 consists of z < 23 < --- < 2. Relabeling if necessary, we may assume there is
an element y;, i > 1 with z|jy; and z < y;. Now N|[z] is not complete multipartite.
If there is a y;, 1 < j < i, with y;||z and < y;, then y; < y; and hence z < y;,
a contradiction. So there is an zy, k > 1, with z4||z and y < x;. Now, N|y] is not
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Figure 10: The graph 2P5; we conjecture it and C§g are the forbidden subgraphs that
characterize the incomparability graphs of interval k-orders.

complete multipartite in G. If there is an x; incomparable with y and with z < x;,
then z; < zp, a contradiction. Thus there is an element z,, incomparable with y and
with © < z,,. But now the elements x, z,,,, 2, y;, y, v are related so that P contains
an induced 6-cycle; that is, G contains and induced Cj. [ ]

We end with a conjecture.

Conjecture: If G is a cocomparability graph, then G is an interval k-graph if and
only if it has no induced subgraph isomorphic to C¢ or 2P3 (cf. Figure @)

References

[1] A. Brandstédt, J. Spinrad, and L. Stewart, Bipartite permutation graphs, Dis-
crete Applied Math. 18 (1987), 279-292.

2]

, Bipartite permutation graphs are bipartite tolerance graphs, Congressus
Numerantium 58 (1987), 165-174.

[3] D. E. Brown and B. M. Flesch, A characterization of 2-tree proper interval 3-
graphs, Journal of Discrete Mathematics Article ID 143809 (2014).

[4] D. E. Brown and L. J. Langley, The mathematics of preference, choice and order:
FEssays in honor of peter c. fishburn, ch. Probe Interval Orders, pp. 313-322,
Springer-Verlag Heidelberg Berlin, 2009.

[5] D. E. Brown and J. R. Lundgren, Characterizations for unit interval bigraphs,
Congressus Numerantium 206 (2010), 5 — 17.

[6] D.E. Brown, Variations on interval graphs, Ph.D. thesis, University of Colorado
Denver, 2004.

[7] D.E. Brown and J.R. Lundgren, Bipartite probe interval graphs, interval point
bigraphs, and circular arc graphs, Australasian J. Combinatorics 35 (2006), 221—
236.

18



8]
[9]
[10]

[11]

[20]

[21]

[22]

23]

D.E. Brown, J.R. Lundgren, and L. Sheng, Cycle-free unit and proper probe
interval graphs, submitted to Discrete Applied Math.

D.G. Corneil, S. Olariu, and L. Stewart, Asteroidal triple-free graphs, STAM J.
Discrete Math. 10 (1997), 399-430.

S. Das, A.B. Roy, M. Sen, and D.B. West, Interval digraphs: an analogue of
interval graphs, Journal of Graph Theory 13 (1989), no. 2, 189-202.

R. P. Dilworth, A decomposition theorem for partially ordered sets, Annals of
Mathematics 51 (1950), 161-166.

Ben Dushnik and E.W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941),
600-610. MR MR0004862 (3,73a)

P. C. Fishburn, Interval orders and interval graphs, Wiley & Sons, 1985.

D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific
J. Math. 15 (1965), 835-855.

T. Gallai, Transitiv orientbare graphen, Acta Math Acad. Sci. Hungar 18 (1967),
25-66.

M.C. Golumbic, D. Rotem, and J. Urrutia, Comparability graphs and intersection
graphs, Discrete Math 43 (1983), 37-46.

P. Hell and J. Huang, Interval bigraphs and circular arc graphs, Journal of Graph
Theory 46 (2004), 313-327.

L. Lovasz, A characterization of perfect graphs, Journal of Combinatorial Theory,
Series B 13 (1972), 95 —98.

T. McKee and F.R. McMorris, Topics in intersection graph theory, Society for
Industrial and Applied Mathematics, Philadelphia, 1999.

F.R. McMorris, C. Wang, and P. Zhang, On probe interval graphs, Discrete
Applied Mathematics 88 (1998), 315-324.

B.K. Sanyal and M.K. Sen, Indifference digraphs: a generalization of indifference
graphs and semiorders, STAM J. Discrete Math. 7 (1994), no. 2, 157-165.

L. Sheng, Cycle-free probe interval graphs, Congressus Numerantium 88 (1999),
33-42.

J. Spinrad, Clircular-arc graphs with clique cover number two, J. Comb. Theory,
Series B 44 (1987), no. 3, 300-306.

19



	1 Introduction
	2 Interval 2-Graphs and Orders
	3 Autopsy of Theorem 2.1's attempted extension to k > 2
	4 Interval k-Graphs and Orders, k 3
	4.1 Characterization of Interval 3-Orders by One Obstruction


