
ar
X

iv
:1

81
2.

05
29

5v
1 

 [
m

at
h.

L
O

] 
 1

3 
D

ec
 2

01
8

BIPARTITE GRAPHS AND MONOCHROMATIC SQUARES

SHIMON GARTI

Abstract. Let κ be a successor cardinal. We prove that consistently
every bipartite graph of size κ+

×κ+ contains either an independent set
or a clique of size τ × τ for every ordinal τ < κ+. We prove a similar
theorem for ℓ-partite graphs.
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2 SHIMON GARTI

0. Introduction

Let G = (U × V,E) be a bipartite graph. An independent set in G
is a product A × B such that A ⊆ U,B ⊆ V and (α, β) /∈ E whenever
α ∈ A, β ∈ B. A complete subgraph (or a clique) is a product A × B
such that A ⊆ U,B ⊆ V and (α, β) ∈ E for every α ∈ A, β ∈ B. If one
wishes to eliminate large independent sets then many edges must be added
everywhere, so the graph is likely to contain large complete subgraphs. The
following mot d’ordre obeys this basic intuition:

Every bipartite graph contains either
a large independent set or a large clique.

The natural question, therefore, is how large? The following claim gives
a simple limitation. We indicate that our bipartite graphs are balanced in
the sense that |U | = |V | where G = (U × V,E).

Claim 0.1. Let κ be an infinite cardinal.
There exists a κ × κ bipartite graph with no independent set of size κ × κ
and no complete subgraph of size κ× κ.

Proof.
Let G = (U × V,E) where U = V = κ and (α, β) ∈ E iff α ≤ β. Suppose
that A,B ⊆ κ and |A| = |B| = κ. Choose any α ∈ A and choose β ∈ B such
that β ≥ α (possible, since |B| = κ). By definition (α, β) ∈ E, and hence
A × B is not independent. Now choose γ ∈ A such that γ > β (possible,
since |A| = κ). Again, by the definition of the graph we see that (γ, β) /∈ E
so A×B is not a complete subgraph.

�0.1
Actually, the proof gives more than stated. It shows that one can always

produce a graph with no independent set of size 1× κ and no clique of size
κ× 1. In this light, the main result of this paper is optimal (when balanced
products are considered):

Theorem 0.2. Let κ be a successor cardinal.
It is consistent that for every bipartite graph G of size κ+ × κ+ and every
ordinal τ ∈ κ+, the graph G contains either an independent set or a complete
subgraph of order type τ × τ .

�0.2
Let us mention some concepts that will be used throughout the paper,

and fix our notation. The ambient combinatorial notion behind the results
to follow is called the polarzied partition relation. We write

(

α
β

)

→
(

γ
δ

)

θ

iff for every coloring c : α × β → θ one can find A ⊆ α,B ⊆ β so that
otp(A) = γ, otp(B) = δ and c ↾ (A×B) is monochromatic.

If κ = cf(κ) < λ then Sλ
κ is the set {δ ∈ λ : cf(δ) = κ}. If cf(λ) > ω

then this set is stationary in λ. An elementary embedding  : V ≺ M is a
non-trivial embedding of the universe of set theory into a transitive model
M of set theory. A cardinal κ is the critical point of  iff κ is the first ordinal
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moved by . This fact is denoted by κ = crit(). We call κ a huge cardinal
iff there exists an elementary embedding  : V ≺ M so that κ = crit() and
(κ)M ⊆M . For a general background regarding large cardinals we suggest
[6].

Let I be an ideal over κ. We denote the collection of all subsets of κ
which are not in I by I+. We shall call these sets I-positive sets. An ideal
I is (λ, µ, θ)-saturated iff for every collection {Aα : α ∈ λ} ⊆ I+ one can
find a subcollection {Aαβ

: β ∈ µ} such that
⋂

{Aαβ
: β ∈ C} is I-positive

whenever C ∈ [µ]θ.
A directed graph G = (V,E) is called a directed bipartite graph iff there

exists a partition of V into two disjoint sets U,W such that each of them is
edge-free. We use the ordered pair notation 〈α, β〉 ∈ E to indicate that E
contains an edge from α to β. A multigraph is a triple G = (V,E, ψ) where
V is a set of vertices, E is a set of edges and ψ : E → {(x, y) : x, y ∈ V }
is a function which spells out the endpoints of each edge in E. The idea is
that we allow parallel edges between the same two vertices, so we specify
with ψ the pair of vertices for which some e ∈ E is applied to. We adopt
the convention that multigraphs are loopless. The concept of a bipartite
multigraph is defined similarly. As a general reference regarding concepts in
graph theory we suggest [2].

The rest of the paper contains three additional sections. In the first
section we focus on square in square with 3 colors. The main result is based
on a theorem from [1], and it gives a monochromatic square of order type
κ+1×κ+1. The derived conclusions apply to bipartite graphs and directed
bipartite graphs. In the second section we prove the consistency of stronger
combinatorial relations with infinitely many colors. This is done for double
successors of regular cardinals. A large number of colors is useful when
dealing with multigraphs. We generalize the results about bipartite graphs
to ℓ-partite graphs. In the third section we point to some open problems.
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1. Bipartite graphs

The combinatorial tool that we shall apply to bipartite graphs is called
square in square. The idea is that we find a monochromatic square of size
τ×τ for every coloring defined on a larger square of size κ×κ. This concept
is a special case of the polarized relation.

Definition 1.1. Square in square.
Assume that θ, κ are cardinals, θ < κ and τ ∈ κ.
We say that sis(κ, τ, θ) holds iff for every coloring c : κ × κ → θ there are
A,B ⊆ κ, otp(A) = otp(B) = τ such that c ↾ (A×B) is constant.

In the terminology of polarized relations, sis(κ, τ, θ) is the positive relation
(

κ
κ

)

→
(

τ
τ

)1,1

θ
. The following basic claim demonstrates the way in which

theorems about bipartite graphs can be deduced from instances of square in
square with two colors.

Claim 1.2. Assume sis(κ, τ, 2).
Then every bipartite graph of size κ× κ contains either an independent set
or a complete subgraph of order type τ × τ .

Proof.
Let G = (U ×V,E) be a bipartite graph of size κ×κ. Define c : U ×V → 2
by c(α, β) = 0 iff (α, β) /∈ E. By the assumption sis(κ, τ, 2) there are
A ⊆ U,B ⊆ V, otp(A) = otp(B) = τ such that A × B is c-monochromatic.
Now if c′′(A × B) = {0} then (α, β) /∈ E whenever α ∈ A, β ∈ B so A × B
is independent. If c′′(A×B) = {1} then (α, β) ∈ E whenever α ∈ A, β ∈ B
and hence A×B is a clique.

�1.2
The main result of this section follows from a theorem of Baumgartner

and Hajnal which applies to colorings with three colors. In the context of
cliques and independent sets, the effect of three colors is best demonstrated
in directed bipartite graphs. But we have to be accurate about the definition
of a complete subgraph. Suppose that G = (U×V,E) is a directed bipartite
graph and A ⊆ U,B ⊆ V . Let H be the induced subgraph.

If we define H to be complete iff both 〈α, β〉 and 〈β, α〉 belong to E
for every α ∈ A, β ∈ B then it is easy to construct a directed bipartite
graph with no independent subgraph and no complete subgraph which are
not empty. Indeed, let E = {〈α, β〉 : α ∈ U, β ∈ V }. In order to enable
non-empty statements we define H to be a complete subgraph iff for every
α ∈ A, β ∈ B either 〈α, β〉 ∈ E or 〈β, α〉 ∈ E.

Claim 1.3. Assume sis(κ, τ, 3).
Then every κ×κ directed bipartite graph contains either an independent set
or a complete subgraph of order type τ × τ .

Proof.
Let G = (U × V,E) be a directed bipartite graph. Define a coloring c :
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U × V → 3 as follows:

c(α, β) =











0 if 〈α, β〉 ∈ E

1 if 〈α, β〉 /∈ E ∧ 〈β, α〉 ∈ E

2 if 〈α, β〉 /∈ E ∧ 〈β, α〉 /∈ E

By sis(κ, τ, 3) there are A ⊆ U,B ⊆ V and i < 3 such that otp(A) =
otp(B) = τ and c′′(A×B) = {i}. The induced directed subgraph H will be
a complete τ × τ subgraph when i ∈ {0, 1} and a τ × τ independent subset
when i = 2, so we are done.

�1.3
We quote now Theorem 2.1 from [1]. The statement there gives a monochro-

matic κ × κ square, but the proof shows that actually one has a square of
size κ+ 1× κ+ 1.

Theorem 1.4 (Baumgartner-Hajnal). Assume that κ = κ<κ.
Then sis(κ+, κ+ 1, 3).

�1.4
We can derive now the following conclusion:

Corollary 1.5. Let G be any κ+ × κ+ bipartite graph, where κ is a regular
cardinal.

(ℵ) If κ is strongly inaccessible then there is a κ+ 1× κ+ 1 subgraph of
G which is either complete or independent.

(i) If 2κ = κ+ then there is a κ+1×κ+1 subgraph of G which is either
complete or independent.

We do not know whether sis(κ+, τ, 3) can be proved for every κ = κ<κ

and every τ ∈ κ+. In many cases this can be forced, as will be shown in the
next section. We shall discuss this issue in the last section.
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2. Many colors and ℓ-partite graphs

In this section we show how to force instances of square in square with
many colors. As mentioned above, there are many limitations on this pos-
sibility as one can force a negative result (in many cases) even when the
number of colors is just 4, see [1]. Our ability to force the positive side of
the coin concentrates on double successors of cardinals. This is done here
for double successors of regular cardinals.

We shall assume that there is a huge cardinal above κ. We modify the
proof of Theorem 3.2 from [4], in order to get square in square. It is not clear
whether the method of [4] can be applied to successors of singular cardinals,
see the next section.

Theorem 2.1. Double successors of regular cardinals.
Assume θ = cf(θ), κ = θ+ and there exists a huge cardinal above θ.
Then one can force sis(κ+, < κ+, θ).

Proof.
Let I be a θ+-complete and (θ++, θ++, θ)-saturated ideal over θ+. This can
be forced by [7]. Notice that 2θ = θ+ in this construction. Fix an ordinal
τ ∈ (θ+, θ++), and a bijection h : θ+ → τ .

We define an ideal J over τ as follows. Enumerate the elements of I by
{Iε : ε < δ∗} and let Jε = h′′Iε for every ε < δ∗. Set J = {Jε : ε < δ∗}
and notice that J is an ideal over τ . Moreover, J is θ+-complete and
(θ++, θ++, θ)-saturated. This follows from the fact that h is a bijection.

Let c : θ++×θ++ → θ be any coloring. For every α < θ++, ι < θ set xια =
{β ∈ τ : c(α, β) = ι}. Notice that we focus here on c ↾ (θ++×τ), so actually

we prove that
(

θ++

τ

)

→
(

τ
τ

)1,1

θ
for every τ < θ++. By the θ+-completeness of

J , for each α < θ++ there exists ι(α) < θ so that x
ι(α)
α ∈ J+.

Since θ++ = cf(θ++) > θ, there is some A ⊆ θ++, |A| = θ++ and ι < θ
such that α ∈ A ⇒ ι(α) = ι. As all we need is a monochromatic product
whose large component is of size θ++, we can restrict the coloring to A×θ++

or assume without loss of generality that A = θ++. So let x = {xια : α <
θ++} ⊆ J +, and we omit ι and write xα from now on.

Choose a large enough regular χ (e.g., χ = (i3(θ
+))+). Choose an ele-

mentary chain (Mη : η ≤ τ) of submodels of H(χ) such that for every η ≤ τ
the following requirements are met:

(ℵ) |Mη | = θ+ and τ ⊆Mη.
(i) J , c, τ, h, x ∈Mη.

(ג) ≤θMη ⊆Mη.
(k) ζ < η ≤ τ ⇒Mζ ∈Mη.

We comment that here we require τ ⊆ Mη (rather than just θ+ ⊆ Mη as
in Theorem 3.2 of [4]), so we will be able to produce two sets of order type
τ in the monochromatic product. We denote sup(Mη ∩ θ++) by ση, for
every η ≤ τ . Without loss of generality,

⋂

{xα : α ∈ C} ∈ J+ for any
C ∈ [θ++]θ. Let δ be στ . We try to define, by induction on γ < θ+, two
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sequences of ordinals. The sequences are of the form 〈αh(γ) : γ < θ+〉 and

〈βh(γ) : γ < θ+〉, and all the elements are ordinals of τ .
For γ = 0 we define, first, βh(0) = min(xδ). We choose now an ordinal ζ ∈

Mh(0)+1 \Mh(0) such that βh(0) ∈ xζ . Such ζ exists since δ > σh(0)+1, βh(0) ∈
xδ and by elementarity. Let αh(0) be ζ.

Assume now that γ > 0 and the construction has been completed up to
this stage. Let βh(γ) = min(

⋂

ξ<γ

xαh(ξ)
∩ xδ \ {βh(ξ) : ξ < γ}). The saturation

of the ideal assures us that βh(γ) is well-defined. Let B = {βh(ξ) : ξ < γ}.
Notice that B ∈ Mη for every η ≤ τ , by requrirement (ג) above. Moreover,
B ⊆ xδ since we added xδ to the intersections at every step in the choice
of the β-s. It follows that, for each η,Mη |= there are unboundedly many
α < θ++ such that B ⊆ xα. Hence we can choose αh(γ) ∈ Mh(γ)+1 \Mh(γ)

with the property of B ⊆ xαh(γ)
.

Having accomplished the inductive process, let A = {αh(γ) : γ < θ+}, B =

{βh(γ) : γ < θ+}. Notice that otp(A,<) = otp(B,<) = τ . Likewise,
c′′(A×B) = {ι}, so we are done.

�2.1
We derive from the above theorem a conclusion about bipartite multi-

graphs. Suppose that G = (U × V,E, ψ) is a bipartite multigraph. Fix an
enumeration {eα : α ∈ δ} of the elements of E. For every α ∈ U, β ∈ V let
η(α, β) be otp{e ∈ E : ψ(e) = (α, β)} ordered according to the above fixed
enumeration.

Theorem 2.2. Let κ be a regular cardinal.
It is consistent (by assuming that there is a huge cardinal above κ) that for
every κ++ × κ++ bipartite multigraph G = (U × V,E, ψ) which satisfies
sup{η(α, β) : α ∈ U, β ∈ V } ≤ κ and any ordinal τ ∈ κ++ one can find
A ⊆ U,B ⊆ V, otp(A) = otp(B) = τ such that either A× B is independent
or A × B is a clique in which η(α, β) assumes a constant value for every
α ∈ A, β ∈ B.

Proof.
We may assume that U = V = κ++. Force sis(κ++, < κ++, κ). Define
c : κ++ × κ++ → κ by c(α, β) = 0 when (α, β) /∈ E and c(α, β) = η(α, β)
otherwise. Now use sis(κ++, < κ++, κ) in order to derive the desired con-
clusion.

�2.2
We conclude with a theorem about monochromatic ℓ-partite graphs. If

G = (U1 × · · · × Uk, E) is a k-partite graph then one can find a bipartite
subgraph which forms either a large clique or a large independent subset by
the results of the previous section. The interesting question is whether such
a large subgraph can be ℓ-bipartite for ℓ > 2.

By forcing intervals of cardinals which satisfy the continuum hypothesis
one can try to apply instances of sis(κ+n, < κ+(n−1), 3) finitely many times
with the goal of producing an ℓ-partite subgraph of size κ×κ which is either
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a clique or independent. At every step the size of the subgraph is reduced
by one cardinality. It seems that some pairs coloring (with two colors) is
required in order to get the same option (a clique or an independent set) for
many pairs simultaneously. We shall use the classical theorem of Ramsey.
Denote by R(ℓ) the minimal n such that any coloring of [n]2 with two colors
has a monochromatic subset of size ℓ.

Theorem 2.3. Let κ be an infinite cardinal, ℓ ∈ ω.
Assume that 2λ = λ+ for every λ < κ+ω.
Let n = R(ℓ),m = n− 1.
Then every n-partite κ+m×κ+m graph contains an ℓ-partite κ×κ subgraph
which forms either a clique or an independent set.

Proof.
Let G = (U0 × · · · × Un−1, E) be any n-partite graph such that |Ui| = κ+m

for every i < n. For each i < n let Ai
0 = Ui. We use double induction in

order to prove the above statement. By induction on i < n− 1 we define Ai
j

for every j ∈ (i, n) as follows.
We choose Ai

j ⊆ Ai
j−1 such that |Ai

j |
+ = |Ai

j−1| and for some B ⊆

Aj
i , |B| = |Ai

j | we have either that Ai
j × B is a clique or an independent

set. Then we define Aj
i+1 = B and proceed with j. After m steps we create

for each i < n an ⊆-decreasing sequence of sets 〈Ai
k : k < m〉 such that

|Ai
m| = κ. Likewise, for every 0 ≤ i0 < i1 ≤ m either Ai0

m × Ai1
m is a κ × κ

clique or a κ× κ independent subset of G.
Define a coloring d : [n]2 → {0, 1} by letting d(i0, i1) = 0 iff Ai0

m × Ai1
m

is a clique, and d(i0, i1) = 1 iff Ai0
m × Ai1

m is independent. By Ramsey’s
theorem there exists a set y ⊆ n, |y| = ℓ such that y is d-monochromatic.
The induced subgraph over (Ai

m)i∈y is as desired.
�2.3

The values of m,n in the above theorem depend on R(ℓ). It is easy to
see that if n < R(ℓ) then there is a coloring of the n-partite graph of size
κn−1 × κn−1 with no ℓ-partite clique and no ℓ-partite independent set, so
Ramsey number is optimal here. One may wonder if these results can be
generalized to θ-partite subgraphs of λ-partite graphs where θ and λ are
infinite.
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3. Open problems

The first question that we suggest is whether the theorem of Baumgartner
and Hajnal can be improved. Remark that in many cases an improvement
can be forced, but one may wonder about the ZFC situation.

Question 3.1. Assume that κ = κ<κ.
Is the relation sis(κ+, < κ+, 3) provable in ZFC?

’e’s never ’appy unless ’e’s miserable ([5, p. 398]). Upon replacing ‘miser-
able’ by ‘measurable’ we indicate that if κ is measurable then the answer to
the above question is positive, using any normal ultrafilter over κ and the
main result of the previous section.

The above question is connected with a fascinating problem related to
triplets. The majority of results in the literature apply to pairs. There is
some reference to colorings with larger domains, notwithstanding. For the
next problem let us generalize the notation of square in square.

Definition 3.2. Cube in cube.
Assume that θ, κ are cardinals, θ < κ and τ ∈ κ.
We say that cic(κ, τ, θ) holds iff for every coloring c : κ × κ × κ → θ there
are H, I, J ⊆ κ of order type τ such that c ↾ (H × I × J) is constant.

Using this terminology, Question 28 from [3] is whether cic(ℵ1,ℵ0, 2)
holds. The problem is generalized in [8, p. 108], and can be phrased as
follows:

Question 3.3. Let κ be an infinite cardinal.

(ℵ) Is it provable, under any assumption on κ, that cic(κ+, κ, 2) holds?
(i) Is it consistent for some κ that cic(κ+, κ, 2) holds?

It seems that no progress has been made regarding these questions, neither
by proving positive statements nor by giving counterexamples. We indicate
that the methods of [1] might be useful here. We also conjecture that if
κ > cf(κ) then ¬cic(κ+, κ, 2).

This brings us to the issue of singular cardinals. The main theorem of the
current paper deals with double successors of regular cardinals. What can
be sais about double successors of singular cardinals? Basically, there are
two approaches here. The first one is to try forcing a sufficiently saturated
ideal over a successor of a singular cardinal. The second approach is to force
a saturated ideal over κ+ where κ is measurable and then to singularize κ
with the hope that sis(κ++, < κ++, θ) will remain in the generic extension
even if the saturation fades away.

The first part of this plan is possible if there exists a supercompact cardi-
nal κ and a huge cardinal above κ (remark that this assumption implies that
there are many huge cardinals). If one forces κ to be Laver-indestructible
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then a very saturated ideal over κ+ is obtainable while preserving the su-
percompactness of κ, since Laver’s forcing to create such an ideal is κ-
directed-closed. For the second part, suppose that one adds a Prikry se-
quence to κ. It is not clear whether the saturation is preserved, but maybe
sis(κ++, < κ++, θ) is easier to keep.

For this end, one has to force 2κ = κ+ (this is possible to be added to
the forcing which makes κ indestructible). Now if λ = cf(λ) > κ+ then
any set of size λ in the generic extension contains a set of size λ from the
ground model. Thus any new coloring c : κ++×κ++ → θ contains a coloring
from the ground model of size κ++. This old coloring has a monochromatic
product which will serve for c as well. The problem here is to make sure
that the old coloring has size κ++ in both coordinates. This leads to the
following:

Question 3.4. Is it consistent that sis(κ++, < κ++, θ) holds for some θ ≥ 2
and κ > cf(κ)?
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