Monotonic Properties of Collections of Maximum Independent Sets of a Graph

Adi Jarden

Department of Mathematics and Computer Science Ariel University, Israel jardena@ariel.ac.il

Vadim E. Levit Department of Mathematics and Computer Science Ariel University, Israel levity@ariel.ac.il

> Eugen Mandrescu Department of Computer Science Holon Institute of Technology, Israel eugen_m@hit.ac.il

Abstract

Let G be a simple graph with vertex set V(G). A set $S \subseteq V(G)$ is *independent* if no two vertices from S are adjacent. The graph G is known to be a König-Egerváry if $\alpha(G) + \mu(G) = |V(G)|$, where $\alpha(G)$ denotes the size of a maximum independent set and $\mu(G)$ is the cardinality of a maximum matching.

Let $\Omega(G)$ denote the family of all maximum independent sets, and f be the function from subcollections Γ of $\Omega(G)$ to \mathbb{N} such that $f(\Gamma) = |\bigcup \Gamma| + |\bigcap \Gamma|$. Our main finding claims that f is \triangleleft -increasing, where the preorder $\Gamma' \triangleleft \Gamma$ means that $\bigcup \Gamma' \subseteq \bigcup \Gamma$ and $\bigcap \Gamma \subseteq \bigcap \Gamma'$. Let us say that a family $\emptyset \neq \Gamma \subseteq \Omega(G)$ is a König-Egerváry collection if $|\bigcup \Gamma| + |\bigcap \Gamma| = 2\alpha(G)$. We conclude with the observation that for every graph G each subcollection of a König-Egerváry collection is König-Egerváry as well.

Keywords: maximum independent set, critical set, ker, core, corona, diadem, maximum matching, König-Egerváry graph.

1 Introduction

Throughout this paper G is a finite simple graph with vertex set V(G) and edge set E(G). If $X \subseteq V(G)$, then G[X] is the subgraph of G induced by X. By G-W we mean either the subgraph G[V(G) - W], if $W \subseteq V(G)$, or the subgraph obtained by deleting the edge set W, for $W \subseteq E(G)$. In either case, we use G - w, whenever $W = \{w\}$. If $A, B \subseteq V(G)$, then (A, B) stands for the set $\{ab : a \in A, b \in B, ab \in E(G)\}$.

The neighborhood N(v) of a vertex $v \in V(G)$ is the set $\{w : w \in V(G) \text{ and } vw \in E(G)\}$; in order to avoid ambiguity, we use also $N_G(v)$ instead of N(v). The neighborhood N(A) of $A \subseteq V(G)$ is $\{v \in V(G) : N(v) \cap A \neq \emptyset\}$, and $N[A] = N(A) \cup A$.

A set $S \subseteq V(G)$ is *independent* if no two vertices from S are adjacent, and by Ind(G) we mean the family of all the independent sets of G. An independent set of maximum size is a *maximum independent set* of G, and $\alpha(G) = \max\{|S| : S \in Ind(G)\}$.

Let $\Omega(G)$ denote the family of all maximum independent sets, $\operatorname{core}(G) = \bigcap \{S : S \in \Omega(G)\}$ [9], and $\operatorname{corona}(G) = \bigcup \{S : S \in \Omega(G)\}$ [1].

A matching is a set M of pairwise non-incident edges of G. If $A \subseteq V(G)$, then M(A) is the set of all the vertices matched by M with vertices belonging to A. A matching of maximum cardinality, denoted $\mu(G)$, is a maximum matching. For every matching M, we denote the set of all vertices that M saturates by V(M), and by M(x) we denote the vertex y satisfying $xy \in M$.

For $X \subseteq V(G)$, the number |X| - |N(X)| is the difference of X, denoted d(X). The critical difference d(G) is $\max\{d(X) : X \subseteq V(G)\}$. The number $\max\{d(I) : I \in \operatorname{Ind}(G)\}$ is the critical independence difference of G, denoted id(G). Clearly, $d(G) \ge id(G)$. It was shown in [21] that d(G) = id(G) holds for every graph G. If A is an independent set in G with d(X) = id(G), then A is a critical independent set [21].

Theorem 1.1 [2] Each critical independent set can be enlarged to a maximum independent set.

Theorem 1.2 [11] For a graph G, the following assertions are true:

- (i) $\ker(G) \subseteq \operatorname{core}(G);$
- (ii) if A and B are critical in G, then $A \cup B$ and $A \cap B$ are critical as well;
- (iii) G has a unique minimal independent critical set, namely, ker(G).

It is well-known that $\alpha(G) + \mu(G) \leq |V(G)|$ holds for every graph G. Recall that if $\alpha(G) + \mu(G) = |V(G)|$, then G is a König-Egerváry graph [4, 20]. For example, each bipartite graph is a König-Egerváry graph as well. Various properties of König-Egerváry graphs can be found in [6, 10, 16].

A proof of a conjecture of Graffiti.pc [3] yields a new characterization of König-Egerváry graphs: these are exactly the graphs having a critical maximum independent set [8].

Theorem 1.3 [12] For a graph G, the following assertions are equivalent:

- (i) G is a König-Egerváry graph;
- (ii) there exists some maximum independent set which is critical;
- (iii) each of its maximum independent sets is critical.

For a graph G, let us denote

 $\ker(G) = \bigcap \{A : A \text{ is a critical independent set} \} [11],$

 $MaxCritIndep(G) = \{S : S \text{ is a maximum critical independent set}\}\$

diadem $(G) = \bigcup$ MaxCritIndep(G), and nucleus $(G) = \bigcap$ MaxCritIndep(G).

Clearly, $\ker(G) \subseteq \operatorname{nucleus}(G)$ holds for every graph G. In addition, by Theorem 1.1, the inclusion diadem $(G) \subseteq \operatorname{corona}(G)$ is true for every graph G.

In [17] the following lemma was introduced.

Lemma 1.4 (Matching Lemma) [17] If $A \in \text{Ind}(G)$, $\Lambda \subseteq \Omega(G)$, and $|\Lambda| \ge 1$, then there exists a matching from $A - \bigcap \Lambda$ into $\bigcup \Lambda - A$.

2 Monotonicity results

We define the following preorder, denoted \lhd , on the class of collections of sets.

Definition 2.1 Let Γ, Γ' be two collections of sets. We write $\Gamma' \triangleleft \Gamma$ if $\bigcup \Gamma' \subseteq \bigcup \Gamma$ and $\bigcap \Gamma \subseteq \bigcap \Gamma'$.

Example 2.2 (i) $\{\{1\}\} \not \lhd \{\{1,2\}\}\$ (ii) $\{\{1,2\},\{2,3\}\} \not \lhd \{\{1,2\},\{1,3\}\},\$ (iii) $\{\{1,2\},\{2,3\}\} \lhd \{\{1,2\},\{1,3\},\{2,3\}\},\$ (iv) $\{\{1,2\},\{2,3\}\} \lhd \{\{1,2\},\{1,3\},\{2\}\}.\$ (v) MaxCritIndep(G) $\lhd \Omega(G)$ is true for every bipartite graph G, since core(G) \subseteq ker(G) and diadem(G) \subseteq corona(G).

Theorem 2.3 If $\emptyset \neq \Gamma \subseteq \Omega(G)$, and $\emptyset \neq \Gamma' \subseteq \text{Ind}(G)$, then there is a matching from $\bigcap \Gamma' - \bigcap \Gamma$ into $\bigcup \Gamma - \bigcup \Gamma'$.

Proof. Let $S = \bigcap \Gamma'$. Since S is independent, by Lemma 1.4, there is a matching M from $S - \bigcap \Gamma$ into $\bigcup \Gamma - S$. For each $x \in S - \bigcap \Gamma$, we have $M(x) \notin \bigcup \Gamma'$, because every $A \in \Gamma'$ is independent. Consequently, M is a matching from $\bigcap \Gamma' - \bigcap \Gamma$ into $\bigcup \Gamma - \bigcup \Gamma'$, as claimed.

Choosing $\Gamma = \Omega(G)$ in Theorem 2.3, we get the following.

Corollary 2.4 If $\emptyset \neq \Gamma' \subseteq \text{Ind}(G)$, then there is a matching from $\bigcap \Gamma' - \text{core}(G)$ into $\text{corona}(G) - \bigcup \Gamma'$.

Choosing $\Gamma' = \{S\} \subseteq \Omega(G)$ in Corollary 2.4, we get the following.

Corollary 2.5 [1] For every graph G and for every $S \in \Omega(G)$, there is a matching from $S - \operatorname{core}(G)$ into $\operatorname{corona}(G) - S$.

Theorem 2.6 If $\Gamma \subseteq \Omega(G)$ and $\Gamma' \subseteq \text{Ind}(G)$ is such that $\Gamma' \triangleleft \Gamma$, then

$$\left|\bigcup\Gamma'\right| + \left|\bigcap\Gamma'\right| \le \left|\bigcup\Gamma\right| + \left|\bigcap\Gamma\right|.$$

 $\label{eq:intermediate} \textit{In particular, } f: \{\Gamma: \Gamma \subseteq \Omega(G)\} \longrightarrow \mathbb{N}, \ f(\Gamma) = \left|\bigcup \Gamma\right| + \left|\bigcap \Gamma\right| \ \textit{is} \ \lhd\textit{-increasing.}$

Proof. If $\Gamma' = \emptyset$ or $\Gamma = \emptyset$, then the inequality clearly holds. Otherwise, according to Theorem 2.3, there is a matching M from $\bigcap \Gamma' - \bigcap \Gamma$ into $\bigcup \Gamma - \bigcup \Gamma'$. Thus

$$\left|\bigcap \Gamma' - \bigcap \Gamma\right| \leq \left|\bigcup \Gamma - \bigcup \Gamma'\right|$$

Since $\bigcap \Gamma \subseteq \bigcap \Gamma'$ and $\bigcup \Gamma' \subseteq \bigcup \Gamma$, we have

$$\left|\bigcap \Gamma' - \bigcap \Gamma\right| = \left|\bigcap \Gamma'\right| - \left|\bigcap \Gamma\right|, \text{ and } \left|\bigcup \Gamma - \bigcup \Gamma'\right| = \left|\bigcup \Gamma\right| - \left|\bigcup \Gamma'\right|,$$

which completes the proof. \blacksquare

Corollary 2.7 If
$$\Gamma' \subseteq \Gamma \subseteq \Omega(G)$$
, then $\left|\bigcup \Gamma'\right| + \left|\bigcap \Gamma'\right| \leq \left|\bigcup \Gamma\right| + \left|\bigcap \Gamma\right|$.

Proof. It follows immediately by Theorem 2.6, because $\Gamma' \subseteq \Gamma$ implies $\Gamma' \triangleleft \Gamma$.

Corollary 2.8 $|\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2\alpha(G)$ if and only if $|\bigcup \Gamma| + |\bigcap \Gamma| = 2\alpha(G)$ holds for each non-empty $\Gamma \subseteq \Omega(G)$.

Corollary 2.9 [17] If
$$\Gamma \subseteq \Omega(G)$$
, $|\Gamma| \ge 1$, then $2\alpha(G) \le |\bigcup \Gamma| + |\bigcap \Gamma|$.

Let us consider the graphs G_1 and G_2 from Figure 1: $\operatorname{core}(G_1) = \{a, b, c, d\}$ and it is a critical set, while $\operatorname{core}(G_2) = \{x, y, z, w\}$ and it is not critical.

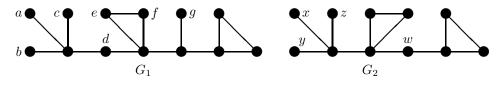


Figure 1: Both G_1 and G_2 are not König-Egerváry graphs.

Moreover, $\ker(G_1) = \{a, b, c\} \subset \operatorname{core}(G_1) \subset \{a, b, c, d, g\} = \operatorname{nucleus}(G_1)$, where $\operatorname{nucleus}(G_1) = A_1 \cap A_2$, and $A_1 = \{a, b, c, d, e, g\}$ and $A_2 = \{a, b, c, d, f, g\}$ are all the maximum critical independent sets of G_1 . Notice that $\operatorname{diadem}(G_1) \subsetneq \operatorname{corona}(G_1)$.

Theorem 2.10 Let G be a graph whose core(G) is a critical set. Then

- (i) $\operatorname{core}(G) \subseteq \operatorname{nucleus}(G);$
- (ii) MaxCritIndep(G) $\triangleleft \Omega(G)$;
- (iii) $|\operatorname{diadem}(G)| + |\operatorname{nucleus}(G)| \le |\operatorname{corona}(G)| + |\operatorname{core}(G)|$;
- (iv) $\operatorname{core}(G) = \operatorname{nucleus}(G)$, *if*, *in* addition, $\operatorname{diadem}(G) = \operatorname{corona}(G)$.

Proof. (i) Let $A \in \text{MaxCritIndep}(G)$. According to Theorem 1.1, there exists some $S \in \Omega(G)$, such that $A \subseteq S$. Since $\operatorname{core}(G) \subseteq S$, it follows that $A \cup \operatorname{core}(G) \subseteq S$, and hence $A \cup \operatorname{core}(G)$ is independent. By Theorem 1.2, we get that $A \cup \operatorname{core}(G)$ is a critical independent set. Since $A \subseteq A \cup \operatorname{core}(G)$ and A is a maximum critical independent set, we

infer that $\operatorname{core}(G) \subseteq A$. Thus, $\operatorname{core}(G) \subseteq A$ for every $A \in \operatorname{MaxCritIndep}(G)$. Therefore, $\operatorname{core}(G) \subseteq \operatorname{nucleus}(G)$.

(*ii*) By Part (*i*), we know that $\operatorname{core}(G) \subseteq \operatorname{nucleus}(G)$. According to Theorem 1.1, every critical independent set is included in some maximum independent set. Hence, we deduce that diadem(G) = $\bigcup \operatorname{MaxCritIndep}(G) \subseteq \bigcup \Omega(G) = \operatorname{corona}(G)$.

(*iii*) The inequality follows from Part (*ii*) and Theorem 2.6.

(*iv*) Part (*iii*) implies $|\text{nucleus}(G)| \leq |\text{core}(G)|$, and using now Part (*i*), we obtain core(G) = nucleus(G).

Corollary 2.11 If $|\Omega(G)| \leq 2$ and diadem $(G) = \operatorname{corona}(G)$, then G is a König-Egerváry graph.

Proof. If $|\Omega(G)| = |\{S\}| = 1$, then diadem $(G) = \operatorname{corona}(G) = S$, and the conclusion follows from Theorem 1.3.

Assume that $\Omega(G) = \{S_1, S_2\}$. Since diadem $(G) = \operatorname{corona}(G)$, we infer that the family MaxCritIndep(G) contains only two maximum critical independent sets, say A_1 and A_2 . By Theorem 2.10*(iv)*, we obtain $\operatorname{core}(G) = \operatorname{nucleus}(G)$. According to Theorem 2.10, we have, for instance, $A_1 \subseteq S_1$. Hence, $A_2 \subseteq S_2$, because, otherwise, diadem $(G) = A_1 \cup A_2 \neq S_1 \cup S_2 = \operatorname{corona}(G)$. If there is some $x \in S_1 - A_1$, then $x \in A_2 \subseteq S_2$, because $S_1 - A_1 \subseteq S_1 \cup S_2 = A_1 \cup A_2$. Therefore, we deduce $x \in S_1 \cap S_2 = A_1 \cap A_2$, which implies $x \in A_1$, in contradiction with the assumption that $x \in S_1 - A_1$. Consequently, $A_1 = S_1$, which ensures, by Theorem 1.3, that G is a König-Egerváry graph.

Theorem 2.10(i) holds for every König-Egerváry graph, with equality, by Theorem 1.3. The same equality is satisfied by some non-König-Egerváry graphs; e.g., the graph G from Figure 2, where

$$\operatorname{core}(G) = \{v_1, v_2, v_3, v_6, v_7, v_{10}\} \cap \{v_1, v_2, v_4, v_6, v_7, v_{10}\} \\ \cap \{v_1, v_2, v_3, v_6, v_8, v_{10}\} \cap \{v_1, v_2, v_4, v_6, v_8, v_{10}\}.$$

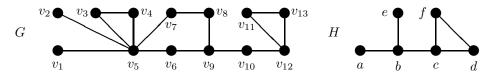


Figure 2: $core(G) = \{v_1, v_2, v_6, v_{10}\}$ is a critical set, since d(core(G)) = 1 = d(G).

The equality from Theorem 2.10(*iv*) may hold for some graphs where diadem(G) \neq corona(G). For instance, the graph H from Figure 2 satisfies: core(H) = nucleus(H) = $\{a, e\}$, corona(H) = $\{a, e, c, d, f\}$ is a critical set, but diadem(H) = $\{a, e\} \neq$ corona(H).

Corollary 2.12 If G is a bipartite graph, then ker(G) = core(G) = nucleus(G).

The lower bound presented in the following theorem first appeared in [17].

Theorem 2.13 For every graph G

$$2\alpha(G) \le |\operatorname{corona}(G)| + |\operatorname{core}(G)| \le 2(|V(G)| - \mu(G)).$$

Proof. Let $S \in \Omega(G)$, $\Gamma = \Omega(G)$ and $\Gamma' = \{S\}$. As $\Gamma' \subseteq \Gamma$, by Corollary 2.7, we get

 $2\alpha(G) = 2|S| \le |\operatorname{corona}(G)| + |\operatorname{core}(G)|.$

For a maximum matching M of G, let $A = \{x : \{x, M(x)\} \subseteq \operatorname{corona}(G)\}$, and let B contain all other vertices matched by M. Hence, there is no $S \in \Omega(G)$ such that $x \in S$ and $M(x) \in S$ at the same time. Since $\operatorname{core}(G) \subseteq S \subseteq \operatorname{corona}(G)$ for every $S \in \Omega(G)$, we infer that $A \cap \operatorname{core}(G) = \emptyset$. Thus $A \subseteq \operatorname{corona}(G) - \operatorname{core}(G)$, and, consequently,

$$|A| \le |\operatorname{corona}(G)| - |\operatorname{core}(G)|$$

On the other hand, for every $x \in B$, we have $1 \leq |\{x, M(x)\} \cap (V(G) - \operatorname{corona}(G))|$, and this implies

$$|B| \le 2(|V(G)| - |\operatorname{corona}(G)|).$$

Consequently, we obtain

$$2\mu(G) = 2 |M| = |A| + |B| \le \\ \le |\operatorname{corona}(G)| - |\operatorname{core}(G)| + 2(|V(G)| - |\operatorname{corona}(G)|) \\ = 2 |V(G)| - |\operatorname{corona}(G)| - |\operatorname{core}(G)|,$$

and this completes the proof. \blacksquare

Corollary 2.14 If $\emptyset \neq \Gamma \subseteq \Omega(G)$, then

$$2\alpha(G) \le \left|\bigcup\Gamma\right| + \left|\bigcap\Gamma\right| \le 2\left(\left|V\left(G\right)\right| - \mu(G)\right)\right|$$

Proof. Since $\emptyset \neq \Gamma \subseteq \Omega(G)$, we have $\Gamma \triangleleft \Omega(G)$. Combining Corollary 2.9, Corollary 2.7 and Theorem 2.13, we infer that

$$2\alpha(G) \le \left|\bigcup\Gamma\right| + \left|\bigcap\Gamma\right| \le \left|\operatorname{corona}(G)\right| + \left|\operatorname{core}(G)\right| \le 2\left(\left|V\left(G\right)\right| - \mu\left(G\right)\right),$$

as claimed. \blacksquare

Clearly, G is a König-Egerváry graph if and only if the lower and upper bounds in Theorem 2.13 coincide.

The graphs from Figure 3 satisfy:

$$2\alpha(G_1) = 4 = |\operatorname{corona}(G_1)| + |\operatorname{core}(G_1)| < 2(|V(G_1)| - \mu(G_1)) = 6,$$

$$2\alpha(G_2) = 6 < |\operatorname{corona}(G_2)| + |\operatorname{core}(G_2)| = 8 = 2(|V(G_2)| - \mu(G_2))$$

$$2\alpha(G_3) = 12 < |\operatorname{corona}(G_3)| + |\operatorname{core}(G_3)| = 13 < 2(|V(G_1)| - \mu(G_1)) = 14,$$

i.e., the bounds from Theorem 2.13 are tight.

Remark 2.15 For each $n \ge 1$, the graph K_{2n} satisfies $|\operatorname{corona}(K_{2n})| + |\operatorname{core}(K_{2n})| = 2n = 2(|V(K_{2n})| - \mu(K_{2n})).$

Remark 2.16 Let G be the graph obtained by joining to pendant vertices to one of the vertices of K_{2n+1} . Then $|\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2 + 2n = 2(|G| - \mu(G))$.

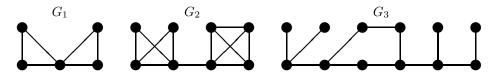


Figure 3: G_1, G_2 and G_3 are non-König-Egerváry graphs.

The graphs from Figure 4 satisfy:

$$\begin{aligned} &2\alpha(G_1) = 4 = |\operatorname{corona}(G_1)| + |\operatorname{core}(G_1)| < 2\left(|V(G_1)| - \mu(G_1)\right) = 6, \\ &2\alpha(G_2) = 6 < |\operatorname{corona}(G_2)| + |\operatorname{core}(G_2)| = 8 = 2\left(|V(G_2)| - \mu(G_2)\right) \\ &2\alpha(G_3) = 8 < |\operatorname{corona}(G_3)| + |\operatorname{core}(G_3)| = 9 < 2\left(|V(G_1)| - \mu(G_1)\right) = 11, \end{aligned}$$

i.e., the bounds from Theorem 2.13 are tight.

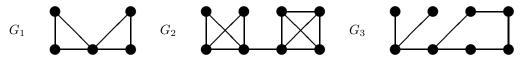


Figure 4: G_1, G_2 and G_3 are non-König-Egerváry graphs.

Corollary 2.17 [17] If G is a König-Egerváry graph, then $|\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2\alpha(G)$.

Proof. Since G is a König-Egerváry graph, we have $\alpha(G) = |V(G)| - \mu(G)$, and according to Theorem 2.13, we get

 $2\alpha(G) \le |\operatorname{corona}(G)| + |\operatorname{core}(G)| \le 2\left(|V(G)| - \mu(G)\right) = 2\alpha(G),$

and this completes the proof. \blacksquare

It is known that $|V(G)| - 1 \le \alpha(G) + \mu(G) \le |V(G)|$ for every unicyclic graph [13].

Theorem 2.18 [18] If G is a unicyclic graph, then

 $2\alpha(G) \le |\operatorname{corona}(G)| + |\operatorname{core}(G)| \le 2\alpha(G) + 1.$

By Corollary 2.17 and Theorem 2.18 we know that every unicyclic non-König-Egerváry graph satisfies the equalities $|V(G)| - 1 = \alpha(G) + \mu(G)$ and $|\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2\alpha(G) + 1$. Consequently,

$$2\alpha(G) + 1 = 2(|V(G)| - \mu(G)) - 1 < 2(|V(G)| - \mu(G)),$$

which improves on the upper bound in Theorem 2.13, in the case of unicyclic graphs.

Corollary 2.19 If G is a König-Egerváry graph, then $|diadem(G)| + |nucleus(G)| = 2\alpha(G)$.

Proof. By Theorem 1.3, we have that diadem(G) = corona(G) and core(G) is critical. Combining Theorem 2.10(*iv*) and Corollary 2.17, we get the result.

Corollary 2.20 If G is a König-Egerváry graph, and $\emptyset \neq \Gamma \subseteq \Omega(G)$, then

$$\left|\bigcup\Gamma\right| + \left|\bigcap\Gamma\right| = 2\alpha(G).$$

Proof. Let $S \in \Gamma$ and define $\Gamma' = \{S\}$. Hence, we have $\Gamma' \triangleleft \Gamma \triangleleft \Omega(G)$. By Theorem 2.6 and Corollary 2.17, we obtain

$$2\alpha(G) = f(\Gamma') \le f(\Gamma) = \left|\bigcup\Gamma\right| + \left|\bigcap\Gamma\right| \le |\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2\alpha(G),$$

which clearly implies $|\bigcup \Gamma| + |\bigcap \Gamma| = 2\alpha(G)$.

Let us notice that the converse of Corollary 2.20 is not necessarily true. For instance, the graphs G_1 and G_2 from Figure 5, clearly, both satisfy: $|\bigcup \Gamma| + |\bigcap \Gamma| = 2\alpha(G)$ for every $\emptyset \neq \Gamma \subseteq \Omega(G)$, but none is a König-Egerváry graph.

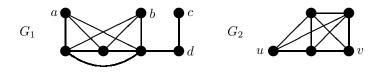


Figure 5: $\Omega(G_1) = \{\{a, b, c\}, \{a, b, d\}\}, \text{ while } \Omega(G_2) = \{u, v\}.$

3 A characterization of König-Egerváry graphs

Theorem 3.1 If $\Gamma \subseteq \Omega(G)$ and $\left|\bigcup \Gamma\right| + \left|\bigcap \Gamma\right| = 2\alpha(G)$, then (i) there is a perfect matching in $G\left[\bigcup \Gamma - \bigcap \Gamma\right]$; (ii) $\left|\bigcup \Gamma\right| - \left|\bigcap \Gamma\right| = 2\mu \left(G\left[\bigcup \Gamma\right]\right)$; (iii) $\alpha(G\left[\bigcup \Gamma\right]) = \alpha(G)$; (iv) $G\left[\bigcup \Gamma\right]$ is a König-Egerváry graph.

Proof. (i) Let $S \in \Gamma$. By Lemma 1.4, there is a matching, say M, from $S - \bigcap \Gamma$ into $\bigcup \Gamma - S$. On the other hand,

$$\begin{vmatrix} S - \bigcap \Gamma \end{vmatrix} = |S| - \left| \bigcap \Gamma \right| = \alpha(G) - \left| \bigcap \Gamma \right|$$
$$= \left| \bigcup \Gamma \right| - \alpha(G) = \left| \bigcup \Gamma \right| - |S| = \left| \bigcup \Gamma - S \right|.$$

Since

$$(S - \bigcap \Gamma) \cup (\bigcup \Gamma - S) = \bigcup \Gamma - \bigcap \Gamma,$$

we conclude that M is a perfect matching in $G\left[\bigcup \Gamma - \bigcap \Gamma\right]$.

(*ii*) By Part (*i*), there is a perfect matching in $G\left[\bigcup \Gamma - \bigcap \Gamma\right]$. Hence,

$$2\mu\left(G\left[\bigcup\Gamma\right]\right) \ge 2\mu\left(G\left[\left|\bigcup\Gamma\right| - \left|\bigcap\Gamma\right|\right]\right) = \left|\bigcup\Gamma\right| - \left|\bigcap\Gamma\right|.$$

It remains to prove that

$$2\mu\left(G\left[\bigcup\Gamma\right]\right) \leq \left|\bigcup\Gamma\right| - \left|\bigcap\Gamma\right|.$$

Let M be a maximum matching in $G\left[\bigcup\Gamma\right]$. Since all the members of Γ are independent sets, there exists no edge xy such that $x \in \bigcap\Gamma$ and $y \in \bigcup\Gamma$. Therefore, $V(M) \cap \bigcap\Gamma = \emptyset$. Finally, we get

$$2\mu\left(G\left[\bigcup\Gamma\right]\right) = |V(M)| \le \left|\bigcup\Gamma\right| - \left|\bigcap\Gamma\right|.$$

(*iii*) On the one hand, $\alpha(G\left[\bigcup\Gamma\right]) \leq \alpha(G)$, because every independent set in $G\left[\bigcup\Gamma\right]$ is independent in G as well. On the other hand, if $S \in \Gamma$, then $|S| = \alpha(G)$, and S is independent in $G\left[\bigcup\Gamma\right]$. Thus $\alpha(G\left[\bigcup\Gamma\right]) \geq \alpha(G)$, and consequently, we obtain $\alpha(G\left[\bigcup\Gamma\right]) = \alpha(G)$.

(*iv*) Using the hypothesis and Part (*ii*), we deduce that

$$2\alpha(G) - \left|\bigcap\Gamma\right| = \left|\bigcup\Gamma\right| = \left|\bigcap\Gamma\right| + 2\mu\left(G\left[\bigcup\Gamma\right]\right),$$

which, by our assumption and Part (iii), implies

$$2\left|\bigcup\Gamma\right| = 2\mu\left(G\left[\bigcup\Gamma\right]\right) + 2\alpha(G) = 2\mu\left(G\left[\bigcup\Gamma\right]\right) + 2\alpha(G\left[\bigcup\Gamma\right]),$$

i.e., $G\left[\bigcup \Gamma\right]$ is a König-Egerváry graph.

In particular, if we take $\Gamma = \Omega(G)$ in Theorem 3.1, we get the following.

Corollary 3.2 If $|corona(G)| + |core(G)| = 2\alpha(G)$, then G[corona(G)] is a König-Egerváry graph.

Notice that the equality $|\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2\alpha(G)$ is not enough to infer that G is a König-Egerváry graph, e.g., see the graph G_1 from Figure 6, that has: $\alpha(G_1) = 3$, $\operatorname{core}(G_1) = \{d\}$, $\operatorname{corona}(G_1) = \{a, b, d, f, g\}$,.

Corollary 3.3 If G is a König-Egerváry graph, and $\emptyset \neq \Gamma \subseteq \Omega(G)$, then (i) $\alpha(G\left[\bigcup \Gamma\right]) = \alpha(G)$ and $\Gamma \subseteq \Omega(G\left[\bigcup \Gamma\right])$; (ii) $\operatorname{corona}(G\left[\bigcup \Gamma\right]) = \bigcup \Gamma$ and $\operatorname{core}(G\left[\bigcup \Gamma\right]) = \bigcap \Gamma$.

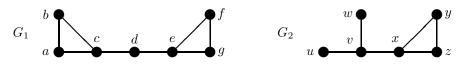


Figure 6: $\alpha(G_1) = 3$, $\operatorname{core}(G_1) = \{d\}$, $\operatorname{corona}(G_1) = \{a, b, d, f, g\}$, while $\operatorname{core}(G_2) = \{u, w\}$ and $V(G_2) - \operatorname{corona}(G_2) = \{v\}$.

Proof. (i) It is true by Corollary 2.20 and Theorem 3.1(iii).

(*ii*) Since $V\left(G\left[\bigcup\Gamma\right]\right) = \bigcup\Gamma$, we have $\operatorname{corona}(G\left[\bigcup\Gamma\right]) \subseteq \bigcup\Gamma$. But by Part (*i*), $\bigcup\Gamma \subseteq \operatorname{corona}(G\left[\bigcup\Gamma\right])$.

By Part (i), $\operatorname{core}(G\left[\bigcup\Gamma\right]) = \bigcap \Omega(G\left[\bigcup\Gamma\right]) \subseteq \bigcap \Gamma$, so it is enough to prove that $\left|\operatorname{core}(G\left[\bigcup\Gamma\right])\right| = \left|\bigcap\Gamma\right|$. According to Theorem 3.1(iv), $G\left[\bigcup\Gamma\right]$ is König-Egerváry. Therefore, using Corollary 2.17, we get

$$2\alpha \left(G \left[\bigcup \Gamma \right] \right) = \left| \operatorname{corona}(G \left[\bigcup \Gamma \right]) \right| + \left| \operatorname{core}(G \left[\bigcup \Gamma \right]) \right|$$
$$= \left| \bigcup \Gamma \right| + \left| \operatorname{core}(G \left[\bigcup \Gamma \right]) \right|.$$

Since, by Corollary 2.20, we have that $\left|\bigcup\Gamma\right| + \left|\bigcap\Gamma\right| = 2\alpha(G)$, we finally obtain the equality $\left|\operatorname{core}(G\left[\bigcup\Gamma\right])\right| = \left|\bigcap\Gamma\right|$, as claimed.

The following proposition shows that a characterization of König-Egerváry graphs cannot relate only to the maximum independent sets.

Proposition 3.4 For every König-Egerváry graph $G \notin \{K_1, K_2\}$, there is a non-König-Egerváry graph G', such that G is an induced subgraph of G' and $\Omega(G') = \Omega(G)$.

Proof. Let n = |V(G)|, and K_{n+1} be a complete graph, such that $V(G) \cap V(K_{n+1}) = \emptyset$. We define G' as the graph having:

$$V(G') = V(G) \cup V(K_{n+1})$$

$$E(G') = E(G) \cup E(K_{n+1}) \cup \{xy : x \in V(G), y \in V(K_{n+1})\}.$$

Clearly, $\alpha(G') = \alpha(G)$, |V(G')| = 2n + 1, and $\mu(G') = n$. Hence we get

$$\alpha(G') + \mu(G') = \alpha(G) + n < 2n + 1 = |V(G')|.$$

Therefore, G' is not a König-Egerváry graph, while G is an induced subgraph of G' that clearly satisfies $\Omega(G') = \Omega(G)$.

Let us mention that the difference $|V(G) - \operatorname{corona}(G)| - |\operatorname{core}(G)|$ may reach any positive integer. For instance, $G = K_n - e, n \ge 4$.

Theorem 3.5 For a graph G the following assertions are equivalent:

(i) G is a König-Egerváry graph;

(ii) for every $S_1, S_2 \in \Omega(G)$ there is a matching from $V(G) - S_1 \cup S_2$ into $S_1 \cap S_2$; (iii) there exist $S_1, S_2 \in \Omega(G)$, such that there is a matching from $V(G) - S_1 \cup S_2$ into $S_1 \cap S_2$.

Proof. $(i) \Rightarrow (ii)$ Suppose that G is a König-Egerváry graph, and let $H = G[S_1 \cup S_2]$ for some arbitrary $S_1, S_2 \in \Omega(G)$. Since $|S_1 \cup S_2| + |S_1 \cap S_2| = 2\alpha(G)$, Theorem 3.1(ii),(iv) ensures that $\alpha(G) = \alpha(H)$ and H is also a König-Egerváry graph. Thus

$$|V(G)| - \mu(G) = \alpha(G) = \alpha(H) = |V(H)| - \mu(H)$$

and, consequently,

$$|V(G)| - |V(H)| = \mu(G) - \mu(H).$$

Let M be a maximum matching of G. Applying Theorem 3.1(ii) with $\Gamma = \{S_1, S_2\}$, we obtain

$$|S_1 \cup S_2| - |S_1 \cap S_2| = 2\mu(H).$$

Hence,

$$|V(M) - S_1 \cap S_2| \le |V(G) - S_1 \cap S_2| = |V(G) - S_1 \cup S_2| + |S_1 \cup S_2 - S_1 \cap S_2|$$

= (|V(G)| - |V(H)|) + 2\mu(H) = (\mu(G) - \mu(H)) + 2\mu(H) = \mu(G) + \mu(H).

Therefore, $|V(M) - S_1 \cap S_2| \leq \mu(G) + \mu(H)$. But

$$2\mu(G) = |V(M)| = |V(M) \cap S_1 \cap S_2| + |V(M) - S_1 \cap S_2|.$$

Thus

$$|V(M) \cap S_1 \cap S_2| \ge 2\mu(G) - (\mu(G) + \mu(H)) =$$

= $\mu(G) - \mu(H) = |V(G)| - |V(H)| = |V(G) - S_1 \cup S_2|.$

Clearly, $M(y) \in V(G) - S_1 \cup S_2$ for every $y \in V(M) \cap S_1 \cap S_2$. In other words, M induces an injective mapping, say M_1 , from $V(M) \cap S_1 \cap S_2$ into $V(G) - S_1 \cup S_2$. Since $|V(M) \cap S_1 \cap S_2| \geq |V(G) - S_1 \cup S_2|$, we conclude that M_1 is a bijection. Therefore, M_1^{-1} is a matching from $V(G) - S_1 \cup S_2$ into $V(M) \cap S_1 \cap S_2$. Hence, M_1^{-1} is a matching from $V(G) - S_1 \cup S_2$.

 $(ii) \Rightarrow (iii)$ It is clear.

 $(iii) \Rightarrow (i)$ Suppose that there exist two sets $S_1, S_2 \in \Omega(G)$, such that there is a matching, say M_1 , from $V(G) - S_1 \cup S_2$ into $S_1 \cap S_2$. Let $H = G[S_1 \cup S_2]$. In general, $\mu(G) \leq \mu(G - v) + 1$ for every vertex $v \in V(G)$. Consequently, we have $|V(G)| - |V(H)| \geq \mu(G) - \mu(H)$, because H is a subgraph of G

Let M_2 be a maximum matching in $G[S_1 \cup S_2 - S_1 \cap S_2]$. Since there are no edges connecting $S_1 \cup S_2 - S_1 \cap S_2$ and $S_1 \cap S_2$, we infer that $M_1 \cup M_2$ is a matching in G. Consequently, we obtain

$$\mu(G) \ge |M_1| + |M_2| = |V(G) - S_1 \cup S_2| + \mu(G[S_1 \cup S_2 - S_1 \cap S_2]) = |V(G)| - |S_1 \cup S_2| + \mu(G[S_1 \cup S_2]) = |V(G)| - |V(H)| + \mu(H).$$

Hence, $|V(G)| - |V(H)| = \mu(G) - \mu(H)$.

By Theorem 3.1(iii),(iv), we infer that H is a König-Egerváry graph, and $\alpha(H) = \alpha(G)$. Therefore,

$$|V(G)| - \mu(G) = |V(H)| - \mu(H) = \alpha(H) = \alpha(G).$$

Thus $|V(G)| = \alpha(G) + \mu(G)$, which means that G is a König-Egerváry graph as well.

The conditions (ii) or (iii) from Theorem 3.5 are not equivalent when we take more than two maximum independent sets.

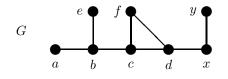


Figure 7: $core(G) = \{a, e\}$ is a critical set.

For instance, consider the graph G in Figure 7 and

$$S_1 = \{a, e, f, x\}, S_2 = \{a, e, c, x\}, S_3 = \{a, e, d, y\}, S_4 = \{a, e, f, y\}, S_5 = \{a, e, c, y\}.$$

There is a matching from $V(G) - S_1 \cup S_2 \cup S_3 = \{b\}$ into $S_1 \cap S_2 \cap S_3 = \{a, e\}$, but there is no matching from $V(G) - S_1 \cup S_4 \cup S_5 = \{b, d\}$ into $S_1 \cap S_4 \cap S_5 = \{a, e\}$. Notice that G is not a König-Egerváry graph.

Theorem 3.6 *G* is a König-Egerváry graph if and only if the following conditions hold: (i) $|aerona(C)| + |aero(C)| = 2\alpha(C)$

(i) $|\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2\alpha(G),$

(ii) there is a matching from $V(G) - \operatorname{corona}(G)$ into $\operatorname{core}(G)$.

Proof. Let H = G [corona(G)]. Theorem 3.1(*ii*) implies that α (G) = α (H). Suppose that G is a König-Egerváry graph. Condition (*i*) holds by Corollary 2.17. By Condition (*i*) and Theorem 3.1(*iv*), H is also a König-Egerváry graph. Thus

$$|V(G)| - \mu(G) = \alpha(G) = \alpha(H) = |V(H)| - \mu(H),$$

and, consequently,

$$|V(G)| - |V(H)| = \mu(G) - \mu(H)$$

Let M be a maximum matching of G. Now, applying Theorem 3.1(ii) with $\Gamma = \Omega(G)$, we obtain

$$|\operatorname{corona}(G)| - |\operatorname{core}(G)| = 2\mu(H)$$

Hence,

$$|V(M) - \operatorname{core}(G)| \le |V(G) - \operatorname{core}(G)| = |V(G) - \operatorname{corona}(G)| + |\operatorname{corona}(G) - \operatorname{core}(G)| = (|V(G)| - |V(H)|) + 2\mu(H) = (\mu(G) - \mu(H)) + 2\mu(H) = \mu(G) + \mu(H).$$

Therefore, $|V(M) - \operatorname{core}(G)| \leq \mu(G) + \mu(H)$. But

$$2\mu(G) = |V(M)| = |V(M) \cap \operatorname{core}(G)| + |V(M) - \operatorname{core}(G)|$$

Thus

$$|V(M) \cap \operatorname{core}(G)| \ge 2\mu(G) - (\mu(G) + \mu(H)) =$$

= $\mu(G) - \mu(H) = |V(G)| - |V(H)| = |V(G) - \operatorname{corona}(G)|.$

Clearly, $M(y) \in V(G) - \operatorname{corona}(G)$ for every $y \in V(M) \cap \operatorname{core}(G)$. In other words, M induces an injective mapping, say M_1 , from $V(M) \cap \operatorname{core}(G)$ into $V(G) - \operatorname{corona}(G)$. Since $|V(M) \cap \operatorname{core}(G)| \geq |V(G) - \operatorname{corona}(G)|$, we conclude that M_1 is a bijection. Therefore, M_1^{-1} is a matching from $V(G) - \operatorname{corona}(G)$ into $V(M) \cap \operatorname{core}(G)$. This completes the proof of Condition *(ii)*.

Now, suppose that Conditions (i) and (ii) hold.

In general, $\mu(G) \leq \mu(G-v) + 1$ for every vertex $v \in V(G)$. Consequently, if H is a subgraph of G, then $|V(G)| - |V(H)| \geq \mu(G) - \mu(H)$.

Condition (*ii*) implies that there exists a matching in G comprised of a matching M_1 from V(G)-corona(G) into core(G), and a maximum matching M_2 of G [corona(G) - core(G)]. Since there are no edges connecting corona(G) - core(G) and core(G), we obtain

$$\mu(G) \ge |M_1| + |M_2| = |V(G) - \operatorname{corona}(G)| + \mu(G[\operatorname{corona}(G) - \operatorname{core}(G)]) = |V(G)| - |\operatorname{corona}(G)| + \mu(G[\operatorname{corona}(G)]) = |V(G)| - |V(H)| + \mu(H).$$

Hence, $|V(G)| - |V(H)| = \mu(G) - \mu(H)$.

Condition (i) together with Theorem 3.1(iii), (iv) ensure that H is a König-Egerváry graph, and $\alpha(H) = \alpha(G)$. Therefore,

$$|V(G)| - \mu(G) = |V(H)| - \mu(H) = \alpha(H) = \alpha(G)$$

Thus $|V(G)| = \alpha(G) + \mu(G)$, which means that G is a König-Egerváry graph as well.

Remark 3.7 The graphs G_1 and G_2 in Figure 6 show that none of Conditions (i) or (ii) from Theorem 3.6 is enough to infer that G is a König-Egerváry graph.

Corollary 3.8 If G is a König-Egerváry graph then $|V(G) - \operatorname{corona}(G)| \leq |\operatorname{core}(G)|$.

4 Conclusions

In this paper we focus on interconnections between unions and intersections of maximum independents sets of a graph. Let us say that a family $\emptyset \neq \Gamma \subseteq \Omega(G)$ is a König-Egerváry collection if $|\bigcup \Gamma| + |\bigcap \Gamma| = 2\alpha(G)$. The set of all König-Egerváry collections is denoted as $\Im(G) = \Im(\Omega(G))$. One of the main findings of this paper can be interpreted as the claim that $\Im(G)$ is an abstract simplicial complex for every graph. In other words, every subcollection of a König-Egerváry collection is König-Egerváry as well. We incline to think that $\Im(G)$ is a new important invariant of a graph, which may be compared with the nerve of the family of all maximum independent sets.

Being more specific, we propose the following.

Problem 4.1 Characterize graphs enjoying core(G) = nucleus(G).

Problem 4.2 Characterize graphs satisfying

 $|\operatorname{corona}(G)| + |\operatorname{core}(G)| = 2\left(|V(G)| - \mu(G)\right).$

Conjecture 4.3 If $|diadem(G)| + |nucleus(G)| = 2\alpha(G)$, then G is a König-Egerváry graph.

References

- E. Boros, M. C. Golumbic, V. E. Levit, On the number of vertices belonging to all maximum stable sets of a graph, Discrete Applied Mathematics 124 (2002) 17-25.
- [2] S. Butenko, S. Trukhanov, Using critical sets to solve the maximum independent set problem, Operations Research Letters 35 (2007) 519-524.
- [3] E. DeLaVina, Written on the Wall II, Conjectures of Graffiti.pc, http://cms.dt.uh.edu/faculty/delavinae/research/wowII/
- [4] R. W. Deming, Independence numbers of graphs an extension of the König-Egerváry theorem, Discrete Mathematics 27 (1979) 23-33.
- [5] M. Garey, D. Johnson, *Computers and intractability*, W. H. Freeman and Company, New York, 1979.
- [6] E. Korach, T. Nguyen, B. Peis, Subgraph characterization of red/blue-split graphs and König-Egerváry graphs, in: Proceedings of the Seventeenth Annual ACM–SIAM Symposium on Discrete Algorithms, ACM Press, 2006, 842–850.

- [7] C. E. Larson, A note on critical independence reductions, Bulletin of the Institute of Combinatorics and its Applications 5 (2007) 34-46.
- [8] C. E. Larson, The critical independence number and an independence decomposition, European Journal of Combinatorics 32 (2011) 294-300.
- [9] V. E. Levit, E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Applied Mathematics 117 (2002) 149-161.
- [10] V. E. Levit, E. Mandrescu, On α⁺-stable König-Egerváry graphs, Discrete Mathematics 263 (2003) 179-190.
- [11] V. E. Levit, E. Mandrescu, Vertices belonging to all critical independent sets of a graph, SIAM Journal on Discrete Mathematics 26 (2012) 399-403.
- [12] V. E. Levit, E. Mandrescu, Critical independent sets and König-Egerváry graphs, Graphs and Combinatorics 28 (2012) 243-250.
- [13] V. E. Levit, E. Mandrescu, On the core of a unicyclic graph, Ars Mathematica Contemporanea 5 (2012) 325–331.
- [14] V. E. Levit, E. Mandrescu, Critical sets in bipartite graphs, Annals of Combinatorics 17 (2013) 543-548.
- [15] V. E. Levit, E. Mandrescu, On the structure of the minimum critical independent set of a graph, Discrete Mathematics 313 (2013) 605-610.
- [16] V. E. Levit, E. Mandrescu, On maximum matchings in König-Egerváry graphs, Discrete Applied Mathematics 161 (2013) 1635-1638.
- [17] V. E. Levit, E. Mandrescu, A set and collection lemma, The Electronic Journal of Combinatorics 21 (2014) #P1.40.
- [18] V. E. Levit, E. Mandrescu, On the intersection of all critical sets of a unicyclic graph, Discrete Applied Mathematics 162 (2014) 409-414.
- [19] R. Mosca, P. Nobili, Polynomial time recognition of essential graphs having stability number equal to matching number, Graphs and Combinatorics (2014). Published online: DOI 10.1007/s00373-014-1483-4
- [20] F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, Journal of Combinatorial Theory B 27 (1979) 228-229.
- [21] C. Q. Zhang, Finding critical independent sets and critical vertex subsets are polynomial problems, SIAM Journal on Discrete Mathematics 3 (1990) 431-438.