
GENERATING MODULAR LATTICES OF UP TO 30 ELEMENTS

JUKKA KOHONEN

Abstract. An algorithm is presented for generating finite modular, semimod-

ular, graded, and geometric lattices up to isomorphism. Isomorphic copies are

avoided using a combination of the general-purpose graph-isomorphism tool
nauty and some optimizations that handle simple cases directly. For modular

and semimodular lattices, the algorithm prunes the search tree much earlier

than the method of Jipsen and Lawless, leading to a speedup of several orders
of magnitude. With this new algorithm modular lattices are counted up to

30 elements, semimodular lattices up to 25 elements, graded lattices up to 21

elements, and geometric lattices up to 34 elements. Some statistics are also
provided on the typical shape of small lattices of these types.

1. Introduction

Algorithms that generate and count unlabeled lattices follow generally the same
pattern: start from a small initial lattice, recursively add new elements, and take
care to keep only one representative of each isomorphism class. With variations of
this scheme, unlabeled lattices have been counted up to 18 elements by Heitzig and
Reinhold [4], 19 elements by Jipsen and Lawless [5], and 20 elements by Gebhardt
and Tawn [3]. All of these enumerations took hundreds of days of processor time.
Special lattices may be generated faster, or to a larger size: Jipsen and Lawless
counted modular lattices up to 24 elements and semimodular lattices up to 22
elements [5]. Empirically the running time of their method grows faster than 6n,
where n is lattice size (number of elements).

This paper describes an improved algorithm for generating graded lattices and
certain subfamilies. In easy cases it handles isomorphisms quickly, avoiding a costly
call to nauty. But more importantly, with (semi)modular lattices it cuts short
the search tree early. The cutoff is simple to implement, but has a great impact
on the running time, which now scales roughly as 2.8n for modular lattices. All
vertically indecomposable modular 24-lattices are generated in about three minutes
of processor time, compared to (estimated) two years with Jipsen and Lawless’s
program.

With this faster algorithm modular lattices were counted up to size 30. This
gives an independent verification of Jipsen and Lawless’s numbers up to size 23
and a correction to their number for size 24. Semimodular lattices were counted
up to 25 elements, graded lattices up to 21, and geometric lattices up to 34. The
relevant entries in the Online Encyclopedia of Integer Sequences [13] are A006981
(modular), A229202 (semimodular), A278691 (graded), and A281574 (geometric).

The program code and the generated lattices (in compressed digraph6 format [12])
are available for download [7, 8, 9].

Key words and phrases. Modular lattices, semimodular lattices, graded lattices, geometric
lattices, counting algorithm.

1

ar
X

iv
:1

70
8.

03
75

0v
3

 [
m

at
h.

C
O

]
 2

 O
ct

 2
01

8

2 JUKKA KOHONEN

2. Preliminaries

All lattices considered here are finite. A lattice that has n elements is called an
n-lattice, and its elements are labeled with integers i = 1, 2, . . . , n, with 1 denoting
the top element.

The level of an element, denoted by `(i), is its longest distance from the top,
thus `(1) = 0, coatoms have level 1 and so on. Without loss of generality we assume
that element numbering is consistent with levels, so that if `(i) < `(j), then also
i < j, where < denotes numerical order. For a lattice L, the set of elements on
level k is denoted by Lk. The length of a lattice is the length of its longest chain,
or equivalently, the level of its bottom element.

We write a � b if a covers b. The upper cover of an element b is the set
{a : a � b}, and its lower cover is {a : b � a}. The up-degree and down-degree
of an element are the sizes of its upper and lower cover, respectively.

A lattice L is vertically decomposable if there is an element distinct from top
and bottom and comparable to every element of L. Otherwise L is a vertically
indecomposable lattice (vi-lattice for short). For counting purposes, we only need
to generate the vi-lattices, since the total numbers can then be calculated with a
recursion formula [4].

3. Algorithm for graded lattices

A lattice is graded if every maximal chain has the same length. We begin by de-
scribing our basic algorithm that generates all unlabeled, vertically indecomposable
graded lattices of at most N elements. By “unlabeled” we mean that it lists exactly
one representative of each isomorphism class, although for practical purposes the
lattices are represented with labeled elements.

The algorithm begins with lattices of length 2, and then recursively adds new
levels to create lattices up to the desired size N . (We assume that lattices of
lengths 0 and 1 are handled separately.) The initial lattices are M2, . . . ,MN−2,
where Mj denotes the lattice that consists of the top, j coatoms, and the bottom.
The three-element lattice M1 is omitted since it is not vertically indecomposable.

The recursive step takes graded “mother” lattices of length k, and creates graded
“daughter” lattices of length k + 1. Let L be a mother lattice of length k (so
its atoms are at level k − 1). Daughter lattices are constructed by creating new
elements, one at a time, at level k. Creating a new element involves specifying its
upper cover as a subset of Lk−1. The possible upper covers are considered in order
of decreasing size: first we consider a new element covered by all of Lk−1, then new
elements covered by |Lk−1|− 1 elements chosen from Lk−1, and so on, finally down
to elements covered by a single element of Lk−1. Upper covers of the same size are
considered in lexicographic order. Whenever creating a new element, the algorithm
checks that the proposed element does not violate the lattice conditions; see, e.g.,
[5] for details.

As a new element is created, the resulting daughter lattice may not be graded,
since some elements of Lk−1 may not yet have been included in any upper cover.
Such non-graded daughter lattices are accepted as an intermediate step, but when
level Lk is completed, we require that all elements of Lk−1 have been used in an
upper cover, ensuring that the lattice is graded. Also, each level apart from top and
bottom is required to contain at least two elements in order to restrict to vertically
indecomposable lattices.

GENERATING MODULAR LATTICES OF UP TO 30 ELEMENTS 3

L0 1

L1 2 3 4 5

L2 6 7 8 9 10 11 12

L3 13

Figure 1. A mother lattice of the “simple” type, with rectan-
gles indicating symmetric boxes. For the first element on L3 in
a daughter lattice, the algorithm will, for example, consider the
cover 6, 7, 9, 12 (consisting of prefixes of each box), but will not
consider the cover 6, 8, 10, 12 which would be create an isomorphic
copy.

The basic method of ensuring nonisomorphism uses the graph-isomorphism tool
nauty [11, 12]. When listing daughters of a given mother lattice, each daughter is
converted to canonical labeling and stored, along with three hash keys computed
with the hashgraph function provided by nauty. A newly created daughter lattice,
also converted to canonical labeling, is checked against this list and rejected if it
is identical to any previous daughter of the same mother. Note that such a list
only needs to contain the accepted daughters of one mother, since daughters of
different (nonisomorphic) mother lattices are automatically nonisomorphic. That
is, the algorithm does not need to keep all generated lattices in memory.

The method described above is in principle sufficient. However, to reduce work
we employ a few shortcuts, depending on the structure of the mother lattice. Let L
be the mother lattice and Lk−1 its atoms. By examining the orbits and generators
of its automorphism group, as given by nauty, we classify L into one of the following
types.

Type 1, “fixed”. Each atom is a singleton orbit, that is, none of the automor-
phisms of L move any atom. In this case we need not explicitly test the daughter
lattices for isomorphism. Different daughter lattices have different collections of
subsets of Lk−1 as the upper covers of elements on Lk. Since all elements of Lk−1
are fixed in all automorphisms, any two daughters are nonisomorphic.

Type 2, “simple”. Some atoms are not singleton orbits, but Lk−1 can be
partitioned into subsets, symmetric boxes, such that the elements in each box are
in fully symmetric position. To be more precise, B ⊆ Lk−1 is a symmetric box if,
for any permutation of B, there is an automorphism of L that moves B by that
permutation and leaves all other atoms fixed; and furthermore B is maximal in
this respect. If the mother lattice is of the “simple” type, then creating the first
element a of the next level (Lk) proceeds as follows. Instead of considering all
subsets U ⊆ Lk−1 as possible upper covers of a, we require that for each symmetric
box B ⊆ Lk−1, the intersection U ∩B is a prefix of B in the numerical order of the
elements. An empty prefix is allowed. For example, if one of the symmetric boxes
is B = {6, 7, 8}, then U ∩B may be ∅, {6}, {6, 7}, or {6, 7, 8}, but not {6, 8}. The

4 JUKKA KOHONEN

same requirement is held for each symmetric box, so the upper cover U must be a
union of such numerical prefixes (some of which may be empty). This is illustrated
in Fig. 1. This requirement drastically cuts down the number of different upper
covers that we need to consider, especially if some of the symmetric boxes are large.
It does not lead to missing any isomorphism classes, since for any lattice L′ that
does not fulfill this requirement, the algorithm will visit a lattice that does, and
is isomorphic to L′. For subsequent elements on each level we use the canonical
labeling method.

Type 3, “other”. In this case we employ no shortcuts but simply use the
canonical labeling method described above.

In practice the majority of mother lattices encountered fall into the first two
classes. For example, among vertically indecomposable graded 15-lattices (there are
372 838 of them) the proportions of the three types are 70.6% fixed, 28.5% simple,
and 0.9% other, so in most cases some shortcuts apply. However, it should be noted
that these shortcuts are quite simple, and a more carefully designed method might
reduce the amount of work even further.

Our basic isomorphism-avoidance method is similar to, but subtly different from
that used by Jipsen and Lawless [5]. Their approach is basically to create every
daughter lattice, find a canonical labeling with nauty, and then accept the daughter
if and only if it is the canonical daughter; this is checked by inspecting its canonical
labeling. This ensures that from every isomorphism class, exactly one lattice is
accepted. The benefit of their approach is that the newly created lattice need not
be compared to any previously created lattices, so the previous lattices need not
be kept in memory (the so-called orderly method). However, for this approach to
work, one has to make sure that the canonical daughter is indeed created. For our
approach it suffices that at least one representative (not necessarily the canonical
one) of each isomorphism class is created. This allows some freedom in designing
shortcuts such as those described above. If large numbers of daughter lattices are
not visited at all, the savings from this can more than offset the extra work of
memorizing the accepted lattices and searching among them; the search is very fast
anyway with the help of hash tables.

On each level, some further optimizations are applied in the final phase when
creating elements of up-degree one. They are not created one by one; instead, for
each element a ∈ Lk−1, we create some number m(a) of elements on Lk, each of
which is covered by a only. We iterate over the possible choices of these integers
m(a) ≥ 0, subject to the constraint that their sum does not cause the lattice size to
exceed the specified size N , and further requiring that m(a) ≥ 1 for such a whose
lower covers are still empty (otherwise the resulting lattice would not be graded).
For details we refer to the program code [7].

4. Algorithm for semimodular and modular lattices

A finite lattice is semimodular if, whenever a 6= b and a, b � d, there is an
element c such that c � a, b. Dually, a finite lattice is lower semimodular if,
whenever c � a, b and a 6= b, there is an element d such that a, b � d. A finite
lattice that fulfills both conditions is modular. Note that the initial lattices Mj

in our recursive algorithm are modular. All semimodular and lower semimodular
lattices are graded [14, §3.3].

GENERATING MODULAR LATTICES OF UP TO 30 ELEMENTS 5

L0 1

L1 2 3 4 5 6 7 8 9 10 11

L2 12 13

L3 14

Figure 2. Illustration of the pair budget cutoff for lower semi-
modular lattices.

To generate semimodular lattices, we employ the graded lattice algorithm from
the previous section with two added conditions. As noted in the previous section,
the algorithm creates new elements on level Lk by choosing, for each new element,
an upper cover U ⊆ Lk−1. Here we additionally require that any two elements
a, b ∈ U have a common covering element c � a, b. The other condition is checked
at the end of constructing a lattice: we require that any two atoms have a common
covering element. (We have to check this separately because the program does not
explicitly create the bottom element.)

To generate lower semimodular lattices, after the kth level of elements is com-
pleted, we check that any pair of elements on Lk−1 that has a common covering
element on Lk−2 has also been assigned a common covered element on Lk.

Again, the basic method described above is in principle sufficient to generate the
lower semimodular lattices, but a lot of work can be avoided by an early cutoff that
we will call the pair budget. We begin with an introductory example. Consider the
situation in Fig. 2, where L1 contains 10 elements, and on L2 so far two elements
have been created, both with up-degree 3. Suppose further that we are listing
lattices of at most 25 elements. On L1 there are

(
10
2

)
= 45 unordered pairs of distinct

elements. For each such pair a, b, because 1 � a, b, then for lower semimodularity
there must exist d ∈ L2 such that a, b � d. Six pairs are already taken care of by
the elements labeled 12 and 13, so 45 − 6 = 39 pairs are still wanting. But recall
that new elements are added in order of decreasing up-degree. Thus any remaining
element to be introduced on L2 will have up-degree of either 3 (in which case it is
covered by three pairs on L1), or 2 (covered by one pair), or 1 (covered by no pairs).
Since at most 25− 14 = 11 more elements can be added on L2, they will take care
of at most 11× 3 = 33 pairs on L1. Clearly it is not possible to extend this lattice
into a lower semimodular one within the budget of 25 elements, and this branch of
the search can be cut off immediately.

In general the pair budget cutoff works as follows. When beginning level Lk,
we first count the distinct pairs a, b ∈ Lk−1 such that there exists c � a, b. This
is the number of pairs that needs to be “taken care of”. Then, whenever a new
element of up-degree r is created on Lk, we observe that it is covered by

(
r
2

)
pairs

on Lk−1. Any remaining element on Lk will have up-degree of r or smaller, and is
thus covered by at most

(
r
2

)
pairs. If, considering the maximum allowed size of a

6 JUKKA KOHONEN

lattice, the remaining elements cannot take care of enough pairs, this branch is cut
off.

The savings from the pair budget cutoff can be quite large. Consider again the
situation in Fig. 2. If the search were not cut off, it would be possible to create
daughter lattices where each of the remaining 11 elements chooses one of the re-
maining 39 pairs as its upper cover, producing

(
39
11

)
≈ 1.68× 109 daughters. More

daughters would be created including elements of up-degrees 3 and 1. The actual
number of daughters visited would be somewhat smaller due to isomorphism. But
from the simple counting argument we already know that none of these daugh-
ters can be lower semimodular. Empirically, the total running time for generating
modular vi-lattices of 21 elements is cut more than 40-fold just by the pair budget
cutoff, and the effect grows with increasing lattice size.

An alternative way of generating semimodular lattices is to generate lower semi-
modular lattices and then take their duals. With the pair budget method, this
turned out to be much faster than generating semimodular lattices directly, so this
was the method we applied for counting semimodular lattices.

In order to generate modular lattices, we simply use the algorithm with both
conditions (semimodularity and lower semimodularity).

5. Algorithm for geometric lattices

A lattice is atomistic if every element is a join of atoms, or equivalently, if every
element whose down-degree equals one is an atom. (Stanley calls them atomic, but
we avoid this usage as atomic has other meanings.) A finite lattice is geometric if
it is semimodular and atomistic [14, §3.3].

There do not seem to be any previous computational approaches to generating
or counting geometric lattices, except that the present author counted them up
to size 15 (sequence A281574 in [13]) just by selecting geometric lattices from the
lattice listings made public by Malandro [10].

Our algorithm actually generates the duals of geometric lattices, that is, lower
semimodular coatomistic lattices. We use the algorithm for lower semimodular
lattices, with the extra condition that every element below the coatom level (L1)
must have up-degree greater than one.

6. Partial verification

Any attempt to establish mathematical truth by computation is prone to many
kinds of errors: hardware failures, human errors in operating the computation,
and errors in the algorithms and their software implementation. For example,
Heitzig and Reinhold [4] observed wrong results in an earlier counting of unlabeled
lattices; and Brinkmann and McKay [1], when counting posets of up to 16 elements,
experienced recurring hardware errors and had to exclude some machines from their
computations.

Short of formal verification of software and hardware, the reliability of compu-
tational results rests on general qualities of the process, such as simplicity, trans-
parency and repeatability, and on various kinds consistency checks. In this work,
several consistency checks were employed to partially verify the results. We can
envisage three types of errors in our lattice lists. The lists might be incomplete;
they might contain objects that are not valid for the relevant lattice family; or they
might contain isomorphic duplicates of the same lattice.

GENERATING MODULAR LATTICES OF UP TO 30 ELEMENTS 7

The first test, mainly against hardware errors, is that all lattice lists were gener-
ated twice on separate computers of different models. The resulting lattice lists (as
text files) were verified to have the same MD5 hash values. Of course, any amount
of repetition would not help against logical errors in the program itself.

The second test looks for invalid objects in the listings. The lattices were checked
with a separate program (latgrep [7]) to be of the relevant type (for example,
modular lattices).

The third test looks for isomorphic duplicates. Each lattice list was verified to
be free of isomorphs by converting to a canonical labeling with the labelg tool
from the nauty package, and then checking that all lines of the text file are differt.
A weakness of this method is that it relies on the same graph-isomorphism library
(nauty) as the code that generated the lattices.

The fourth test is between lattice families. For sizes up to 25, we verified that
our lists of modular lattices are identical to what is obtained by selecting modular
lattices from our lists of semimodular lattices, with a separate filtering program
(latgrep). A similar comparison was performed by selecting geometric lattices
from semimodular lattices (up to size 25), and semimodular lattices from graded
lattices (up to size 21).

The fifth test is by duality. The families of modular and graded lattices are
closed with respect to duality. For each lattice that we listed for these two families,
we checked that its dual (after canonical labeling) also appears in the same listing.
Since the generating algorithm builds the lattices in an inherently asymmetric fash-
ion from top to bottom, it seems plausible that errors in the generatic logic would
have been caught by failing the duality test. However, this test would not detect
missing self-dual lattices.

The sixth test is by comparison to previously published results. The counts
match those computed by Jipsen and Lawless for modular lattices up to 23, and for
semimodular lattices up to 22 elements [5]. The numbers do not match for modular
24-lattices (we list exactly one more lattice). Due to our several consistency checks
we are confident that the previous result is in error. Concerning actual lattice lists,
Jipsen and Lawless’s program was rerun to generate modular and semimodular vi-
lattices up to 21 elements; after converting to canonical form with nauty, the lists
are identical to ours. Unfortunately no lattice listing from the previous result for
modular 24-lattices was available for comparison.

Another comparison to previous results concerns distributive lattices. Since dis-
tributive lattices are modular, we can select distributive vi-lattices of up to 30
elements from our lists of modular vi-lattices. The counts thus obtained match
those provided by Erné et al. [2, Table 1].

7. Performance

We do not have theoretical guarantees on the running time of our algorithm, but
some empirical observations can be made. Fig. 3 illustrates the number of lattices
and the time spent by our algorithm. Both exhibit somewhat similar scaling with
respect to lattice size, indicating that the algorithm is doing a reasonable job in
finding the relevant portions of the search space (except for geometric lattices). Let
us inspect in more detail the numerical growth ratios between consecutive lattice
sizes.

8 JUKKA KOHONEN

16 18 20 22 24 26 28 30

lattice size

10 0

10 3

10 6

10 9

modular VI lattices

num. lattices

time, [3] alg.

time, our alg.

16 18 20 22 24

lattice size

10 0

10 3

10 6

10 9

semimodular VI lattices

16 18 20

lattice size

10 0

10 3

10 6

10 9

graded VI lattices

16 18 20 22 24 26 28 30 32 34

lattice size

10 0

10 3

10 6

10 9

geometric lattices

Figure 3. Number of vertically indecomposable lattices by size, and run-
ning times of two algorithms ([5] and ours). All times are in seconds on a
single 2.6 GHz Intel Xeon E5-2690 core.

Modular vi-lattices. Between sizes n = 27, 28, 29, 30, the number of vertically
indecomposable modular lattices grows by ratios 2.38, 2.38, 2.39 (see Table 1),
suggesting a rather stable exponential growth. For the same sizes our running time
grows by ratios 2.68, 2.75, 2.74. So empirically the growth rate is slightly below
2.4n for number of lattices and 2.8n for running time. This is not quite ideal: the
gap of about 0.4 between the bases of the exponents raises the question whether one
could construct an output-sensitive algorithm to generate modular lattices, that is,
one whose running time is linear in the size of the output.

Semimodular vi-lattices. Across sizes n = 22, 23, 24, 25, the number of
lattices grows roughly as 3.6n and our running time as 4.0n, again with a gap of 0.4
between the bases.

Graded vi-lattices. Across sizes n = 18, 19, 20, 21, the number of lattices
grows by ratios 5.74, 5.93, 6.13, exhibiting faster than exponential growth. The
running time grows by ratios 6.38, 6.16 and 7.03, again somewhat faster than the
number of lattices.

Geometric lattices. The number of geometric lattices grows so slowly that no
asymptotic form is discernible from the available numbers. The running time grows
much faster than the number of lattices.

To compare the performance, we reran Jipsen and Lawless’s program [5] for
modular and semimodular vi-lattices, both up to size 21. These running times

GENERATING MODULAR LATTICES OF UP TO 30 ELEMENTS 9

are shown in Fig. 3 with red triangles. Between sizes n = 18, 19, 20, 21, the
running time for modular vi-lattices grew by ratios 5.90, 6.27, 6.81, with n = 21
taking 2.1 days of processor time. From this we estimate that n = 24 would have
required about two years of processor time (about 300 000 times more than with
our algorithm, which completed in 194 seconds).

We conclude this section with some remarks on the speed of our basic algorithm
for generating graded lattices. At size n = 21 it outputs about 82 000 graded lattices
per second, or one lattice in 12 microseconds. On the 2.6 GHz processor that was
used, this amounts to 32 000 clock cycles per lattice. Gebhardt and Tawn [3]
count general (not graded) lattices considerably faster, at 2 200 clock cycles per
lattice. They handle isomorphisms with a sophisticated method specially tailored
to lattices. In contrast, our algorithm handles only the simplest cases directly, and
in more complicated cases resorts to using the general-purpose graph isomorphism
tool nauty as a “black box”. Indeed, during the search for graded 21-lattices, our
algorithm performs about 2.7 × 1010 calls to nauty. Taking 3.4 microseconds per
call on average, together they account for 65% of the total running time. While
Gebhardt and Tawn considered general lattices only, it might be useful to combine
their method for isomorphisms with our early checks for (semi)modularity.

8. Results

The lattice listings are available for download [7, 8, 9]. The numbers of lattices
are shown in Tables 1 and 2. Vertically indecomposable modular, semimodular
and graded lattices were directly counted by the program; numbers that include
decomposable lattices were then calculated with the recursion formula [4]

u(n) =

n∑
k=2

uvi(k) u(n−k+1), for n ≥ 2,

where u(n) counts all unlabeled lattices of size n in the relevant family, and uvi(n)
counts vi-lattices only. For geometric lattices the recursion formula does not apply
as they are necessarily vertically indecomposable.

The numbers seem to suggest exponential growth of modular and semimodular
lattices; indeed, Jipsen and Lawless [5] have proven a lower bound of the form Ω(2n)
for the number of modular lattices. This raises the question of finding an upper
bound O(cn) with some constant c. To the best of our knowledge, no such upper
bound is known for modular or semimodular lattices. In contrast, it is known that
the number of graded lattices grows faster than exponentially in n [6].

Apart from total numbers, one may compute various statistics from the actual
lattice listings. As an example, from Figs. 4 and 5 we observe that typical lat-
tices in these four families have quite different length and width characteristics:
modular lattices are long and narrow while geometric lattices are short and wide.
Semimodular and graded lattices are in between. Empirical understanding of the
typical lattice shape may be useful, for example, when formulating hypotheses
about asymptotics, and in algorithm design.

9. Conclusion

Let us conclude with some thoughts of future research. Based on the empirical
running times and memory usage, it seems quite feasible to count modular lattices
a little further with our program as it is: modular 32-lattices might be counted in

10 JUKKA KOHONEN

16 18 20 22 24 26 28 30 32 34

lattice size

2

3

4

5

6

7

8

9

10

a
v
e
ra

g
e
 l
e
n
g
th

modular VI

semimod. VI

graded VI

geometric

Figure 4. Average lattice length
as a function of lattice size.

0 2 4 6 8 10

level

0

1

2

3

4

5

6

7

8

9

a
v
e
ra

g
e
 w

id
th

modular VI

semimod. VI

graded VI

geometric

Figure 5. Average widths (num-
bers of elements) of levels in lattices
of size 21.

about one week of processor time, requiring a few gigabytes of memory to keep the
daughter lattice lists for isomorph rejection. The computation can be parallelized
by running a separate job for each initial lattice Mj . Extending the counts of
semimodular lattices seems also feasible.

However, it might be more interesting to pursue other methods of counting mod-
ular lattices, possibly without explicitly generating them. Jipsen and Lawless [5]
discuss some prospects of using alternative representations of modular lattices to
count them. Another prospect comes from our observation that modular lattices
tend to be long and narrow: perhaps a large portion of modular lattices could be
counted implicitly, by considering some kind of vertical compositions of smaller
modular lattices, without explicitly listing the compositions.

For counting graded lattices, the current program does not seem well suited
to larger sizes. Compared to modular lattices, graded lattices tend to be shorter
and wider, which becomes a problem in our method of isomorph rejection: a single
mother lattice may have a large number of daughter lattices, so the memory required
for storing the daughters becomes excessive. It would seem necessary to improve
the isomorph rejection method so as to use less memory.

Geometric lattices share the problem of being short and wide. Another prob-
lem is that our current method generates a large number of lower semimodular
proposals, then rejects the vast majority of them for not being co-atomistic. This
seems very inefficient, and better methods would be desirable, for example, ones
that would reject the proposed lattices earlier.

Acknowledgements

The author wants to thank Nathan Lawless for providing the program code
described in [5], and the anonymous referee for several valuable remarks.

The research that led to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme

GENERATING MODULAR LATTICES OF UP TO 30 ELEMENTS 11

(FP/2007-2013) / ERC Grant Agreement 338077 “Theory and Practice of Ad-
vanced Search and Enumeration.”

Computational resources were provided by CSC – IT Center for Science, Finland,
and the Aalto Science-IT project.

References

[1] Gunnar Brinkmann and Brendan D. McKay. Posets on up to 16 points. Order, 19(2):147–179,

2002.
[2] Marcel Erné, Jobst Heitzig, and Jürgen Reinhold. On the number of distributive lattices. The

Electronic Journal of Combinatorics, 9(1):#R24, 2002.

[3] Volker Gebhardt and Stephen Tawn. Constructing unlabelled lattices. ArXiv e-prints, Sep-
tember 2016.

[4] Jobst Heitzig and Jürgen Reinhold. Counting finite lattices. Algebra universalis, 48(1):43–53,
2002.

[5] Peter Jipsen and Nathan Lawless. Generating all finite modular lattices of a given size. Algebra

universalis, 74(3):253–264, 2015.
[6] D. J. Kleitman and K. J. Winston. The asymptotic number of lattices. Ann. Discrete Math.,

6:243–249, 1980.

[7] Jukka Kohonen. Lists of finite lattices (graded, n=21 elements, c=2 coatoms). https://

b2share.eudat.eu/records/dda62689eb724e9ea6a40b9cd280cfed.

[8] Jukka Kohonen. Lists of finite lattices (graded, n=21 elements, c>2 coatoms). https://

b2share.eudat.eu/records/9fa46c3cc366477cb3894ea14a83f7de.
[9] Jukka Kohonen. Lists of finite lattices (modular, semimodular, graded and geometric). https:

//b2share.eudat.eu/records/dbb096da4e364b5e9e37b982431f41de.

[10] Martin Malandro. The unlabeled lattices on ≤15 nodes. http://www.shsu.edu/mem037/

Lattices.html, 2013.

[11] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic

Computation, 60:94–112, 2014.
[12] Brendan D. McKay and Adolfo Piperno. Nauty and Traces User’s Guide (Version 2.6). http:

//pallini.di.uniroma1.it/Guide.html, 2016.
[13] Neil J. A. Sloane. The On-line Encyclopedia of Integer Sequences. https://oeis.org.

[14] Richard P. Stanley. Enumerative Combinatorics, volume 1. Wadsworth & Brooks, Belmont

CA, 1986.

Department of Computer Science, Aalto University, Espoo, Finland. Present address:
Department of Computer Science, University of Helsinki, Helsinki, Finland

E-mail address: jukka.kohonen@iki.fi

https://b2share.eudat.eu/records/dda62689eb724e9ea6a40b9cd280cfed
https://b2share.eudat.eu/records/dda62689eb724e9ea6a40b9cd280cfed
https://b2share.eudat.eu/records/9fa46c3cc366477cb3894ea14a83f7de
https://b2share.eudat.eu/records/9fa46c3cc366477cb3894ea14a83f7de
https://b2share.eudat.eu/records/dbb096da4e364b5e9e37b982431f41de
https://b2share.eudat.eu/records/dbb096da4e364b5e9e37b982431f41de
http://www.shsu.edu/mem037/Lattices.html
http://www.shsu.edu/mem037/Lattices.html
http://pallini.di.uniroma1.it/Guide.html
http://pallini.di.uniroma1.it/Guide.html
https://oeis.org

12 JUKKA KOHONEN

n modular vi modular semimodular vi semimodular
1 1 1 1 1
2 1 1 1 1
3 0 1 0 1
4 1 2 1 2
5 1 4 1 4
6 2 8 2 8
7 3 16 4 17
8 7 34 9 38
9 12 72 21 88

10 28 157 53 212
11 54 343 139 530
12 127 766 384 1 376
13 266 1 718 1 088 3 693
14 614 3 899 3 186 10 232
15 1 356 8 898 9 596 29 231
16 3 134 20 475 29 601 85 906
17 7 091 47 321 93 462 259 291
18 16 482 110 024 301 265 802 308
19 37 929 256 791 990 083 2 540 635
20 88 622 601 991 3 312 563 8 220 218
21 206 295 1 415 768 11 270 507 27 134 483
22 484 445 3 340 847 38 955 164 91 258 141
23 1 136 897 7 904 700 136 660 780 312 324 027
24 2 682 451∗ 18 752 943∗ 486 223 384 1 086 545 705
25 6 333 249 44 588 803 1 753 185 150 3 838 581 926
26 15 005 945 106 247 120
27 35 595 805 253 644 319
28 84 649 515 606 603 025
29 201 560 350 1 453 029 516
30 480 845 007 3 485 707 007

Table 1. Numbers of unlabeled modular and semimodular lat-
tices by size (vi = vertically indecomposable). New numbers are
highlighted; corrections to previous numbers marked with ∗.

GENERATING MODULAR LATTICES OF UP TO 30 ELEMENTS 13

n graded vi graded geometric
1 1 1 1
2 1 1 1
3 0 1 0
4 1 2 1
5 1 4 1
6 3 9 1
7 7 22 1
8 22 60 2
9 68 176 1

10 242 565 2
11 924 1 980 1
12 3 793 7 528 3
13 16 569 30 843 2
14 76 638 135 248 2
15 372 838 630 004 3
16 1 900 132 3 097 780 5
17 10 105 175 15 991 395 3
18 55 895 571 86 267 557 4
19 320 655 822 484 446 620 5
20 1 903 047 753 2 822 677 523 6
21 11 658 925 558 17 017 165 987 6
22 8
23 9
24 16
25 16
26 21
27 29
28 45
29 50
30 95
31 136
32 220
33 392
34 680

Table 2. Numbers of unlabeled graded and geometric lattices
by size (vi = vertically indecomposable). New numbers are high-
lighted.

	1. Introduction
	2. Preliminaries
	3. Algorithm for graded lattices
	4. Algorithm for semimodular and modular lattices
	5. Algorithm for geometric lattices
	6. Partial verification
	7. Performance
	8. Results
	9. Conclusion
	Acknowledgements
	References

