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Abstract
A subfamily {F1, F2, . . . , F|P |} ⊆ F of sets is a copy of a poset P in F if there exists a
bijection φ : P → {F1, F2, . . . , F|P |} such that whenever x ≤P x′ holds, then so does
φ(x) ⊆ φ(x′). For a family F of sets, let c(P,F) denote the number of copies of P in F ,
and we say that F is P -free if c(P,F) = 0 holds. For any two posets P,Q let us denote
by La(n, P,Q) the maximum number of copies of Q over all P -free families F ⊆ 2[n],
i.e. max{c(Q,F) : F ⊆ 2[n], c(P,F) = 0}. This generalizes the well-studied parameter
La(n, P ) = La(n, P, P1) where P1 is the one element poset, i.e. La(n, P ) is the largest
possible size of a P -free family. The quantity La(n, P ) has been determined (precisely or
asymptotically) for many posets P , and in all known cases an asymptotically best construc-
tion can be obtained by taking as many middle levels as possible without creating a copy of
P . In this paper we consider the first instances of the problem of determining La(n, P,Q).
We find its value when P and Q are small posets, like chains, forks, the N poset and dia-
monds. Already these special cases show that the extremal families are completely different
from those in the original P -free cases: sometimes not middle or consecutive levels max-
imize La(n, P,Q) and sometimes the extremal family is not the union of levels. Finally,
we determine (up to a polynomial factor) the maximum number of copies of complete
multi-level posets in k-Sperner families. The main tools for this are the profile polytope
method and two extremal set system problems that are of independent interest: we maxi-
mize the number of r-tuples A1, A2, . . . , Ar ∈ A over all antichains A ⊆ 2[n] such that (i)
∩r

i=1Ai = ∅, (ii) ∩r
i=1Ai = ∅ and ∪r

i=1Ai = [n].
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1 Introduction

The very first theorem of extremal finite set theory is due to Sperner [25] and states that if
F is a family of subsets of [n] = {1, 2, . . . , n} such that no two sets in F are comparable,
then |F | ≤ (

n

n/2�

)
holds, and equality is achieved if and only if F consists of all the 
n/2�-

element or all the �n/2-element subsets of [n]. For 0 ≤ k ≤ n the family consisting
of all the k-element subsets of [n] are called (full) levels and we introduce the notation([n]

k

) = {F ⊆ [n] : |F | = k} for them. Sperner’s theorem was generalized by Erdős [6] to the
case when F is not allowed to contain k + 1 mutually comparable sets, i.e. a (k + 1)-chain.
He showed that among such families the ones consisting of k middle levels are the largest.
In the early eighties, Katona and Tarján [21] introduced a generalization of the problem
and started to consider determining the size of the largest family of subsets of [n] that does
not contain a configuration defined by inclusions. Such problems are known as forbidden
subposet problems and are widely studied (see the recent survey [15] or Chapter 7 of [14]).

In this paper, we propose even further generalizations: we are interested in the maximum
number of copies of a given configuration Q in families that do not contain a forbidden
subposet P . Before giving the precise definitions, let us mention that similar problems were
studied by Alon and Shikhelman [1] in the context of graphs. They considered the problem
of finding the most number of copies of a graph T that an H -free graph can contain.

Definition Let P be an arbitrary poset and F a family of sets. We say that G ⊆ F is a copy
of P in F if there exists a bijection φ : P → G such that whenever x ≤P x′ holds, then so
does φ(x) ⊆ φ(x′). In this case we also say that P is a subposet of F . Let c(P,F) denote
the number of copies of P in F and for any pair of posets P,Q, let us define

La(n, P,Q) = max{c(Q,F) : F ⊆ 2[n], c(P,F) = 0},
and for families of posets P,Q let us define

La(n,P,Q) = max

⎧
⎨

⎩

∑

Q∈Q
c(Q,F) : F ⊆ 2[n],∀P ∈ P c(P,F) = 0

⎫
⎬

⎭
.

We denote by Pk the chain of length k, i.e. the completely ordered poset on k elements. In
particular, P1 is the poset with one element. Let us state Erdős’s above mentioned result
with our notation.

Theorem 1.1 (Sperner [25] for k = 1, Erdős [6] for general k) For every positive integer k

the following holds:

La(n, Pk+1, P1) =
k∑

i=1

(
n

� n−k
2  + i

)
.

The main conjecture of the area of forbidden subposet problems was first published by
Griggs and Lu in [16] and by Bukh [3], although it was already folklore by that time in the
extremal finite set theory community.

Conjecture 1.2 For a poset P let us denote by e(P ) the largest integer m such that for any
n, any family F ⊆ 2[n] consisting of m consecutive levels is P -free. Then

lim
n→∞

La(n, P, P1)(
n

�n/2
) = e(P )
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holds.

In other words, Conjecture 1.2 states that to obtain an asymptotically largest P -free fam-
ily F ⊆ 2[n], one has to consider as many middle levels of 2[n] as possible without creating
a copy of P .

There are not many results in the literature where other posets are counted. Katona [19]
determined the maximum number of 2-chains (copies of P2) in a 2-Sperner (P3-free) family
F ⊆ 2[n]. This was reproved in [24] and generalized by Gerbner and Patkós in [13].

Theorem 1.3 ([13]) For any l > k the quantity La(n, Pl, Pk) is attained for some family
F that is the union of l − 1 levels. Moreover, La(n, Pk+1, Pk) = (

n
ik

) · (
ik

ik−1

) · · · · · (
i2
i1

)
,

where i1 < i2 < · · · < ik < n are chosen arbitrarily such that the values i1, i2 − i1, i3 −
i2, . . . , ik − ik−1, n − ik differ by at most one.

Theorem 1.3 shows that to make Conjecture 1.2 valid in this more general context one
has to remove at least the word consecutive. But there are cases when all families consisting
of full levels are very far from being optimal. Let the generalized diamond poset Dk be the
poset on k + 2 elements a, b1, b2, . . . , bk, c with a < b1, b2, . . . , bk < c. Let us consider
La(n, D2, P3), which is the maximum number of 3-chains in diamond-free families. Every
family that contains at least three full levels of 2[n] contains a copy of D2, while a family
that is the union of at most two levels, does not contain any copy of P3. Therefore, if F is
D2-free and is the union of full levels, then c(P3,F) = 0, while there are D2-free families
with lots of copies of P3. Note that D2 is the smallest poset for which Conjecture 1.2 has
not been proved.

Theorem 1.4 For the generalized diamond posets and integers k > l the following holds:
(

k − 1

l

)
La(n−k+1, P3, P2) ≤ La(n, Dk, Dl) ≤

((
k + 1

2

)
− k

)(
k − 1

l

)
La(n, P3, P2).

Note that Theorem 1.4 implies La(n,Dk,Dl) = θk,l(La(n, P3, P2)) for any fixed k and
l. So it is a natural question whether the limit dk,l = limn→∞ La(n,Dk,Dl)

La(n,P3,P2)
exists and if so,

what its value is. In the simplest case k = 2, l = 1 the above inequalities and Theorem 1.3
imply 1/3 ≤ d2,1 ≤ 1.

Let us examine what version of Conjecture 1.2 may hold in our setting. Let l(P ) be the
height of a poset P , i.e. the length of the longest chain in P . Clearly, if F is the union of
any l(P )−1 full levels, it must be P -free. On the other hand if Fn = ∪l(Q)

j=1

([n]
ij

)
is the union

of l(Q) full levels with ij+1 − ij ≥ cn for some constant c for all j = 1, 2, . . . l(Q) − 1,
then Fn contains many copies of Q. Therefore we propose the following.

Conjecture 1.5 For any pair P,Q of posets with l(P ) > l(Q) there exist an integer m and
a sequence of P -free families Fn ⊆ 2[n] that are of the form Fn = ∪m

j=1

([n]
ij

)
such that

La(n, P, Q) = (1 + o(1))c(Q,Fn)

holds.

As we will see, this conjecture often holds even if l(P ) ≤ l(Q). We say that for a pair
P, Q of posets Conjecture 1.5 strongly holds if for large enough n we have La(n, P,Q) =
c(Q,Fn) and almost holds if La(n, P,Q) = O(nkc(Q,Fn)) for some k that depends
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only on P and Q. In both cases we also assume the family Fn is P -free and is the union
of full levels, but we do not assume anything about l(P ) and l(Q). Note that the value of
La(n, P,Q) typically grows exponentially in n.

In this paper, we address the first instances of the general problem. Let us note that since
the first version of this paper, Gerbner, Methuku, Nagy, Patkós and Vizer [12] studied the
special case when Q is a chain. We will consider the following posets (see Fig. 1): let

∨
r

denote the poset on r + 1 elements 0, a1, a2, . . . , ar with 0 ≤ ai for all i = 1, 2, . . . , r and
we write

∨
for

∨
2. Similarly, let

∧
r denote the poset on r + 1 elements a1, a2, . . . , ar , 1

with ai ≤ 1 for all i = 1, 2, . . . , r and we write
∧

for
∧

2. The poset N contains four
elements a, b, c, d with a ≤ c and b ≤ c, d . The butterfly poset B consists of four elements
a, b, c, d with a, b ≤ c, d .

A family that does not contain P2 is called an antichain. A family F that does not contain
Pk can be easily partitioned into k − 1 antichains F1, . . . ,Fk−1 the following way: let Fi

be the set of minimal elements of F \ ∪i−1
j=1Fj . We call this the canonical partition of F .

The proof of the next theorem (and of the other theorems) will follow in later sections.

Theorem 1.6 (a) La(n,
∨

, P2) = La(n,
∧

, P2) = (
n

�n/2
)
.

(b) La(n, {∨,
∧}, P2) = (

n−1
�(n−1)/2

)
.

(c) La(n, B,Dr) = (( n
�n/2)

r

)
.

(d) La(n,
∨

,
∧

r ) = La(n,
∧

,
∨

r ) = (( n
�n/2)

r

)
.

Parts (a) (c), and (d) of Theorem 1.6 show that Conjecture 1.5 strongly holds for those
pairs of posets.

The proof of our next theorem uses the notion of profile vectors (ordinary and l-chain
profile vectors) that we will describe later. Here and throughout the paper h(x) denotes the
binary entropy function, i.e. h(x) = −x log2 x − (1 − x) log2(1 − x).

Theorem 1.7 (a) La(n, P3,
∧

r ) = La(n, P3,
∨

r ) = (
n
ir

)(( ir�ir /2)
r

)
for some ir with ir =

(1 + o(1)) 2r

2r+1n.

(b) La(n, P4,Dr) = (
n
jr

)(
jr

ir

)(( jr −ir�(jr −ir )/2)
r

)
for some ir = (1 + o(1)) n

2r/2+2
and either jr =

n − ir or jr = n − ir − 1.
(c) 2(c+o(1))n ≤ La(n, P3, N) ≤ o(23n),

where c = h(c0) + 3c0h(c0/(1 − c0)) ≈ 2.9502... with c0 being the real root of the
equation 0 = 7x3 − 10x2 + 5x − 1.

Fig. 1 The Hasse diagrams of the posets N , B,
∨

r and
∧

r
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In the above theorem we dealt with La(n, Pl(Q)+1,Q) for different posets Q. We knew
the place of every element of every copy of Q in the canonical partition. In the following we
deal with these kind of problems. We introduce the following binary operations of posets:
for any pair Q1, Q2 of posets we define Q1 ⊗r Q2 by adding an antichain of size r between
Q1 and Q2. More precisely, let us assume Q1 consists of q1

1 , . . . , q1
a and Q2 consists of

q2
1 , . . . , q2

b . Then R = Q1 ⊗r Q2 consists of q1
1 , . . . , q1

a , m1, m2, . . . , mr , q
2
1 , . . . q2

b . We
have q1

i <R q1
j if and only if q1

i <Q1 q1
j and similarly q2

i <R q2
j if and only if q2

i <Q2 q2
j .

Also we have q1
i <R mk <R q2

j for every i, k, and j . Finally, the mk’s form an antichain.
Note that l(Q1 ⊗r Q2) = l(Q1) + l(Q2) + 1. Let Q ⊕ r denote the poset obtained from
Q by adding r elements that form an antichain and that are all larger than all elements
of Q. Similar operations of posets were considered first in the area of forbidden subposet
problems by Burcsi and Nagy [4].

We will obtain bounds on La(n, Pl(Q1⊗rQ2)+1, Q1 ⊗r Q2) involving bounds on
La(n, Pl(Q1)+1, Q1) and La(n, Pl(Q2)+1,Q2). For this, first we need to introduce the
notions of profile vectors and profile polytopes. For a family F ⊆ 2[n] of sets, let
α(F) = (α0, α1, . . . , αn) denote the profile vector of F , where αi = |{F ∈ F : |F | = i}|.
Many problems in extremal finite set theory ask for the largest size of a family in a class
A ⊆ 22[n]

. This question is equivalent to determining maxF∈A α(F)·1, where 1 is the vector
of length n + 1 with all entries being 1, and · denotes the scalar product.

More generally, consider a weight function w : {0, 1, . . . , n} → R, and assume we want
to maximize w(F) := ∑

F∈F w(|F |). Then this is equivalent to maximizing α(F) · w,

where w = (w(0), w(1), . . . , w(n)). As A ⊆ 22[n]
holds, we have {α(F) : F ∈ A} ⊆ R

n+1

and therefore we can consider its convex hull μ(A), that we call the profile polytope of
A. It is well known that any weight function with the above property is maximized by an
extreme point of μ(A) (a point that is not a convex combination of other points of μ(A)),
moreover if such a weight function is non-negative, then it is maximized by an essential
extreme point, i.e. an extreme point which is maximal with respect to the coordinate-wise
ordering. First results concerning profile polytopes were obtained in [8–11, 20] and the not
too recent monograph of Engel [7] contains a chapter devoted to this topic.

Using this we can determine La(n, P3, P2), and using induction with this as the base
case, one can determine La(n, Pk+1, Pk), but in other cases we will need a more powerful
tool than ordinary profile vectors. The notion of l-chain profile vector αl(F) of a family
F ⊆ 2[n] was introduced by Gerbner and Patkós [13] and denotes a vector of length

(
n+1

l

)
.

The coordinates are indexed by l-tuples of [0, n], and αl(F)(i1, i2, . . . , il) is the number of
chains F1 � F2 � · · · � Fl such that Fj ∈ F and |Fj | = ij for all 1 ≤ j ≤ l. For a set

A ⊆ 22[n]
one can define the l-chain profile polytope μl(A), its extreme points and essential

extreme points analogously to the above. Note that for l = 1 we get back the definition of
the original profile polytope.

Here we introduce two new types of profile vectors. For a family F ⊆ 2[n] of sets, let
βr(F) = (βr

0 , βr
1 , . . . , βr

n−1) denote the r-intersection profile vector of F , where βr
i =

βr
i (F) = |{{F1, F2, . . . , Fr } : Fj ∈ F , these are r different sets, and | ⋂r

j=1 Fj | = i}|.
For a family F ⊆ 2[n] of sets, let γ r(F) = (γ r

0,1, γ
r
0,2, . . . , γ

r
0,n, γ

r
1,2, . . . , γ

r
n−1,n) denote

the r-intersection-union profile vector of F , where γ r
i,j = γ r

i,j (F) = |{{F1, . . . , Fr } :
F1, . . . , Fr ∈ F , these are r different sets, |F1 ∩ · · · ∩ Fr | = i, and |F1 ∪ · · · ∪ Fr | = j}|.
Note that if A ⊆ 2[n] is an antichain, then γ r

i,j (A) > 0 implies j − i ≥ 2, therefore the

number of non-zero coordinates in γ r(A) is at most
(
n+1

2

) − n = (
n
2

) ≤ n2.
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Let us illustrate with two examples why these profile vectors can be useful in count-
ing copies of different posets. Let Kr1,r2,...,rs denote the complete s-level poset on

∑s
i=1 ri

elements

a1
1, a1

2, . . . , a1
r1

, a2
1, a2

2, . . . , a2
r2

, . . . , as
1, a

s
2, . . . , a

s
rs

with ai
h < a

j
l if and only if i < j . Observe that

∨
r = K1,r , B = K2,2 and Dr = K1,r,1.

Let F be a P3-free and G be a P4-free family. We will estimate c(Kp,r ,F) and
c(Kp,r,s ,G). If we consider the canonical partitions of F = F1 ∪F2 and G = G1 ∪G2 ∪G3,
then a copy of Kp,r in F contains p sets from F1 and r sets from F2. If we fix F1, . . . , Fr ∈
F2, then the p “bottom” sets of the copies of Kp,r in F containing F1, . . . , Fr form an
antichain in {F ∈ F1 : F ⊆ ⋂r

j=1 Fj }. Therefore, by Theorem 1.1, the number of these

copies is at most
((

| ⋂r
j=1 Fj |

�| ⋂r
j=1 Fj |/2)

p

)
, so summing up for all possible r-tuples of F2 we obtain

c(Kp,r ,F) ≤ βr(F) · wp , and consequently

La(n, P3,Kp,r ) ≤ max{βr(A) · wp : A ⊆ 2[n] is an antichain},

where the j th entry of the vector wp is
(( j

�j/2)
p

)
.

Similarly, if we consider the canonical partition of G = G1∪G2∪G3, then a copy of Kp,r,s

in G contains p sets from G1, r sets from G2 and s sets from G3. If we fix G1, . . . , Gr ∈ G2,
then the bottom p and top s sets of copies of Kp,r,s containing G1, . . . , Gr form antichains
in {G ∈ G1 : G ⊆ ⋂r

j=1 Gj } and {G ∈ G3 : G ⊇ ⋃r
j=1 Gj }. Therefore, using again

Theorem 1.1, we obtain c(Kp,r,s ,G) ≤ γ r(G2) · wp,s and consequently

La(n, P4,Kp,r,s) ≤ max{γ r(A) · wp,s : A ⊆ 2[n] is an antichain},

where the (i, j)th entry of the vector wp,s is
(( i

�i/2)
p

)(( n−j
�(n−j)/2)

s

)
. Therefore determining the

convex hull (and more importantly its extreme points) of the r-intersection profile vectors
and r-intersection-union profile vectors of antichains would yield upper bounds on La-
functions of complete multi-level posets.

We are not able to determine these convex hulls, we will only obtain upper bounds on
the coordinates of these profile vectors.

Theorem 1.8 (a) For every r ≥ 3 and antichain A ⊆ 2[n], γ r
0,n(A) ≤ n2rγ r

0,n(
( [n]
�n/2

)
).

If r = 2 and n is even, then γ 2
0,n(A) ≤ γ 2

0,n(
( [n]
n/2

)
), while if r = 2 and n is odd, then

γ 2
0,n(A) ≤ (

n−1
�n/2−1

)
.

(b) For every r there exists a sequence ln such that if A ⊆ 2[n] is an antichain, then
βr

0(A) ≤ n2r+1βr
0(

([n]
ln

)
).

(c) If A ⊆ 2[n] is an antichain, then β2
0 (A) ≤ 1

2

(
n

�n/3
)(
2n/3�

�n/3
)
and this is sharp as shown

by
( [n]
�n/3

)
if n ≡ 0, 1 mod 3 and by

( [n]

n/3�

)
if n ≡ 2 mod 3.

The r = 2 part of Theorem 1.8 (a) was proved by Bollobás [2]. Using the above theorem,
we can give bounds on La(n, Pl(Q1⊗rQ2)+1,Q1 ⊗r Q2).

Theorem 1.9 Let Q1,Q2 be two non-empty posets.
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(a) If r ≥ 2, then we have

La(n, Pl(Q1)+l(Q2)+1,Q1 ⊗r Q2) ≤
n2r+2 max

0≤i<j≤n

{(
n

j

)(
j

i

)
γ r

0,j−i

(( [j − i]
�(j − i)/2

))
La(i, Pl(Q1)+1,Q1)La(n − j, Pl(Q2)+1,Q2)

}
.

Furthermore, if r ≥ 3 and Conjecture 1.5 almost holds for the pairs Pl(Q1)+1,Q1 and
Pl(Q2)+1, Q2, then so it does for the pair Pl(Q1⊗rQ2)+1,Q1 ⊗r Q2.

(b) If r = 1, then we have

La(n, Pl(Q1)+l(Q2)+1,Q1 ⊗1 Q2) ≤ max
0≤j≤n

{(
n

j

)
La(j, Pl(Q1)+1,Q1)La(n − j, Pl(Q2)+1,Q2)

}
.

Furthermore, if Conjecture 1.5 strongly/almost holds for the pairs Pl(Q1)+1,Q1 and
Pl(Q2)+1, Q2, then so it does for the pair Pl(Q1⊗1Q2)+1,Q1 ⊗1 Q2.

Theorem 1.10 Let Q be a non-empty poset.

(a) If r ≥ 2 and n ∈ N, then there exists an i = i(r, n) such that

La(n, Pl(Q)+2, Q ⊕ r) ≤ max
0≤j≤n

{(
n

i

)
βr

0

(([n − i]
j − i

))
La(j, Pl(Q)+1,Q)

}
.

Furthermore, if Conjecture 1.5 almost holds for the pair Pl(Q)+1, Q, then so it does
for the pair Pl(Q)+2,Q1 ⊕ r .

(b) If r = 1, then we have

La(n, Pl(Q)+2,Q ⊕ 1) ≤ max
0≤j≤n

{(
n

j

)
La(j, Pl(Q)+1,Q)

}
.

Furthermore, if Conjecture 1.5 strongly/almost holds for the pair Pl(Q)+1,Q, then so
it does for the pair Pl(Q)+2, Q ⊕ 1.

We can apply Theorem 1.9 and Theorem 1.10 to complete multi-level posets (Fig. 2).

Corollary 1.11 For any complete multi-level poset Kr1,r2,...,rs , Conjecture 1.5 almost holds
for the pair Ps+1,Kr1,r2,...,rs .

Fig. 2 The Hasse diagrams of multi-level posets
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Corollary 1.12 Conjecture 1.5 strongly holds for the pair Ps+1,Kr1,r2,...,rs if for every
i < s at least one of ri and ri+1 is equal to 1.

Corollary 1.12 does not tell us anything about the set sizes in the family containing the
most number of copies of Kr1,r2,...,rs . The next theorem gives more insight for an even more
special case.

Theorem 1.13 The value of La(n, Pl+3,Kr,1,...,1,s) (where there are l copies of 1 in
Kr,1,...,1,s) is attained for a familyF = ∪l+2

j=1

([n]
ij

)
, where i1 = �i2/2, il+2 = �(n+il+1)/2

and i3 − i2, i4 − i3, . . . , il+1 − il differ by at most 1.

Finally observe that Conjecture 1.2, if true, and Theorem 1.1 would have another con-
sequence: the asymptotics of La(n, P ) = La(n, P, P1) would equal that of La(n, Pj )

for some integer j . This is not true in our more general context in the following stronger
sense that even the order of magnitude of La(n, P, Q) can be different from any function
La(n, Pj ,Q).

Theorem 1.14 There does not exist any integer j with La(n, B, P2) = �(La(n, Pj , P2)).

The rest of the paper is organized as follows: we prove Theorem 1.4 and Theorem 1.6 in
Section 2. We prove Theorem 1.7 in Section 3. Theorem 1.8, Theorem 1.9, Theorem 1.10,
and their corollaries are proved in Section 4, Theorem 1.14 in Section 5, while Section 6
contains some concluding remarks.

2 Proofs of Theorem 1.4 and Theorem 1.6

Proof of Theorem 1.4 We start by proving the upper bound. Let F ⊆ 2[n] be a Dk-free
family. As for any poset P , the canonical partition of a P -free family can consist of at most
|P |−1 antichains, we can assume that the canonical partition of F is

⋃k+1
i=1 Fi . In any copy

of Dl in F , the sets corresponding to the top and bottom element of Dl come from Fi and
Fj with i − j ≥ 2. The number of such pairs of indices is

(
k+1

2

) − k. Let us bound the
number of copies of Dl with top element from Fi and bottom element from Fj . As Fi ∪Fj

is P3-free, there are at most La(n, P3, P2) many ways to choose the top and the bottom
elements FB ⊂ FT . As F is Dk-free, there can be at most k − 1 sets in F lying between FB

and FT , so the number of copies of Dl with FB, FT being top and bottom is at most
(
k−1

l

)
.

The upper bound on La(n, Dk, Dl) follows.
For the lower bound we need a construction. Let F1 ∪ F2 ⊆ 2[n−k+1] be the canon-

ical partition of the P3-free family F with c(P2,F) = La(n − k + 1, P3, P2). For
j = 3, 4, . . . , k + 1 let Fj = {F ∪ [n − k + 2, n − k + j − 1] : F ∈ F2}, where for
i ≤ j , [i, j ] denotes the set {i, i + 1, . . . , j − 1, j}. We claim that G = ∪k+1

i=1Fi is Dk-

free with c(Dl,F) ≥ (
k−1

l

)
La(n − k + 1, P3, P2). Indeed, every set G ∈ G is contained

in a set Fk+1 ∈ Fk+1 and contains a set F1 ∈ F1, therefore if there was a copy of Dk , we
could assume that its bottom element is from F1 and its top element is from Fk+1. But any
Fk+1 ∈ Fk+1 contains exactly one element from each Fi where i = 2, 3, . . . , k, so there is
no space for a copy of Dk . On the other hand, for every pair F1 ⊂ F2 in F1 ∪ F2 we can
add l sets from {F2 ∪ [n − k + 2, n − k + j − 1] : j = 3, 4, . . . , k + 1} to form a copy of
Dl . For each such pair we will obtain

(
k−1

l

)
such copies.
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Proof of Theorem 1.6 To prove (a), by symmetry, it is enough to show La(n,
∨

, P2) =(
n

�n/2
)
. Consider any

∨
-free family F ⊆ 2[n]. As the

∨
-free property implies the P3-free

property, the canonical partition of F is F1 ∪ F2. By the
∨

-free property of F , elements
of F1 are contained in at most one copy of P2. Also, every copy of P2 in F must contain
a set from F1. Sperner’s theorem yields c(P2,F) ≤ |F1| ≤ (

n
�n/2

)
. On the other hand

F := {F ⊆ [n] : |F | = �n/2} ∪ {[n]} is
∨

-free and every �n/2-element set forms a copy
of P2 with [n].

We continue with proving (b). We will need the following definition. For any family
F , the comparability graph of F has vertex set F and two sets F,F ′ ∈ F are joined by
an edge if F ⊆ F ′ or F ′ ⊆ F holds. The connected components of the comparability
graph of F are said to be the components of F . If a family F is both

∨
-free and

∧
-

free, then its components are either isolated vertices or isolated edges in the comparability
graph. Therefore c(P2,F) is the number of components that are isolated edges. It follows
that La(n, {∨,

∧}, P2) ≤ 1
2La(n, {∨,

∧}, P1) = (
n−1

�(n−1)/2
)

where the result in the last
equation was proved by Katona and Tarján [21]. The construction (given also in [21]) F :=( [n−1]
�(n−1)/2

) ∪ {{n} ∪ F : F ∈ ( [n−1]
�(n−1)/2

)} shows that the above upper bound can be attained.

To prove (c), let us consider a B-free family F ⊆ 2[n] and let M = {M ∈ F : ∃F ′, F ′′ ∈
F such that F ′

� M � F ′′}. As B-free implies P4-free, we obtain that M is an antichain,
thus |M| ≤ (

n
�n/2

)
, by Theorem 1.1. Moreover, if M ∈ M, then there do not exist two

elements F1, F2 ∈ F with M � F1, F2. Indeed, by the definition of M there exists F ′ ∈ F
with F ′

� M , and F ′, M, F1, F2 would form a copy of B. Similarly, for every M ∈ M
there exists exactly one element F ∈ F with F � M . Therefore, a copy of Dr contains r

elements of M , and they determine the remaining two elements, which implies c(Dr,F) ≤
(|M|

r

) ≤ (( n
�n/2)

r

)
. The construction F := {∅, [n]} ∪ ( [n]

�n/2
)

shows that this upper bound can
be attained.

To prove (d), by symmetry, it is enough to show La(n,
∨

,
∧

r ) = (( n
�n/2)

r

)
. If F is∨

-free, then it is in particular P3-free. Consider its canonical partition F = F1 ∪ F2.
Then a copy of

∧
r contains r elements from F1 and one from F2. Moreover, an r-tuple

from F1 may form a copy of
∧

r with at most one element from F2, otherwise there is
a copy (actually r copies) of

∨
in F . As F1 is an antichain, by Theorem 1.1, the upper

bound La(n,
∨

,
∧

r ) ≤ (( n
�n/2)

r

)
follows and F := {[n]} ∪ ( [n]

�n/2
)

shows that this can be
attained.

3 The profile polytopemethod

In this section we prove Theorem 1.7 after stating a result concerning l-chain profile vectors,
due to Gerbner and Patkós [13].

Let Sn,k be the class of all k-Sperner (i.e. Pk+1-free) families on [n].

Lemma 3.1 (Gerbner, Patkós, [13]) The essential extreme points of μl(Sn,k) are the l-chain
vectors of k-Sperner families that consist of the union of k full levels.

Let us state the immediate consequence of the above lemma that we will use in our proofs
in the remainder of this section.

Order (2020) 37:389–410 397



Corollary 3.2 Let l ≤ k and w : (2[n]
l

) → R
+ be a weight function such that

w({F1, F2, . . . Fl}) depends only on |F1|, |F2|, . . . , |Fl |. Then the maximum of
∑

F1�F2�···�Fl,Fi∈F
w({F1, F2, . . . , Fl})

over all families F ∈ Sn,k is attained at some family that consists of k full levels.

Proof of Theorem 1.7. To prove (a), we show La(n, P3,
∧

r ) = (
n
ir

)(( ir�ir /2)
r

)
as the other

statement follows by symmetry. Let us consider the canonical partition F1 ∪F2 of a P3-free
family F . Note that a copy of

∧
r contains exactly one element F from F2 and r elements

F1, F2, . . . , Fr ∈ F1 with Fi � F for all 1, 2, . . . , r . Let us consider a set F ∈ F2. The
sets of F1 contained in F form an antichain, thus by Theorem 1.1, their number is at most
( |F |
�|F |/2

)
. Therefore, the number of copies of

∧
r that contain F is at most

(( |F |
�|F |/2)

r

)
and we

obtain

c(
∧

r
,F) ≤

∑

F∈F2

(( |F |
�|F |/2

)

r

)
≤ max

A∈Sn,1

∑

A∈A

(( |A|
�|A|/2

)

r

)
.

Therefore, if we set w(i) := (( i
�i/2)
r

)
, then we can apply Corollary 3.2 with l = k = 1 to

obtain c(
∧

r ,F) ≤ max0≤i≤n

(
n
i

)
w(i). On the other hand, the families F(i) = ([n]

i

)∪( [n]
�i/2

)

are P3-free and c(
∧

r ,F(i)) = (
n
i

)
w(i) showing La(n, P3,

∧
r ) = max0≤i≤n

(
n
i

)
w(i). To

obtain the value of ir we need to maximize f (i) := (
n
i

)
w(i). We have

f (i)

f (i + 1)
= i + 1

n − i
·

∏r−1
j=0

((
i

�i/2
) − j

)

∏r−1
j=0

((
i+1

�(i+1)/2
) − j

) = (1 + o(1))
i + 1

2r (n − i)

when i tends to infinity with n. For constant values of i, the ratio f (i)/f (i + 1) is easily
seen to be smaller than 1 (if n is big enough), therefore the maximum of f (i) is attained at
ir = (1 + o(1)) 2r

2r+1n as stated.
To prove (b), we consider the canonical partition of a P4-free family F ⊆ 2[n]. Any

copy of Dr in F must contain one set from F1,F3 each and r sets from F2. For any
F1 ∈ F1, F3 ∈ F3 with F1 ⊂ F3, the number of copies of Dr containing F1 and F3 is

(
m
r

)
,

where m = |MF1,F3 | with MF1,F3 = {F ∈ F2 : F1 ⊂ F ⊂ F3}. As M′
F1,F3

= {M \ F1 :
M ∈ MF1,F3} is an antichain in F3 \F1, we have m ≤ ( |F3|−|F1|�(|F3|−|F1|)/2

)
. Therefore, we obtain

c(Dr,F) ≤
∑

F1∈F1,F3∈F3,F1⊂F3

(( |F3|−|F1|�(|F3|−|F1|)/2
)

r

)
≤ max

0≤i<j≤n

(
n

j

)(
j

i

)((
j−i

�(j−i)/2
)

r

)
,

where to obtain the last inequality we applied Corollary 3.2 with l = k = 2 and w(i, j) =
(( j−i

�(j−i)/2)
r

)
. Observe that if ir and jr are the values for which this maximum is taken, then

for the family F = ([n]
ir

) ∪ ([n]
jr

) ∪ ( [n]
�(ir+jr )/2

)
we have c(Dr,F) = (

n
jr

)(
jr

ir

)(( jr −ir�(jr −ir )/2)
r

)
.

To obtain the value of ir and jr let us fix x = j − i first. Note that
(
n
j

)(
j
i

) = (
n
x

)(
n−x

i

)
, so

we have (
n

i+1+x

)(
i+1+x

i+1

)(( x
�x/2)

r

)

(
n

i+x

)(
i+x

i

)(( x
�x/2)

r

) =
(
n
x

)(
n−x
i+1

)(( x
�x/2)

r

)

(
n
x

)(
n−x

i

)(( x
�x/2)

r

) = n − x − i

i + 1
,

which implies that ir + jr = n or ir + jr = n − 1 holds.
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Let g(i) = (
n
i

)(
n−i
i

)(( n−i
�(n−i)/2)

r

)
, then

g(i + 1)

g(i)
=

(
n

i+1

)

(
n
i

) ·
(
n−i−1
i+1

)

(
n−i
i

) ·
(( n−i−1

�(n−i−1)/2)
r

)

(( n−i
�(n−i)/2)

r

) = n − i

i + 1
· (n − 2i − 1)(n − 2i)

(i + 1)(n − i)
· (1 + o(1))

r−1∏

j=0

2n−i−1√
n−i−1

− j

2n−i√
n−i

− j

= (1 + o(1))
(n − 2i − 1)(n − 2i)

(i + 1)22r
,

where the second equality uses Stirling’s formula and its consequence
(

N
N/2

) = (α +
o(1)) 2N√

N
for some constant α. This implies that the maximum of g(i) is attained at

i = (1 + o(1)) n

2r/2+2
.

To prove (c), we again consider the canonical partition of a P3-free family F ⊆ 2[n]. A
copy of N in F must contain two sets from F1 and two from F2. Let a, b, c, d be the four
elements of N with a ≤ c and b ≤ c, d . For every copy of N in F there is a bijection φ from
N to that copy. Then we count the copies of N in F according to the images φ(b), φ(c).
Clearly, they form a 2-chain in F , the possible images of d form an antichain among those
sets of F2 that contain φ(b) and the possible images of a form an antichain among those
sets of F1 that are contained by φ(c). Therefore, we obtain

c(N,F) ≤
∑

F1,F2∈F,F1⊂F2

(
n − |F1|
� n−|F1|

2 
)( |F2|

� |F2|
2 

)
≤ max

0≤i<j≤n

(
n

j

)(
j

i

)(
n − i

� n−i
2 

)(
j

� j
2 

)
,

where to obtain the last inequality we applied Corollary 3.2 with l = k = 2 and w(i, j) =
( n−i

� n−i
2 

)( j

� j
2 

)
. We have

(
n
j

)(
j
i

) = (
n

j−i

)(
n−j+i

i

)
, thus we get

c(N,F) ≤ max
0≤i<j≤n

(
n

j − i

)(
n − j + i

i

)(
n − i

� n−i
2 

)(
j

� j
2 

)
= max

0≤i<j≤n
o(2n+n−j+i+n−i+j ) = o(23n).

Note that j = 
3n/4� and i = 
n/4� show the exponent cannot be improved with this
method.

To obtain the lower bound, consider the P3-free families Fi,j = ([n]
i

) ∪ ([n]
j

)
with 0 ≤

i < j ≤ n. Observe that we have g(i, j) := 1
4

(
n
j

)(
j
i

)2(n−i
j−i

) ≤ c(N,Fi,j ) (the 1/4-factor is
due to the fact that copies of B are counted 4 times as copies of N ). To maximize g(i, j)

we first fix j − i and consider

g(i + 1, j + 1)

g(i, j)
= (n − j)2(j + 1)

(i + 1)2(n − i)
.

It is easy to see that this fraction becomes smaller than 1 when i is n − j + 1. Thus the
maximum of g(i, j) is asymptotically achieved when i = n − j .

Similarly, we have

g(n − j − 1, j + 1)

g(n − j, j)
= (j + 1)2(n − j)4

(2j − n + 2)3(2j − n + 1)3
.

Therefore, if we write j = (c + o(1))n, we obtain that g is maximized when c2(1−c)4

(2c−1)6 = 1.
After taking the square root of the expression on the left hand side, this is equivalent to
that 0 = 7c3 − 10c2 + 5c − 1 holds. The solution of this equation is c0 = 0.69922...

As g(n − j, j) = 1
4

(
n
j

)(
j

n−j

)3 = �(2h(j/n)+3 j
n
h((n−j)/j)/n2), the lower bound follows by

plugging in j = 0.69922n.
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4 The⊗r operation and copies of complete multi-level posets

In this section we prove results concerning the binary operation Q1 ⊗r Q2. Let us recall the
definition of the two new types of profile vectors from the introduction.

For a family F ⊆ 2[n] of sets, let βr(F) = (βr
0 , βr

1 , . . . , βr
n−1) denote the r-

intersection profile vector of F , where βr
i = βr

i (F) = |{{F1, F2, . . . , Fr } : Fj ∈
F , these are r different sets and | ⋂r

j=1 Fj | = i}|.
For a family F ⊆ 2[n] of sets, let γ r(F) = (γ r

0,1, γ
r
0,2, . . . , γ

r
0,n, γ

r
1,2, . . . , γ

r
n−1,n) denote

the r-intersection-union profile vector of F , where γ r
i,j = γ r

i,j (F) = |{{F1, . . . , Fr } :
F1, . . . , Fr ∈ F , these are r different sets, |F1 ∩ · · · ∩ Fr | = i, |F1 ∪ · · · ∪ Fr | = j}|. Note
that if A ⊆ 2[n] is an antichain, then γ r

i,j (A) > 0 implies j − i ≥ 2, therefore the number

of non-zero coordinates in γ r(A) is at most
(
n+1

2

) − n = (
n
2

) ≤ n2.
Note that Theorem 1.8 is about special coordinates, so the next two theorems imply that

result.

Theorem 4.1 (a) If F ⊆ 2[n] is an antichain and j − i is even, then γ 2
i,j (F) ≤

γ 2
i,j (

( [n]
(i+j)/2

)
) = 1

2

(
n
j

)(
j
i

)(
j−i

(j−i)/2

)
. If j − i is odd, then γ 2

i,j (F) ≤ (
n
j

)(
j
i

)(
j−i−1

(�j−i)/2−1

)
.

(b) If F is an antichain and r ≥ 3, then γ r
i,j (F) ≤ n2rγ r

i,j (
( [n]
�(i+j)/2

)
).

During the proof we will use several times that the number of pairs A ⊂ B ⊂ [n] with
|A| = a, |B| = b is

(
n
b

)(
b
a

) = (
n

b−a

)(
n−(b−a)

a

)
. The first calculation is obvious, for the second

calculation we pick first B \ A from [n] and then A from [n] \ (B \ A).

Proof To see (a), we first consider the special case i = 0, j = n. Observe that γ 2
0,n(F)

is the number of complement pairs in F . In an antichain, by Theorem 1.1, this is at most
|F |/2 ≤ (

n
�n/2

)
/2. If n is even, then this is achieved when F = ( [n]

n/2

)
, while the case of

odd n was solved by Bollobás [2], who showed that the number of such pairs is at most(
n−1

�n/2−1

)
, and this is sharp as shown by {F ∈ ( [n]

�n/2
) : 1 ∈ F } ∪ {F ∈ ( [n]


n/2�
) : 1 /∈ F }.

To see the general statement, observe that for a pair I ⊂ J , writing FI,J = {F ∈ F :
I ⊆ F ⊆ J }, we have γ 2

i,j (F) = ∑
I∈([n]

i ),J∈([n]
j ) γ 2

0,j−i (FI,J ). Therefore, if j − i is even,

we obtain γ 2
i,j (F) ≤ (

n
j

)(
j
i

)
γ 2

0,j−i (
( [j−i]
(j−i)/2

)
) = γ 2

i,j (
( [n]
(j+i)/2

)
), while if j − i is odd, we

obtain γ 2
i,j (F) ≤ (

n
j

)(
j
i

)(
j−i−1

(�j−i)/2−1

)
.

To show (b), it is enough to prove the statement for i = 0, j = n. Indeed, γ r
i,j (F) =

∑
I,J γ r

0,j−i (FI,J ) ≤ n2r
(
n
j

)(
j
i

)
γ r

0,j−i (
( [j−i]
�(j−i)/2

) = n2rγ r
i,j

( [n]
�(j+i)/2

)
.

We proceed by induction on r . We postpone the proof of the base case r = 3, as it is
similar to, but more involved than the proof of the induction step. Assume the statement
holds for r − 1 and any i < j . Let us consider r − 1 sets F1, . . . , Fr−1 of F and examine
which sets can be added to them as Fr , to get empty intersection and [n] as the union. Let
F ′ be the family of those sets. Let A = ∩r−1

l=1 Fl and B = ∪r−1
l=1 Fl with a = |A| and b = |B|.

Then members of F ′ contain the complement of B and do not intersect A, and F ′ is an
antichain. If we remove B = [n] \ B from them, the resulting family is an antichain on an
underlying set of size b − a. Thus F ′ has cardinality at most w(a, b) := (

b−a
�(b−a)/2

)
. Note

that we count every r-tuple F1, . . . , Fr exactly r times. It implies

rγ r
0,n(F) ≤

∑

a<b

γ r−1
a,b (F)w(a, b) = γ r−1(F) · w ≤ n2 max

a<b
γ r−1
a,b (F)w(a, b).
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By induction this is at most n2n2r−2 maxa<b γ r−1
a,b (

( [n]
�(a+b)/2

)
)w(a, b). Let

f (a, b) = γ r−1
a,b

(( [n]
�(a + b)/2

))
w(a, b)

=
(

n

b − a

)(
n − (b − a)

a

)
γ r−1

0,b−a

(( [b − a]
�(a + b)/2 − a

))(
b − a

�(b − a)/2
)

.

If we fix b − a and consider f (a,b)
f (a+1,b+1)

= a+1
n−(b−a)−a

, we can see that the maximum is
taken when b + a = n or b + a = n − 1, depending on the parity of b − a and n.

Let a∗, b∗ be the values for which the above maximum is taken. Note that for any a∗ <

p < b∗ we have rγ r
0,n(

([n]
p

)
) ≥ (

n
b∗

)(
b∗
a∗

)
γ r−1

0,b∗−a∗(
([b∗−a∗]

p−a∗
)
)
(

b∗−a∗
p−n+b∗

)
, by counting only those

r-tuples where the first r − 1 sets have intersection of size a∗ and union of size b∗. (This
way we count those r-tuples at most r times). This is exactly f (a∗, b∗) if p = �n/2 =
�(a∗ + b∗)/2, so we obtained rγ r

0,n(F) ≤ n2r rγ r
0,n(

( [n]
�n/2

)
) as required.

For r = 3, we similarly consider two members of F and examine which sets can be
added to them to get empty intersection and [n] as the union. This leads to

3γ 3
0,n(F) ≤ n2 max

a<b
γ 2
a,b(F)w(a, b).

Note that if the maximum is taken at a′ and b′ with b′ − a′ even, then part (a) of the
theorem gives γ 2

a′,b′(F) ≤ γ 2
a′,b′(

( [n]
(b′+a′)/2

)
), so 3γ 3

0,n(F) ≤ n2γ 2
a′,b′(

( [n]
(b′+a′)/2

)
)w(a′, b′).

This essentially lets us use r = 2 as the base case of induction, and finish the proof of this
case similarly to the induction step above.

Let us choose a∗, b∗ that maximizes this upper bound with b∗ − a∗ =
b′ − a′. Similarly to the computation about f (a, b) , we have a∗ + b∗ =
n or n − 1 depending on the parity of n. Then we obtain 3γ 3

0,n(F) ≤
n2γ 2

a∗,b∗(
( [n]
(b∗+a∗)/2

)
)w(a∗, b∗) ≤ n2

(
n
b∗

)(
b∗
a∗

)
γ 2

0,b∗−a∗(
( [b∗−a∗]
(b∗+a∗)/2

)
)w(a∗, b∗). The lower

bound on 3γ 3
0,n(

( [n]
�n/2

)
) is

(
n
b∗

)(
b∗
a∗

)
γ 2

0,b∗−a∗(
([b∗−a∗]

p−a∗
)
)
(
b∗−a∗
p−a∗

)
, as in the inductive step.

However, if b′ − a′ is odd, then γ 2
a′,b′(

( [n]
�(a′+b′)/2

)
) = 0. But we know by part (a)

γ 2
a′,b′(F)w(a′, b′) ≤

(
b′ − a′ − 1

(b′ − a′ − 1)/2 − 1

)(
n

b′

)(
b′

a′

)
w(a′, b′).

Similarly to the previous cases, if b′−a′ is fixed, then the maximum of the right hand side is
taken for some a∗, b∗ with b∗−a∗ = b′−a′ and a∗+b∗ = n if n is odd, and a∗+b∗ = n−1
or a∗ + b∗ = n + 1 if n is even. Thus we can assume �n/2 = (a∗ + b∗ − 1)/2. On the
other hand, since b∗ − a∗ is odd, we have

3γ 3
0,n

(( [n]
(a∗ + b∗ − 1)/2

))
≥

(
n

b∗ − 1

)(
b∗ − 1

a∗

)
1

2

(
b∗ − a∗ − 1

(b∗ − a∗ − 1)/2

)(
b∗ − 1 − a∗

a∗+b∗−1
2 − n + b∗ − 1

)
,

by counting only those triples where two of the sets have intersection of size a∗ and union of
size b∗ −1. We can pick first the (b∗ −1)-set B and the a∗-set A in

(
n

b∗−1

)(
b∗−1
a∗

)
ways. Then

among {G ∈ ( [n]
�(a∗+b∗)/2

) : A ⊂ G ⊂ B} we can pick a pair G1,G2 with G1 ∩ G2 = A,

G1 ∪ G2 = B in
(

b∗−a∗−1
(b∗−a∗−1)/2

)
/2 ways and then the third set contains the complement of B

and does not intersect A. Using that
( b∗−a∗−1

a∗+b∗−1
2 −n+b∗−1

) ≥ (
b∗−a∗−1

(b∗−a∗−1)/2−1

)
, this implies

3γ 3
0,n(F) ≤ 3n2γ 3

0,n

(( [n]
(a∗ + b∗ − 1)/2

))
n − b∗ + 1

(b∗ − a∗ − 1)/2
≤ 3n3γ 3

0,n

(( [n]
�n/2

))
,

as b∗ ≥ n/2.
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Theorem 4.2 (a) For any antichain F ⊆ 2[n] we have β2
i (F) ≤ β2

i (
( [n]
j (i)

)
), where j (i) =

i + �(n − i)/3 if n − i ≡ 0, 1 mod 3 and j (i) = i + 
(n − i)/3� if n − i ≡ 2 mod 3.
(b) For every r ≥ 3 and i ≤ n there exists j (r, i, n) such that βr

i (F) ≤ n2r+1βr
i (

( [n]
j (r,i,n)

)
)

holds for any antichain F ⊆ 2[n].

Proof First we prove (a) for the special case i = 0. Let F ⊆ 2[n] be an antichain, and let
F = {F : F ∈ F}, where F = [n] \ F . As F is an antichain, so is F , and thus F ∪ F is
P3-free. Note that for every pair F1, F2 ∈ F with |F1 ∩ F2| = 0 and |F1 ∪ F2| < [n], we
have two 2-chains F1 � F2 and F2 � F1. Also, every 2-chain in F ∪ F comes from a pair
F1, F2 ∈ F with |F1 ∩ F2| = 0 and F1 ∪ F2 �= [n].

Let us take the canonical partition of F ∪ F into F1 ∪ F2 and introduce the weight
function w(F) = 1

2

( |F |

|F |/2�

)
if F ∈ F2, F /∈ F2 and w(F) = 1/2 if F ∈ F2, F ∈ F2.

By the above, the number of disjoint pairs in F is at most
∑

F∈F2
w(F). Observe that

this weight function does not depend only on the size of F . However, the modified weight
function w′(F ) := 1

2

( |F |

|F |/2�

)
depends only on the size of F and obviously w(F) ≤ w′(F )

holds for all F ’s. Thus we can apply a theorem of Katona (mentioned in the introduction,
Theorem 3 in [19]) for w′ to obtain that

∑
F∈F2

w′(F ) is maximized when F2 = ( [n]

2n/3�

)
.

As F2 does not contain complement pairs, this family also maximizes w.
To see the general statement of (a), we can apply the special case to any I ⊆ [n] and

FI = {F \ I : I ⊆ F ∈ F}. We obtain

β2
i (F) =

∑

I∈([n]
i )

β2
0 (FI ) ≤

(
n

i

)
β2

0

(( [n − i]
j (i) − i

))
= β2

i

(( [n]
j (i)

))
.

To see (b), let F ⊆ 2[n] be an antichain. The next chain of inequalities finishes the proof.
The penultimate inequality follows from Theorem 4.1.

βr
i (F) =

n∑

j=i+1

γ r
i,j (F) ≤ n max

j :i+1≤j≤n
γ r
i,j (F)

≤ n2r+1 max
j :i+1≤j≤n

γ r
i,j

(( [n]
�(i + j)/2

))
≤ n2r+1βr

i

(( [n]
j (r, i, n)

))
,

where j (r, i, n) = �(i+j∗)/2 with j∗ being the value of j that maximizes γ r
i,j (

( [n]
�(i+j)/2

)
).

Proof of Theorem 1.9 Let Q1,Q2 be non-empty posets and let us consider the canonical
partition of a Pl(Q1⊗rQ2)+1-free family F ⊆ 2[n]. Then in any copy of Q1 ⊗r Q2 in F ,
if F1, . . . , Fr correspond to the r middle elements forming an antichain, we must have
F1, . . . , Fr ∈ Fl(Q1)+1. Also, if a copy of Q1 ⊗r Q2 contains F1, . . . , Fr , then the sets
corresponding to the Q1 part of Q1 ⊗r Q2 must be contained in

⋂r
l=1 Fl , while the sets

corresponding to the Q2 part of Q1 ⊗r Q2 must contain
⋃r

l=1 Fl . Therefore the number of
copies of Q1 ⊗r Q2 in F that contain F1, . . . , Fr is at most La(| ⋂r

l=1 Fl |, Pl(Q1)+1,Q1) ·
La(n−| ⋃r

i=1 Fl |, Pl(Q2)+1,Q2). We obtained that the total number of copies of Q1 ⊗r Q2
in F is at most

∑

F1,...,Fr∈Fl(Q1)+1

La(|
r⋂

l=1

Fl |, Pl(Q1)+1,Q1) · La(n − |
r⋃

l=1

Fl |, Pl(Q2)+1,Q2). (1)

If r ≥ 2, then grouping the summands in (1) according to the pair (| ⋂r
l=1 Fl |, | ⋃r

l=1 Fl |)
we obtain

La(n, Pl(Q1⊗rQ2)+1,Q1 ⊗r Q2) ≤ γ r(Fl(Q1)+1) · w,
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where the (i, j)th coordinate of w is La(i, Pl(Q1),Q1) · La(n − j, Pl(Q2)+1,Q2). Clearly,
we have

γ r (Fl(Q1)+1) · w ≤ n2 max
i,j

γ r
i,j (Fl(Q1)+1)w(i, j) ≤ n2r+2 max

i,j
γ r
i,j

(( [n]
�(i + j)/2

))
w(i, j),

where the last inequality follows from Theorem 4.1. We can calculate γ r
i,j (

( [n]
�(i+j)/2

)
) by

picking the union of size j and the intersection of size i first, which finishes the proof of
the upper bound of part (a).

To see the furthermore part, suppose that the above maximum is obtained when i takes
the value i∗ and j takes the value j∗. We know that there exist two families F1,i∗ ⊆ 2[i∗]
and F2,n−j∗ ⊆ 2[n−j∗], both unions of full levels, integers k1, k2 and constants C1, C2
such that C1(i

∗)k1c(Q1,F1,i∗) ≥ La(i∗, Pl(Q1)+1,Q1) and C2(j
∗)k2c(Q2,F2,n−j∗) ≥

La(n − j∗, Pl(Q2)+1, Q2) hold. Therefore, by the upper bound already proven, we know
that La(n, Pl(Q1⊗rQ2)+1,Q1 ⊗r Q2) is at most

n2r+2C1(i
∗)k1C2(j

∗)k2γ r
i∗j∗ (

(
n

�(i∗ + j∗)/2
)

)La(i∗, Pl(Q1)+1,Q1)La(n − i∗, Pl(Q2)+1,Q2).

If F1,i∗ consists of levels of set sizes h1, . . . , hl(Q1) and F2,n−i∗ consists of levels of set
sizes h′

1, . . . , h
′
l(Q2)

, then for the family

F :=
([n]

h1

)
∪ . . .

( [n]
hl(Q1)

)
∪

( [n]
�(i∗ + j∗)/2

)
∪

( [n]
j∗ + h′

1

)
∪ · · · ∪

( [n]
j∗ + h′

l(Q2)

)
,

we have c(Q1 ⊗ Q2,F) ≥ γ r
i∗j∗(

(
n

�(i∗+j∗)/2
)
)La(i∗, Pl(Q1)+1,Q1)La(n −

i∗, Pl(Q2)+1, Q2). Therefore, with k = 2r + 2 + k1 + k2 the family F shows that
Conjecture 1.5 almost holds for the pair Pl(Q1⊗rQ2)+1,Q1 ⊗r Q2.

If r = 1, then ∪F1 = ∩F1 = F1, so (1) becomes
∑

F∈Fl(Q1)+1

La(|F |, Pl(Q1)+1,Q1) · La(n − |F |, Pl(Q2)+1,Q2).

We can apply Corollary 3.2 with l = k = 1 and w(i) = La(i, Pl(Q1)+1, Q1) ·
La(i, Pl(Q2)+1, Q2) to obtain

La(n,Pl(Q1⊗Q2)+1,Q1⊗Q2) ≤ max
0≤i≤n

{(
n

i

)
La(i, Pl(Q1)+1, Q1)La(n − i, Pl(Q2)+1,Q2)

}

as required.
As the proofs are almost identical, we only show the “strongly holds” case of the fur-

thermore part of (b). Suppose that the above maximum is obtained when i takes the value
i∗. We know that there exist two families F1,i∗ ⊆ 2[i∗] and F2,n−i∗ ⊆ 2[n−i∗], both
unions of full levels, such that c(Q1,F1,i∗) = La(i∗, Pl(Q1)+1, Q1) and c(Q2,F2,n−i∗) =
La(n − i∗, Pl(Q2)+1,Q2) hold. If F1,i∗ consists of levels of set sizes j1, . . . , jl(Q1) and
F2,n−i∗ consists of levels of set sizes j ′

1, . . . , j
′
l(Q′

2)
, then for the family

F :=
([n]

j1

)
∪ . . .

( [n]
jl(Q1)

)
∪

([n]
i∗

)
∪

( [n]
i∗ + j ′

1

)
∪ · · · ∪

( [n]
i∗ + j ′

l(Q2)

)

we have c(Q1 ⊗ Q2,F) = (
n
i∗
)
La(i∗, Pl(Q1)+1,Q1)La(n − i∗, Pl(Q2)+1,Q2).

Proof of Theorem 1.10 The proof goes very similarly to the proof of Theorem 1.9. Let us
consider the canonical partition of a Pl(Q⊗r)+1-free family F ⊆ 2[n]. Then in any copy
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of Q ⊗ r in F , if F1, . . . , Fr correspond to the r top elements forming an antichain, we
must have F1, . . . , Fr ∈ Fl(Q)+1. Also, if a copy of Q ⊗ r contains F1, . . . , Fr , then the
sets corresponding to the other elements of the poset must be contained in

⋂r
l=1 Fl . Let

j = | ⋂r
l=1 Fl |. Then the number of copies of Q⊗ r in F that contain F1, . . . , Fr is at most

La(j, Pl(Q)+1,Q). If r ≥ 2, we obtain

c(Q ⊕ r,F) ≤ βr(Fl(Q)+1) · w,

where the j th coordinate of w is La(j, Pl(Q)+1,Q). Clearly, we have

βr(Fl(Q)+1) · w ≤ n max
i

βr
i (Fl(Q)+1)w(i) ≤ n2r+2 max

i
βr

i (

( [n]
j (r, i, n)

)
)w(i),

where the last inequality follows from Theorem 4.2. We have βr
i (

( [n]
j (r,i,n)

)
) =

(
n
i

)
βr

0(
( [n−i]
j (r,i,n)−i

)
) by picking the intersection of size i first.

To see the furthermore part of (a), let i∗ be the value of i for which the above maxi-
mum is attained. Assume Conjecture 1.5 almost holds for the pair Pl(Q)+1,Q. Then there

exists a family Fi∗ = ([i∗]
h1

) ∪ · · · ∪ ( [i∗]
hl(Q)

)
with La(i∗, Pl(Q)+1,Q) ≤ Ci∗k

c(Q,Fi∗) ≤
Cnkc(Q,Fi∗) for some constants C and k. Then for the family F∗ = ([n]

h1

) ∪ · · · ∪ ( [n]
hl(Q)

) ∪
( [n]
j (r,i∗,n)

)
, we have

c(Q ⊕ r,F∗) ≥ βr
i∗

(( [n]
j (r, i∗, n)

))
c(Q,Fi∗ ) ≥

(
n

i∗

)
βr

0

(( [n − i∗]
j (r, i∗, n) − i∗

))
1

Cnk
La(n, i∗, Q),

therefore F∗ with C′ = C and k′ = 2r + 2 + k shows that Conjecture 1.5 almost holds for
the pair Pl(Q)+2,Q ⊕ r .

If r = 1, then | ∩ F1| = |F1|, so applying Corollary 3.2 with l = k = 1 we obtain

c(Q ⊕ 1,F) ≤
∑

F∈Fl(Q)+1

La(|F |, Pl(Q)+1,Q) ≤ max
0≤i≤n

{(
n

i

)
La(i, Pl(Q)+1, Q)

}
.

The proof of the furthermore part of (b) is analogous to the previous ones and is left to the
reader.

Proof of Corollary 1.11 We proceed by induction on the number of levels. The base case is
guaranteed by Sperner’s Theorem 1.1. The inductive step follows by applying Theorem 1.10
as Kr1,...,rl = Kr1,...,rl−1 ⊕ rl .

Proof of Corollary 1.12 We proceed by induction on the number of levels. The base case
is guaranteed by Sperner’s Theorem 1.1. Suppose the statement has been proved for all
complete multipartite posets satisfying the condition with height smaller than l and consider
Kr1,r2,...,rl . We know that there exists an i with 1 ≤ i ≤ l such that ri = 1. If 1 < i < l,
then the inductive step will follow by applying the furthermore part of Theorem 1.9 to
Q1 = Kr1,...,ri−1 and Q2 = Kri+1,...,rl . If i = l, then the inductive step will follow by
applying the furthermore part of Theorem 1.10 to Q = Kr1,...,rl−1 and r = 1. The case i = 1
follows from c(Kr1,...,rl ,F) = c(Krl,...,r1 ,F), where F = {[n] \ F : F ∈ F}.

Proof of Theorem 1.13 We only give the sketch of the proof as it is very similar to previous
ones. Consider a Pl+3-free family F ⊆ 2[n] and its canonical partition. If l = 1, then
we count the number of copies of Kr,1,s according to the set F ∈ F2 that plays the role
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Fig. 3 The Hasse diagrams of
the posets B+ and B++

of the middle element of Kr,1,s . The number of copies that contain F is not more than
(( |F |

�|F |/2)
r

)(( n−|F |
�(n−|F |)/2)

s

)
. Applying Corollary 3.2 with l = k = 1 and w(i) = (( i

�i/2)
r

)(( n−i
�(n−i)/2)

s

)

yields c(Kr,1,s ,F) ≤ maxi

(
n
i

)(( i
�i/2)
r

)(( n−i
�(n−i)/2)

s

)
. Let i∗ be the value of i for which this

maximum is attained. Then the family
( [n]
�i∗/2

) ∪ ([n]
i∗

) ∪ ( [n]
�(n+i∗)/2

)
contains exactly that

many copies of Kr,1,s .
If l ≥ 2, then we count the number of copies of Kr,1,1,...,1,s according to the sets F2 ∈ F2

and Fl+1 ∈ Fl+1 playing the role of the elements on the second and (l + 1)st level of
Kr,1,1,...,1,s . For a fixed pair F2 ∈ F2 and Fl+1 ∈ Fl+1 with F2 ⊂ Fl+1, the number of

copies of Kr,1,1,...,1,s containing F2 and Fl+1 is at most
(( |F2 |

�|F2 |/2)
r

)(( n−|Fl+1 |
�(n−|Fl+1 |)/2)

s

)
La(|Fl+1|−

|F2|, Pl−1, Pl−2). The value of La(|Fl+1| − |F2|, Pl−1, Pl−2) is given by Theorem 1.3. So

we can apply Corollary 3.2 with l = k = 2 and w(i, j) = (( i
�i/2)
r

)(( n−j
�(n−j)/2)

s

)
La(j −

i, Pl−1, Pl−2) to obtain c(Kr,1,1...,1,s ,F) ≤ maxi,j

(
n
j

)(
j
i

)(( i
�i/2)
r

)(( n−j
�(n−j)/2)

s

)
La(j −

i, Pl−1, Pl−2). Let i∗ and j∗ be the values of i and j for which this maximum is attained.
Then the family consisting of

( [n]
�i∗/2

)
,
([n]

i∗
)
,
([n]
j∗

)
,
( [n]
�(n+j∗)/2

)
and the l − 2 full levels

determined by Theorem 1.3 contains exactly that many copies of Kr,1,1,...,1,s .

There are several other complete multi-partite posets for which one can determine the
levels that form an almost optimal family. For example, using Theorem 4.2 (a), one can

prove that La(n, P3,Kp,2) ≤ nc(Kp,2,F) where F = ([n]
i

)∪([n]
j

)
with i = ( 2p−1

3+2p +o(1))n

and j = ( 1+2p

3+2p +o(1))n. In particular La(n, P3, Kp,2) = 2(cp+o(1))n, where cp = 2+p·2p

3+2p +
h( 2p

3+2p ) + 3
3+2p h(2/3). Recall that h denotes the binary entropy function.

Let us finish this section by some remarks about K2,2 = B, as there exist several
extremal results concerning B. Let us consider the following two posets that contain B:
B+ and B++ have five elements a, b, c, d, e such that a <B+ c, e and b <B+ c, d and
also d <B+ e, while a, b <B++ c, d and d <B++ e (Fig. 3). By results of DeBonis,
Katona, and Swanepoel [5] and Methuku and Tompkins [23] we know that La(n, B, P1) =
La(n, B+, P1) = (

n
�n/2

) + (
n

�n/2+1

)
, and as B++ contains a copy of B+ we have

La(n, B+, P1) ≤ La(n, B++, P1). It is natural to ask how many copies of B can a B+-free
or B++-free family in 2[n] contain, especially that the largest B+-free family does not con-
tain any. Obviously, a P3-free poset is both B+-free and B++-free, therefore we obtain the
inequality La(n, P3, B) ≤ La(n, B+, B) ≤ La(n, B++, B). The next proposition shows
that these functions are asymptotically equal.

Proposition 4.3

La(n, P3, B) ≤ La(n, B+, B) ≤ La(n, B++, B) = (1 + o(1))La(n, P3, B).
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Note that La(n, P3, B) = 2(c2+o(1))n, where c2 = 10/7 + h(4/7) + 3h(2/3)/7 by the
remarks made after the proof of Theorem 1.13.

Proof The first two inequalities are true by definition. Let F ⊆ 2[n] be B++-free, and
consider its canonical partition (note that P5 contains a copy of B++, thus F is P5-free).

Consider first the family S ⊆ F2 of sets that appear in 4-chains in F (they must be the
second smallest in those chains). Note that if S ∈ S with F1 � S � F3 � F4, then S is not
comparable to any other set F of F as F,F1, S, F3, F4 would form a copy of B++ both if
S � F or F � S. Therefore every set S ∈ S is contained in at most one copy of B in F . As
S ⊆ F2 is an antichain, we obtain c(B,F) − c(B,F \ S) ≤ (

n
�n/2

)
.

Clearly, F ′ = F \ S is P4-free. Let us consider its canonical partition and denote the
resulting antichains by F ′

1,F ′
2,F ′

3. Let S ′ ⊆ F ′
2 be the family of middle sets of all 3-chains

in F ′. We know that for any S ∈ S ′ there exist F ′
1, F

′
3 ∈ F ′ with F ′

1 � S � F ′
3. Also, there

cannot exist F ′′
1 , F ′′

3 with F ′′
1 � S � F ′′

3 as then F ′
1, F

′′
1 , S, F ′

3, F
′′
3 would form a copy of

B++. So either there is a unique set F ′ that contains S and potentially several sets that are
contained in S or there exists a unique F ′ contained in S and several sets containing S. In the
former case, if S is contained in a copy of B, it can only be one of the top sets. Furthermore,
if a copy of B contains S, then it contains F ′ as otherwise this copy could be extended by
F ′ to form a B++. As the sets contained in S form an antichain (they are a subfamily of

F ′
1), we obtain that the number of copies of B containing S is at most

(( |S|
� |S|

2 )
2

)
. Similarly,

if S contains exactly one other set of F ′, then the number of copies of B containing S is at

most
(( n−|S|

� n−|S|
2 )
2

)
. So introducing w(i) = max

{(( i
�i/2)

2

)
,
(( n−i

�(n−i)/2)}
2

)}
, we obtain that the total

number of copies containing at least one element of S ′ is at most
∑

S∈S ′ w(|S|). By the
special case k = l = 1 of Corollary 3.2 we obtain that this expression is maximized over all
antichains when S is a full level of 2[n].

The weight function w is symmetric, i.e. w(i) = w(n − i) holds for any i, therefore
it is enough to maximize

(
n
i

)
w(i) over n/2 ≤ i ≤ n. It is a routine exercise to see that

(
n
i

)(
(

i
�i/2

)

2

)
is maximized when i = (4/5 + o(1))n. Therefore the number of copies of B

that contain an element of S ′ is at most 2h(4/5)+8/5+o(1). We obtained that

c(B,F) ≤ c(B,F \ (S ∪ S ′)) +
(

n

�n/2
)

+ 2h(4/5)+8/5+o(1)

≤ La(n, P3, B) +
(

n

�n/2
)

+ 2h(4/5)+8/5+o(1)

= (1 + o(1))La(n, P3, B),

as h(4/5) + 8/5 = 2.3219... < c2.

5 Proof of Theorem 1.14

Let us recall that Theorem 1.14 states that there does not exist j with La(n, B, P2) =
�(La(n, Pj , P2)). By definition, we have La(n, P2, P2) = 0 and for any j ≥ 3 we have
La(n, P3, P2) ≤ La(n, Pj , P2). Therefore it is enough to prove that

La(n, B, P2) = o(La(n, P3, P2))
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holds. Let us remind the reader that by Theorem 1.3, we have La(n, P3, P2) =(
n


2n/3�
)(
2n/3�


n/3�
)
. So the following theorem on La(n, B, P2) will easily imply Theorem 1.14.

Theorem 5.1 n
2

(
n

�n/2
) ≤ La(n, {B,P3}, P2) ≤ La(n, B, P2) ≤ (2 + o(1))

(
n


n/2�
)(
n/2�


n/4�
)
.

Proof The lower bound follows from the construction consisting of the two middle levels
of 2[n]. To prove the upper bound, we will need several claims.

Claim 5.2 La(n, B, P2) = (1 + o(1))La(n, {B,P3}, P2).

Proof of Claim La(n, B, P2) ≥ La(n, {B,P3}, P2) is true by definition. Let F be a B-free
subfamily of 2[n] and M = {M ∈ F : ∃F1, F2 ∈ F F1 � M � F2} be the family
of middle sets. By the B-free property of F , M is an antichain. As seen in the proof of
Theorem 1.6 (c), for every M ∈ M there is exactly one F1 ∈ F and F2 ∈ F with F1 �

M � F2. Therefore by Theorem 1.1, we obtain c(P2,F) − c(P2,F \ M) ≤ 2
(

n
�n/2

)
. As

F \ M is {B,P3}-free and 2
(

n
�n/2

) = o(La(n, {B,P3}, P2)), the claim follows.

Claim 5.3 Let F ⊆ 2[n] be a P3-free family and consider its canonical partition. Then the
number of 2-chains in F that contain a set F with either |F | > �n/2 and F ∈ F1 or
|F | < 
n/2� and F ∈ F2 is at most

(
n

�n/2
)(
n/2�


n/4�
)
.

Proof of Claim Corollary 3.2 with k = 2 and w(F1, F2) = 1

( n
|F2 |)(

|F2 |
|F1 |)

gives

∑

F1⊂F2,
F1,F2∈F

1
(

n
|F2|

)(|F2||F1|
) ≤ 1.

Here a summand, in which |F1| > �n/2 or |F2| < 
n/2� holds, has value at least
1

( n
�n/2)(


n/2�

n/4�)

, thus the number of such summands is at most
(

n
�n/2

)(
n/2�

n/4�

)
.

Claim 5.4 Let F ⊆ 2[n] be a {P3, B}-free family and consider its canonical partition.
Suppose that |F | ≤ �n/2 holds for all F ∈ F1 and |F | ≥ 
n/2� holds for all F ∈ F2.
Then we have c(P2,F) ≤ (

n

n/2�

)(
n/2�

n/4�

)
.

Proof of Claim. Let us count the pairs ({F1, F2},M) where F1 ⊆ M ⊆ F2, F1, F2 ∈ F
and |M| = 
n/2� (note that M is not necessarily a member of F ). For every pair F1 ⊆ F2,
there is at least one such M by the assumption on the sizes of elements in F1 and F2, thus
there are at least c(P2,F) such pairs. On the other hand there are

(
n


n/2�
)

possible M’s. For
a fixed M there cannot exist four sets F1, F

′
1, F2, F

′
2 ∈ F with F1, F

′
1 ⊆ M ⊆ F2, F

′
2, as

they would form a copy of B. Thus the number of such ({F1, F2},M) for a fixed M is at
most the maximum possible size of an antichain in 2[
n/2�]. By Theorem 1.1, this is

(
n/2�

n/4�

)
.

This finishes the proof of the claim.

To finish the proof of Theorem 5.1, note that by Claim 5.2 it is enough to consider
{P3, B}-free families F . One can partition the 2-chains contained by such an F according
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to whether they contain a minimal element F with |F | > �n/2 or a maximal element F ′
with |F ′| < 
n/2�. The number of such 2-chains is at most

(
n


n/2�
)(
n/2�


n/4�
)

by Claim 5.3,

while the number of all other 2-chains in F is at most
(

n

n/2�

)(
n/2�

n/4�

)
. This can be seen by

applying Claim 5.4 to F after removing all small maximal and large minimal elements. This
finishes the proof of Theorem 5.1.

To obtain Theorem 1.14, one has to compare
(

n

n/2�

)(
n/2�

n/4�

)
and

(
n

�n/3
)(
2n/3�


n/3�
)
. The for-

mer is clearly not more than 23n/2 and the latter, by Stirling’s formula, is �( 1
n

2n(2/3+h(1/3))),
and 2/3 + h(1/3) = 1.58... holds.

6 Remarks

One can define an even more general parameter LaR(P,Q). For three posets, R, P and Q

we are interested in the maximum number of copies of Q in subposets R′ of R that do not
contain P . Analogously to what we had for set families, we say that R′ ⊆ R is a copy of
Q in R if there exists a bijection φ : Q → R′ such that whenever x ≤Q x′ holds, then so
does φ(x) ≤R′ φ(x′). Let c(Q,R) denote the number of copies of Q in R, and for any three
posets R,P and Q we define

LaR(P,Q) = max{c(Q,R′) : R′ ⊆ R, c(P,R′) = 0}.
For a poset R and families of posets P,Q let us define

LaR(P,Q) = max

⎧
⎨

⎩

∑

Q∈Q
c(Q,R′) : R′ ⊆ R,∀P ∈ P c(P,R′) = 0

⎫
⎬

⎭
.

Note that La(n, P, Q) = LaBn(P,Q), where Bn is the poset with elements of 2[n] ordered
by inclusion. Very recently Guo, Chang, Chen, and Li [17] introduced LaR(Q,P1), as a
general approach to forbidden subposet problems. That is, to solve the analogous question
in a less complicated structure like the cycle, chain or double chain, and then to apply an
averaging argument.

In many parts of Theorem 1.6, the construction yielding the lower bound that matches the
upper bound contained the empty set and/or the set [n]. One might wonder whether the La-
function remains the same if we do not allow these elements to be included. In other words,
if B−

n denotes the subposet of Bn with ∅ and [n] removed, then how LaB−
n
(∨, P2) relates

to La(n, ∨, P2), LaB−
n
(B, P3) to La(n, B, P3) and so on. The {∨,

∧}-free construction
( [n−1]
�(n−1)/2

)∪{F∪{n} : F ∈ ( [n−1]
�(n−1)/2

)} and the B-free construction
( [n−2]
�(n−2)/2

)∪{F∪{n−1} :
F ∈ ( [n−2]

�(n−2)/2
)} ∪ {F ∪ {n − 1, n} : F ∈ ( [n−2]

�(n−2)/2
)} show that

• (
n−1

�(n−1)/2
) ≤ LaB−

n
(
∨

, P2) = LaB−
n
(
∧

, P2) ≤ (
n

�n/2
)
,

• (
n−2

�(n−2)/2
) ≤ LaB−

n
(B, P3) ≤ (

n
�n/2

)
.

There is a longstanding (folklore) conjecture which would imply the existence of con-
structions in both cases that asymptotically match the upper bounds. Let Mk+1 ⊆ ( [n]

k+1

)

be a family of sets with the property that for every K ∈ ([n]
k

)
there exists at most one set

M ∈ Mk+1 with K � M . Obviously, for any such set we have |Mk+1| ≤ (
n
k

)
/(k + 1)

and Rk+1 := Mk+1 ∪ ([n]
k

)
is

∨
-free with c(P2,Rk+1) = (k + 1)|Mk+1|. It is conjectured

that there exists a family M�n/2+1 with the above property such that |M�n/2+1| = (1 −
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o(1))
( [n]
�n/2

)
/(�n/2 + 1) holds. Similarly, writing Mn−k+1 for {[n] \ M : M ∈ Mn−k+1},

the construction Tk := Mk+1 ∪ ([n]
k

) ∪ Mn−k+1 is B-free. The above conjecture would
yield c(P3,T�n/2) = (1 − o(1))

(
n

�n/2
)
.

In Section 4, we proved that, apart from a polynomial factor, Conjecture 1.5 holds for
chains of length l +1 and complete l-level posets, i.e. there exists a sequence Fn of families
that consists of full levels such that La(n, Pl+1, Kr1,r2,...,rl ) ≤ nkc(Fn,Kr1,r2,...,rl ) for some
constant k = k(Kr1,r2,...,rl ). To improve this result or to completely get rid of the polynomial
factor one would need to improve Theorem 1.8 or rather to determine the intersection profile
polytope of antichains.

Funding Information Open access funding provided by MTA Alfréd Rényi Institute of Mathematics
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