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Received: 12 January 2020 / Accepted: 1 July 2020 /
© The Author(s) 2020

Abstract
In an earlier paper (see Sali and Simonyi Eur. J. Combin. 20, 93–99, 1999) the first two
authors have shown that self-complementary graphs can always be oriented in such a way
that the union of the oriented version and its isomorphically oriented complement gives
a transitive tournament. We investigate the possibilities of generalizing this theorem to
decompositions of the complete graph into three or more isomorphic graphs. We find that a
complete characterization of when an orientation with similar properties is possible seems
elusive. Nevertheless, we give sufficient conditions that generalize the earlier theorem and
also imply that decompositions of odd vertex complete graphs to Hamiltonian cycles admit
such an orientation. These conditions are further generalized and some necessary conditions
are given as well.

Keywords Graph orientation · Decomposition to isomorphic graphs · Transitive
tournament

1 Introduction

Investigating the relationship between the Shannon capacity of graphs and the Sperner
capacity of their oriented versions the first two authors proved the following theorem.
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Theorem 1 [17], cf. also [10] Let G be a graph isomorphic to its complement F = G. Then
G and F can be oriented so that they remain isomorphic as digraphs while the tournament
formed by their union is the transitive tournament.

Moreover, the above can be done for any fixed isomorphism between G and F . That

is, for any such isomorphism f one can find oriented versions
−→
G and

−→
F of G and F ,

respectively, such that f provides an isomorphism between
−→
G and

−→
F and the union of

−→
G

and
−→
F is a transitive tournament.

The goal of the present paper is to investigate the possibilities of generalizing the above
theorem to three or more graphs, that is, to the situation when (the edge set of) the complete
graph is partitioned into three or more isomorphic graphs. As already observed by Görlich,
Kalinowski, Meszka, Pilśniak, and Woźniak [5] in this case it will not be true that the three
graphs can always be oriented in an isomorphic manner so that their union forms a transitive
tournament. Moreover, a complete characterization of when this is possible seems to be elu-
sive. In [5, 6] the authors determine all digraphs with at most four edges that can decompose
a transitive tournament. (For related results, see also [8] and [7]).

In our approach we fix the number of isomorphic graphs in the decompositions consi-
dered. We start with the case when this number is 3. We will give some sufficient conditions
when the isomorphic parts of a decomposition of Kn can be isomorphically oriented to get a
decomposition of the transitive tournament. This result gives a generalization of Theorem 1
(including the second paragraph in its statement).

As in the case of the result in [17], our investigations are originally motivated by the
desire to understand better the relationship between the Shannon capacity of a graph and
the Sperner capacity of its oriented versions. (Note that the term Shannon capacity is used
here in accordance to its definition via the so-called co-normal product used in [2] and
also in [17] as opposed to another possible treatment when this quantity is called the Shan-
non capacity of the complementary graph. For further details of this we refer the reader
to the introductory part of Chapter 11 of the book [2]). Sperner capacity is a generaliza-
tion of Shannon capacity to directed graphs and it is always bounded from above by the
Shannon capacity of the underlying undirected graph. It is an open problem whether the
Sperner capacity of some orientation always attains this upper bound. It is trivially so for
some graphs, for example, for perfect graphs. In [17] it is proven that this is also true
for vertex-transitive self-complementary graphs. If a graph G has the property that k iso-
morphic copies of it decompose the complete graph Kn, then k

√
n is an immediate lower

bound on its Shannon capacity. If such a graph has an orientation resulting in a decom-
position of the transitive tournament on n vertices into k isomorphic digraphs, then we
immediately obtain that k

√
n is also a lower bound on the Sperner capacity of this ori-

ented version. In the case of self-complementary graphs (that is, when k = 2) one also
knows via results in the celebrated paper of Lovász [12] that whenever the graph is also
vertex-transitive, then

√
n is the true value of its Shannon capacity. Although this kind

of knowledge is missing for k > 2, it would nevertheless be interesting to see if at
least the same lower bound is valid for the Sperner capacity of a well-chosen oriented
version.

A prominent example for k = 3 is the case of the so-called Clebsch graph, a triangle-free
graph on 16 vertices whose three copies decompose K16. This graph was used by Green-
wood and Gleason [9] to show that the edges of K16 can be 3-colored without producing
a monochromatic triangle thus providing the sharp lower bound 17 on the Ramsey num-
ber R(3, 3, 3). It is not known whether the lower bound 3

√
16 on the Shannon capacity of
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the Clebsch graph is tight, though it is tempting to conjecture so. Unfortunately, our results
did not provide an orientation of this graph so that three isomorphic copies of it would
decompose the transitive tournament on 16 vertices. (For more on the connections between
Ramsey graphs and Shannon capacity cf. [14]). Nevertheless, our results give some non-
trivial lower bounds for the maximum possible Sperner capacity of oriented versions of
certain graphs, see Remark 3.

It is well-known that complete graphs on an odd number of vertices decompose into
Hamiltonian cycles. One can directly show how to obtain a decomposition of the transi-
tive tournament of odd order into isomorphically oriented Hamiltonian cycles, but this also
follows from our sufficient condition mentioned above.

First we extend our sufficient condition to a more general one, then we show with an
example (found by computer) that this more general condition is still not necessary. A com-
plete characterization seems out of reach, but we are able to give some non-trivial necessary
conditions.

As usual Kn denotes the complete graph on n vertices, while we denote the tran-
sitive tournament on n vertices by Tn. The vertex set of Kn and Tn is assumed to be
[n] = {0, 1 . . . , n − 1} and we consider these vertices as residue classes modulo n, that is
equality between vertices will be understood modulo n. We denote the cyclic permutation
of [n] sending i to i + 1 by σn.

2 Small Examples and Problem Formulation

First we recall an example from [5] of three isomorphic graphs partitioning the complete
graph that cannot be isomorphically oriented so that their union is a transitive tournament
even if the functions giving the isomorphism among them are not fixed.

Let n = |V (G)| = 4 and the three isomorphic graphs be paths on 3 vertices. One eas-
ily partitions K4 into three such graphs. It is also easy to see that whatever way we orient
these paths in an isomorphic manner, we cannot put them together to obtain a transitive
tournament on 4 vertices. This is simply because from no orientation can we produce simul-
taneously a vertex of outdegree 0 and a vertex of outdegree 3. Note that this example is just
a very special case of Theorem 5 from [5].

Let us assume that the edge set of the complete graph Kn is partitioned into three isomor-

phic graphs F , G and H . We can ask whether there are isomorphic orientations
−→
F ,

−→
G and−→

H of the graphs F , G and H , respectively, such that their union gives a transitive tourna-
ment. But we can be more specific and fix an isomorphism σ from F to G, an isomorphism

ρ from G to H and ask whether there are orientations
−→
F ,

−→
G and

−→
H of the graphs F , G

and H whose union is a transitive tournament and such that σ is an isomorphism between−→
F and

−→
G and ρ is an isomorphism between

−→
G and

−→
H .

To illustrate the difference between these two questions let us consider the smallest pos-
sible example. The graph K3 can be partitioned into three (isomorphic) single edge graphs:
F , G and H . Clearly, the three oriented edges of T3 also form isomorphic graphs. This
answers the first question above for this specific partition affirmatively. If, however, we fix
a cyclic permutation σ = ρ that sends F to G and G to H , then the answer to the second

question is negative. Indeed, if
−→
F is any orientation of F ,

−→
G = σ(

−→
F ) and

−→
H = σ 2(

−→
F ),

then the union of these three directed graphs is a directed cycle and thus not transitive.
In this paper we will concentrate on the question with fixed permutations σ and ρ. We

will only consider the special case σ = ρ. Although this assumption is restrictive, it is

213Order (2021) 38:211–228



in complete analogy with the case of two self-complementary graphs, and we believe that
understanding this special case would largely improve our knowledge about the situation.

Definition 1 Let σ be a permutation of the vertex set of Kn. We call the partition of the
edge set of Kn into three graphs F , G and H such that the permutation σ sends F to G and
G to H a σ -partition. In this case σ sends H to F and σ 3 is an automorphism of all three
of these graphs. We call a transitive orientation T of Kn a transitive σ -orientation of this

σ -partition if the subgraphs
−→
F ,

−→
G and

−→
H of T that are the orientations of the graphs F ,

G and H , respectively, satisfy σ(
−→
F ) = −→

G and σ(
−→
G) = −→

H . We say that σ reverses the
orientation of an edge e in T if σ(e) is oriented in the other direction, that is, if e goes from
a to b, and the edge of T between σ(a) and σ(b) is oriented toward σ(a). Observe that a
transitive orientation T of Kn is a transitive σ -orientation of the σ -partition of Kn to F , G

and H if and only if σ reverses no edges of T that belong to F or G.

Just as it was shown for the case of self-complementary graphs in [17], we may assume
here, too, that the permutation σ is cyclic as the case of general σ reduces to the cyclic case.
Indeed, let the cycle decomposition of the permutation σ be ρ1ρ2 . . . ρk . Let F , G and H

form a σ -partition P . The subgraphs Fi , Gi , Hi induced by the domain of the cycle ρi form
a ρi-partition Pi for all i. Clearly, if P has a transitive σ -orientation, then it restricts to tran-
sitive ρi-orientations of Pi . On the other hand, if Pi has a transitive ρi-orientation for all i,
then P has a transitive σ -orientation. To see this last statement simply keep the orientations
of the edges in the transitive ρi-orientations and orient edges connecting vertices from dis-
tinct cycles ρi and ρj toward the higher indexed cycle. None of these latter type of edges is
reversed by σ .

It is easy to see that a σ -partition exists if and only if σ has at most one fixed point and
the length of all non-trivial cycles of the cycle decomposition of σ is divisible by 3. To see
that the latter mentioned divisibility condition is necessary consider a non-trivial cycle ρ of
σ and two vertices a and b = ρ(a). If ρ acts on t elements, then exactly one third of the t

images of edge {a, b} obtained as {ρi(a), ρi(b)} for i = 1, 2, . . . , t , should belong to each
of the graphs F,G, and H . This implies that t must be a multiple of 3.

From now on we make the assumption that σ consists of a single cycle on n > 1 vertices,
namely σ = σn, where σn stands for the permutation on the set [n] = {0, 1, 2, . . . , n − 1}
taking i to i + 1 mod n. The vertices of our graphs will therefore be the elements of [n] and
we consider them as the residue classes modulo n, that is, equalities about them are always
understood modulo n. We assume n is divisible by 3 as otherwise there is no σn-partition.

We denote the graphs of the σn-partition by F0, F1 = σn(F0) and F2 = σ 2
n (F0). The

label �(a, b) of an edge {a, b} of Kn is the index of the subgraph the edge belongs to, so
the label of the edges of Fi are i. As σn sends F0 to F1 to F2 and back to F0 we must have
�(a + 1, b + 1) ≡ �(a, b) + 1 for all a and b, where the congruence is modulo 3 (and, as
noted above, the vertices are understood modulo n). With the same convention we have the
more general congruence for any edge {a, b} and integer i:

�(a + i, b + i) ≡ �(a, b) + i (mod 3). (1)

Definition 2 The defining sequence of the σn-partition {F0, F1, F2} is a1, a2, . . . , am,
where m = �n/2� and aj = �(0, j). By the congruence above, this sequence determines
all other labels and thus the entire σn-partition. On the other hand, it is easy to see that (as
n is divisible by 3) every sequence of length �n/2� over the alphabet {0, 1, 2} is a defining
sequence of a σn-partition. This is analogous to the case of self-complementary graphs, cf.

214 Order (2021) 38:211–228



[4, 15, 16]. By symmetry, we may and will often assume that �(0, 1) = 0, that is, the defin-
ing sequence starts with a1 = 0. This can be achieved by shifting the σn-partition by σn or
σ 2

n .

In the smallest n = 3 case, there is just one σ3-partition and we have already seen that
it has no transitive σ3-orientation. Let us look at the next case n = 6 a bit closer. By the
foregoing, there are 32 = 9 σ6-partitions to consider according to the labeling of the edges
{0, 2} and {0, 3}.

The corresponding graphs F0 are depicted in Fig. 1. It turns out that transitive σ6-
orientations exist in exactly four of the nine cases. (We have indicated such an orientation in
Fig. 1 whenever it exists.) Notice that the F0 is simply a path on the six vertices in four cases
but a transitive σ6-orientation exists for only two of them. (The truth of this statement will
follow from the results of the next section). Thus, in spite of the isomorphism of these four
graphs they behave differently according to the different effect of permutation σ6 on them.

3 The Standard Orientation

We want to decide whether a given σn-partition P has a transitive σn-orientation. For
our notation including the labeling of edges and the definition of the defining sequence
see the previous section. We will describe a transitive σn-orientation with an ordering
τ(1), τ (2), . . . , τ (n) on the vertices. We say that an orientation is consistent with τ if all
edges point towards the vertex that come later in the order. Clearly, the transitive orienta-
tion of Kn and the ordering it is consistent with mutually determine each other. Recall that a
transitive orientation T is a transitive σn-orientation of our σn-partition P if and only if the
orientation of no label-0 or label-1 edge is reversed by σn. (Recall that we always assume
that 3 divides n and therefore do not mention it explicitly again in the statement of the
theorem below).

Theorem 2 If n = 2m and the defining sequence a1, a2, . . . , am ∈ {0, 1, 2}m of a σn-
partition satisfies that for every j ∈ {1, . . . , m − 1} either aj+1 = aj or aj+1 ≡ aj + 1
(mod 3), then there exists a transitive σn-orientation for this σn-partition.

Proof The proof is an extension of the argument given by Gyárfás [10] for our Theorem 1.
We give a linear order τ of the vertices 0, 1, . . . , n − 1 and show that orienting the edges
consistently with this order gives a transitive σn-orientation.

Let us first recall our assumption that a1 = 0. This can be achieved by appropriately
relabeling the vertices. The relabeling changes the defining sequence but does not affect the
condition in the theorem. Now we define τ . We set τ(1) = 0 and declare that τ will have the
property, that for any i, the set of vertices Ai := {τ(1), τ (2), . . . , τ (i)} forms a consecutive
arc of the cycle formed by the vertices 0, 1, . . . , n− 1, i.e., it is equal to {ji + 1, . . . , ji + i}
for some ji ∈ {n − i, n − i + 1, . . . , n − 1}. Recall that the names of the vertices
are understood modulo n. Now τ(i + 1), that is the unique element of Ai+1 \ Ai is either
ji or ji + i + 1 for every i. Thus τ is determined if we give a rule for deciding which of
the two elements ji and ji + i + 1 should be taken as τ(i + 1) if i < n − 1. (No rule is
needed for i = n − 1 as then ji = ji + i + 1 is the only vertex outside Ai .) This choice for
τ(i +1) depends on the label of the edge {ji, ji + i +1}. If �(ji, ji + i +1) = 0, then we set
τ(i+1) = ji making ji+1 = ji −1. If �(ji, ji + i+1) = 2, then we set τ(i+1) = ji + i+1
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Fig. 1 Four of the nine possible 3-partitions of K6 can be oriented as required. In the remaining five cases
such orientations do not exist

making ji+1 = ji . We claim that the third possibility, namely �(ji, ji + i + 1) = 1 will not
happen for any 1 ≤ i < n − 1.

First we show this last statement by induction. Note that all congruences are modulo 3.
The base case holds as τ(1) = 0 and �(n − 1, 1) ≡ a2 − 1, see Eq. 1. By the assumption on
the defining sequence this is either a1−1 ≡ 2 or (a1+1)−1 = 0. Now assume the statement
to be true for the edge {ji−1, ji−1 + i}, and we show that it is also true for {ji, ji + i + 1}.
By Eq. 1, we have �(ji−1, ji−1 + i) ≡ �(0, i)+ ji−1 and �(ji, ji + i +1) ≡ �(0, i +1)+ ji .
We have ji = ji−1 − 1 if τ(i) = ji−1, i.e., if �(ji−1, ji−1 + i) = 0, while otherwise this
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label is 2, so we have ji = ji−1. Therefore, we can formulate the congruence:

ji ≡ ji−1 − �(ji−1, ji−1 + i) − 1 ≡ ji−1 − (�(0, i) + ji−1) − 1 = −�(0, i) − 1.

We also have:

�(ji, ji + i + 1) ≡ �(0, i + 1) + ji ≡ �(0, i + 1) − �(0, i) − 1. (2)

For 1 ≤ i ≤ n/2 − 1 we simply have �(0, i + 1) = ai+1 and �(0, i) = ai , so

�(ji, ji + i + 1) ≡ ai+1 − ai − 1, (3)

so by assumption it cannot be 1. If n/2 ≤ i < n we use Eq. 1 again to see that �(0, i) =
�(i, 0) ≡ �(0, n − i) + i = an−i + i and similarly, �(0, i + 1) ≡ an−i−1 + i + 1. Therefore

�(ji, ji + i + 1) ≡ an−i−1 − an−i , (4)

which cannot be 1 either by the same assumption. Note that we used the fact that n is even.
For n odd and i = (n − 1)/2 we would have �(ji, ji + i + 1) ≡ �(0, i + 1) − �(0, i) − 1 ≡
(ai − i) − ai − 1 = −i − 1 ≡ 1.

We need to show that the orientation consistent with the order τ is a transitive σn-
orientation. As noted above, for this we have to show that σn reverses the orientation only of
edges of label 2. Equivalently, if an edge {u, v} is oriented from u to v and it has label 1 or 2
then the edge {u − 1, v − 1} is oriented from u − 1 to v − 1. Assume {u, v} is oriented from
u to v, that is, τ−1(u) < τ−1(v). We distinguish cases according to the order of u and v.
Note that while in most formulas we consider the vertices as residue classes modulo n (and
thus equality really means congruence modulo n) in inequalities the vertices are treated as
integers between 0 and n − 1.

In the simplest case we have 0 < u < v. In this case u − 1 ∈ Aτ−1(u) while v /∈ Aτ−1(u)

(as τ−1(u) < τ−1(v) implies u ∈ Aτ−1(u), v /∈ Aτ−1(u) while 0 < u < v implies that this
can happen only if u − 1 ∈ Aτ−1(u) as well) and either (v − 1) /∈ Aτ−1(u) or v − 1 = u.
In both cases we have τ−1(u − 1) < τ−1(v − 1) implying that the edge {u − 1, v − 1} is
oriented from u − 1 to v − 1 as we need.

If u = 0 and {u − 1, v − 1} is oriented toward u − 1, then τ−1(u − 1) > τ−1(v − 1) and
therefore �(u−1, v−1) = 2 (otherwise, by our rule, v−1 could have not become an element
of some Ai for which u−1 = n−1 /∈ Ai that is the case now since {u−1, v−1} is oriented
toward u − 1) implying �(u, v) = 0 and therefore it does not matter that {u − 1, v − 1} is
not oriented from u − 1 to v − 1, since label 2 edges are allowed to be reversed.

Finally assume v < u. Note that v > 0 as otherwise the edge {u, v} could not be directed
toward v. If {u−1, v−1} is not oriented from u−1 to v−1, then the arc {u, u+1, . . . , v−1}
is either Aτ−1(u) or Aτ−1(v−1). In the former case our rule implies that �(u, v) = 0, in the
latter case it implies �(u − 1, v − 1) = 2 and thus again �(u, v) = 0 in which case we have
no problem.

This proves that our rule gives a transitive σn-orientation and completes the proof of the
theorem.

We remark that for n = 6 there are 22 = 4 distinct σ6-partitions for which Theorem 2
guarantees the existence of a σ6-orientation (these are the ones belonging to the defining
sequences 000, 001, 011, 012) and these are the four σ6-partitions with corresponding σ6-
orientations in Fig. 1. Thus for n = 6 Theorem 2 gives all the possible σ6-orientations. For
a generalization of this fact, see Proposition 3 in Section 3.1.

Note that the linear order obtained on the vertex set of Kn by the orientation in the proof
above has some special properties. To formulate them we introduce the following notions.
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Definition 3 Let τ(1), τ (2), . . . , τ (n) be an ordering of the numbers 0, 1, . . . , n − 1. We
say that j ∈ {0, 1, . . . , n − 1} is a local minimum in this order if j precedes both j − 1 and
j +1 (addition is meant modulo n), that is τ−1(j) < τ−1(j −1) and τ−1(j) < τ−1(j +1).
Similarly, j ∈ {0, 1, . . . , n−1} is a local maximum if j is preceded by both j −1 and j +1,
that is τ−1(j) > τ−1(j − 1) and τ−1(j) > τ−1(j + 1).

We call τ bitonic if it has a unique local minimum and a unique local maximum. We
call a transitive σn-orientation of a σn-partition standard if it is consistent with a bitonic
ordering of the vertices.

Proposition 1 The transitive σn-orientations given in the proof of Theorem 2 are standard.
The unique local minimum of the corresponding ordering is at 0, while the unique local
maximum is at n/2.

Proof The fact that τ given in the proof is bitonic and thus the transitive σn-orientations
are standard follows immediately from the construction. It is also clear that τ(1) = 0 is the
local minimum and we need only prove that the local maximum (that is τ(n)) is n/2.

Recall from the proof of Theorem 2 that Ai = {τ(1), τ (2), . . . , τ (i)} is a consecutive arc
in the cycle formed by the i vertices from ji + 1 to ji + i for all 1 ≤ i ≤ n. The sequence
(Ai)

n
i=1 starts at A1 = {0} and we obtain Ai+1 from Ai by extending Ai with τ(i + 1) at

one end of this interval. The label �(ji, ji + i + 1) (which is never 1) determines which
end we place τ(i + 1), namely if the label is 0 we chose one end, while if it is 2 we chose
the other end. For 1 ≤ i ≤ n/2 − 1 we have �(ji, ji + i + 1) ≡ ai+1 − ai − 1 by Eq. 3
and �(jn−i−1, jn−i−1 + n − i) ≡ ai − ai+1 by Eq. 4. This means that �(ji, ji + i + 1) +
�(jn−i−1, jn−i−1 + n − i) ≡ 2, so one of these labels must be 0 and the other 2 and thus
we extend the interval Ai on one end to get Ai+1 while we extend An−i−1 on the other end
to obtain An−i . This partitions the n − 2 extension steps bringing A1 to An−1 into n/2 − 1
pairs and shows that we use n/2 − 1 extensions of the interval at either side. Thus n/2 (the
vertex in distance n/2 from A1 = {0} in either direction) must be the only vertex outside
An−1 and therefore we have τ(n) = n/2 as stated.

The following proposition is a sort of converse of the previous one.

Proposition 2 If there exists a standard transitive σn-orientation for a σn-partition, then the
conditions of Theorem 2 are satisfied, namely the number n of vertices is even and for the
defining sequence a1, a2, . . . , an/2 of the σn-partition either aj+1 = aj or aj+1 ≡ aj + 1
(mod 3) holds for each 1 ≤ j ≤ n/2−1. If there exists a standard transitive σn-orientation
for a σn-partition, then it is unique up to shifts of the automorphism σ 3

n .

Proof Consider a standard transitive σn-orientation T for a σn-partition. Without loss of
generality we may assume that the defining sequence of the σn-partition starts with a1 = 0.
Consider the bitonic ordering τ of the vertices consistent with T . The first element a =
τ(1) is clearly the local minimum. All edges are directed away from a, so σ reverses the
orientation of the edge {a−1, a}, as it takes it to {a, a+1}. Therefore we have �(a, a+1) = 0
and thus a ≡ 0 (mod 3). We may and will assume a = 0 as this can be achieved with a
shift of a suitable power of the automorphism σ 3

n .
As τ is bitonic, the set Ai = {τ(1), . . . , τ (i)} must be an interval {ji + 1, . . . , ji + i}

along the cycle formed by the vertices. Clearly, τ(i + 1) is either ji or ji + i + 1. We show
the uniqueness of τ by observing that the value of τ(i + 1) depends on the label of the
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edge e = {ji, ji + i + 1} exactly as in the construction in the proof of Theorem 2, namely
τ(i+1) = ji if this label is 0 and τ(i+1) = ji+i+1 if the label is 2 and the label of e cannot
be 1. Indeed, if τ(i + 1) = ji + i + 1, then σn reverses the orientation of the edge e, so its
label is 2, but if τ(i + 1) = ji , then σ−1

n reverses the orientation of e, so its label must be 0.
From the rule established above we can derive Eq. 2 just as in the proof of Theorem 2.

In case n is odd we can apply this formula to i = (n − 1)/2 and using also Eq. 1 we obtain
�(ji, ji+i+1) ≡ �(0, i+1)−�(0, i)−1 = (�(0, i)+i+1)−�(0, i)−1 ≡ i ≡ 1 contradicting
that we saw that the label of the edge {ji, ji + i + 1} cannot be 1. This proves that n is even.

From Eq. 2 we can deduce Eq. 3 for 1 ≤ i ≤ n/2 − 1. Using that the label of the edge
{ji, ji + i + 1} cannot be 1 this implies that ai+1 = ai or ai+1 ≡ ai + 1 finishing the proof
of the proposition.

3.1 Several Parts

In this subsection we extend the earlier results to partitions to more than three parts. The
extensions are straightforward, the proofs carry over almost verbatim. We just list the results
here and show how they apply to decompositions into Hamiltonian paths and cycles. Note
that in the discussion below we also allow the case when the number of parts is k = 2.

Definition 4 Let k and n be integers larger than 1 and (as before) let σn be the cyclic
permutation on the set [n] = {0, 1, . . . , n − 1} taking i to i + 1. Recall that elements of
[n] are understood modulo n. We call a partition of the edge set of the complete graph on
the vertex set [n] into the subgraphs F0, . . . , Fk−1 a σn-k-partition if σn(Fd) = Fd+1 for
0 ≤ d < k − 1.

Note that the existence of a σn-k-partition implies that n is divisible by k. Furthermore,
for n even k also divides n/2 (since the edge {0, n/2} has different images under σ i

n only
for n/2 different values of i and these images should be evenly distributed among the k

subgraphs Fd , 0 ≤ d ≤ k − 1). In a σn-k-partition we also have σn(Fk−1) = F0 and that σk
n

is an automorphism of all the graphs Fd .

Definition 5 Given a σn-k-partition of the edge set of Kn into subgraphs F0, . . . , Fk−1, we
say that the label of an edge e of Fd is �(e) = d. The defining sequence of this partition is
the sequence a1, . . . , a�n/2�, where ai = �({0, i}).

It is easy to see that the defining sequence uniquely determines the σn-k-partition, namely
Fd consists of the edges {b, b + i} for which b ≡ d − ai (mod k). This is indeed a σn-k-
partition for any sequence a1, a2, . . . , a�n/2� over the letters 0, 1, . . . , k−1 if the divisibility
conditions are satisfied by n and k.

Definition 6 We call a transitive orientation T of Kn a transitive σn-orientation of a σn-k-
partition (into subgraphs F0, . . . , Fk−1) if σn(

−→
Fd) = −→

Fd+1 for 0 ≤ d < k − 1, where
−→
Fd

is the orientation of Fd obtained as a subgraph of T . A transitive orientation T satisfies this
condition if and only if σn reverses the orientation of no edges of Fd with d 	= k−1. We call
a transitive σn-orientation standard if it is consistent with a bitonic ordering of the vertices.

The common generalization of Theorems 1 and 2 is as follows.
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Theorem 3 There exists a standard orientation for a σn-k-partition if and only if n is divis-
ible by 2k and the defining sequence a1, a2, . . . , an/2 of the partition satisfies that for every
1 ≤ j ≤ n/2 − 1 either aj+1 = aj or aj+1 ≡ aj + 1 (mod k). If a standard orientation
exists, then it is unique up to shifts of σk and the corresponding bitonic ordering of the ver-
tices satisfies that the first and last elements in the ordering (the unique local minimum and
maximum) differ by n/2.

Remark 1 It is straightforward to see that Theorem 3 generalizes Theorem 2. Note that
Theorem 1 is also implied by Theorem 3 since in case of two self-complementary graphs,
that is, when k = 2, the condition aj+1 ≡ aj or aj + 1 (mod k) is automatically satisfied
as aj+1 cannot take any value other than 0 or 1.

We formulate the following simple generalization of the trivial observation that the (only)
σ3-partition has no transitive σ3-orientation.

Proposition 3 If there exists a transitive σn-orientation for a σn-k-partition, then n ≥ 2k

and n 	= 3k. If n = 2k, then any transitive σn-orientation of a σn-k-partition is standard.

Proof From the existence of this partition we know that k divides n. Note that σn reverses
the orientation of an even number of the n edges {i, i + 1} in any orientation T of Kn. But
if k = n, then only one of these edges has label k − 1, so if T is a transitive σn-orientation,
then the orientation of none of these edges are reversed. But then they form a directed cycle,
so T is not transitive.

If n = 2k or 3k, then two or three of these n edges have label k − 1, so exactly two of
them have to be reversed by σn to avoid the directed cycle. This makes the transitive σn-
orientation standard. But we know from Theorem 3 that if a σn-k-partition admits a standard
orientation, then n is divisible by 2k, so n = 3k is not an option.

Complete graphs of odd order can be decomposed into Hamiltonian cycles. This is a clas-
sical result as mentioned in Adrian Bondy’s chapter [1] of the Handbook of Combinatorics.
(It is added there that “one such construction, due to a Monsieur Walecki, is described in
the book by Lucas (1891, pp. 161–164)”, cf. [13]).

This result extends to the decomposition of odd order transitive tournaments to identi-
cally oriented Hamiltonian cycles. This decomposition can be found directly, but it can also
be arrived at by applying our result to a certain decomposition of the non-oriented complete
graph as shown below.

We say that a path is alternatingly oriented if each of its intermediate vertices has out-
degree 0 or 2 under this orientation. Each path has exactly two alternating orientations. For
even n these two orientations yield isomorphic oriented graphs.

Corollary 1 If n is even, then we can decompose Tn into n
2 alternatingly oriented

Hamiltonian paths.

Proof Let F0 be the path defined as 0, 1, n−1, 2, n−2, . . . , i, n−i, (i+1), . . . , ( n
2 +1), n

2 .
It is easy to see that the graphs Fd := σd

n (F0) for d = 0, 1, . . . , n/2 − 1 partition the edge
set of Kn into n

2 Hamiltonian paths. This is a σn-n/2-partition.
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One can also readily check that {0, j} ∈ E(F�j/2�) holds for every j ∈ {1, . . . , n − 1}.
This means that the defining sequence of this σn-n/2-partition is a1, a2, . . . , an/2 with ai =
�i/2�. By Theorem 3 there is a standard orientation for this partition that is unique up to a
shift with σ

n/2
n . It is not hard to check that the standard orientation orients the Hamiltonian

paths in this partition alternatingly, that is, each vertex will be a source or a sink of each
Hamiltionian path. This construction is illustrated for n = 6 by the oriented path in the
central picture of Fig. 1.

Corollary 2 If n is odd, then we can decompose Tn into n−1
2 isomorphically oriented

Hamiltonian cycles.

Proof Consider the decomposition of Tn−1 given in Corollary 1 on vertices labeled by [n−
1]. Add the extra vertex v and connect it to the two endpoints of each of the Hamiltonian
paths thus extending them to Hamiltonian cycles. Orient all edges incident to v away from
v. These isomorphically oriented Hamiltonian cycles decompose the transitive tournament
on n vertices.

Remark 2 The orientation of the Hamiltonian cycles in our decomposition in Corollary 2 is
such that all but one of the vertices is either a source or a sink. This kind of orientation of
odd cycles is called alternating in [11], where it is shown that these oriented versions of odd
cycles have maximal Sperner capacity. In the special case of n = 5 this orientation already
appeared in [3], where it was observed that its Sperner capacity is

√
5, that is, it achieves

the Shannon capacity of the underlying undirected graph which is C5, whose capacity was
determined in the celebrated paper by Lovász [12]. This observation was the starting point
of our investigations in [17].

In Section 2 we explained how to find transitive σ -orientations for σ -partitions if
the permutation σ is not cyclic. First we solve the restriction of the problem for the
domain of each cycle in the cycle decomposition of σ , then extend the obtained orien-
tations by orienting the edges between distinct cycles consistently with a linear ordering
of these cycles. We used the same strategy here for the two cycles of the permutation
σ that has v as a fixed point and acts on [n − 1] as σn−1. The decomposition has v

as the domain of a trivial cycle and [n − 1] as the domain of σn−1. Had we defined
these notions for arbitrary permutations (not just for cyclic ones), we could call the
decomposition of the complete graph in Corollary 2 a σ -(n − 1)/2-partition of Kn and
the orientations of the Hamiltonian cycles would form a transitive σ -orientation of this
partition.

4 Non-standard Orientations

The results in the previous section may make one hope that the conditions of Theorem 2
are not just sufficient but also necessary for a σn-partition to have transitive σn-orientations.
This is not the case. In this section we give some sufficient conditions that go beyond the
ones in Theorems 2 and 3.

Our construction takes a transitive σm-orientation for a σm-k-partition and uses that to
get transitive σn-orientations of related σn-k-partitions. Here n is a multiple of m. Even
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for some standard σm-k-orientations, the resulting transitive σn-orientations are not always
standard and in some cases the σn-k-partitions do not have standard orientations at all.

Definition 7 Let k > 1 and m be such that σm-k-partitions exist (that is, m is a multiple
of k and if k is even m is also a multiple of 2k). Let n be a multiple of m. We call the σn-
k-partition P with defining sequence a1, a2, . . . , a�n/2� a blow-up of the σm-k-partition Q

with defining sequence b1, b2, . . . , b�m/2� if ai = b(i mod m) whenever 1 ≤ i ≤ �n/2� and
i is not divisible by m. For this to make sense even if i mod m > �m/2� we extend the
sequence bi by setting bi = (bm−i + i) mod k for �m/2� < i < m. This makes bi the label
of the edge {0, i} in the σm-k-partition Q for any i. Note that we have no requirement for
the value of ai if i is divisible by m, so P is not determined by Q and n.

Notice that if the σm-k-partition Q has a standard orientation, then its defining sequence
satisfies the requirements of Theorem 3 and therefore the defining sequence a1, a2, . . . , an/2
of its blow-up P also satisfies ai+1 = ai or ai+1 ≡ ai + 1 (mod k) whenever neither i nor
i + 1 is divisible by m. However, by the free choice of the value ai whenever i is divisible
by m, this property need not hold for the other indices, thus P may violate the conditions
of Theorem 3. Nevertheless, as we will show, P admits a transitive σn-orientation in this
case.

Theorem 4 If the σn-k-partition P is a blow-up of the σm-k-partition Q and Q admits a
transitive σm-orientation, then P admits a transitive σn-orientation.

Proof Let T be the transitive σm-orientation of Q we assumed to exist and let τ be the
ordering of the vertex set [m] that T is consistent with. The theorem claims that P has
transitive σn-orientation T ′. We construct T ′ by finding the ordering τ ′ on the vertex set [n]
that T ′ is consistent with. The only requirement we have to satisfy is that all edges of T ′
whose orientation σn reverses should have label k − 1.

Let us set d = n/m and for i ∈ [m], let Hi = {jm + i | j ∈ [d]}. Each of these m

sets has d elements and together they partition [n]. The ordering τ ′ starts with the elements
of Hτ(1) followed by the elements of Hτ(2), . . . , Hτ(m). The order within the sets Hi will
be specified later. We call an edge of Kn an outer edge if it connects vertices from distinct
sets Hi and Hj , otherwise it is an inner edge. The orientation of the outer edges in T ′ are
not influenced by the order within the sets Hi . namely for a ∈ Hi and b ∈ Hj (i 	= j ) the
orientation of the edge {a, b} in T ′ is determined by the orientation of the edge {i, j} in T .
This means that σn reverses the orientation of the edge {a, b} in T ′ if and only if σm reverses
the orientation of the edge {i, j} in T . Our definition of a blow-up ensures that the label of
the edge {a, b} for the partition P is the same as the label of the edge {i, j} for the partition
Q. Therefore σn reverses the orientation of outer edges in T ′ only if their label is k − 1.

To finish the proof we have to specify the ordering τ ′ within the sets Hi in such a way
that the same can be said about inner edges of T ′: σn reserves the orientation of them only
if their label is k − 1.

For i ∈ [m] let τi(1), τi(2), . . . , τi(d) be an ordering of [d] to be specified later and
let us say that τ ′ orders the elements of Hi in the following order: τi(1)m + i, τi(2)m +
i, . . . , τi(d)m + i.

Consider an inner edge e = {a, b}, with a, b ∈ Hi , i ∈ [m]. We have a = Am + i and
b = Bm+ i for some A, B ∈ [d] and the orientation of e in T ′ is determined by the order of
A and B in τi . In case i 	= m − 1 we have σn(e) = {a + 1, b + 1}, a + 1, b + 1 ∈ Hi+1 and
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the orientation of σn(e) is determined by the order of A and B in τi+1. Thus, σn reverses
the orientation of e in T ′ if and only if A and B are in different order in τi and in τi+1. We
must make sure that this only happens if the label of e is k − 1.

The situation is a bit different for inner edges e = {a, b} with a, b ∈ Hm−1. We still
have σn(e) = {a + 1, b + 1} (recall that these vertices are understood modulo n). But now
a + 1, b + 1 ∈ H0 and a + 1 = (A + 1)m, b + 1 = (B + 1)m. Thus, σn reverses the
orientation of e if and only if A and B are in different order in τm−1 compared to the order
of A + 1 and B + 1 in τ0. Here both A + 1 and B + 1 are understood modulo d. We will
make sure that this only happens if the label of e is k − 1.

We will now specify the orderings τi . As explained above, this finishes the proof if we
can show the following two properties:

(a) If for some 0 ≤ i < m − 1 and A 	= B ∈ [d] the order of A and B is different in τi

and τi+1, then we have �(Am + i, Bm + i) = k − 1.
(b) If A precedes B in τm−1 but (B + 1) mod d precedes (A + 1) mod d in τ0, then we

have �(Am + m − 1, Bm + m − 1) = k − 1.

We set τ0 to be the order: 0, 1, d − 1, 2, d − 2, . . . , �d/2
. Note that the pair of elements
j and d − j are consecutive for all 1 ≤ j < d/2. For 0 ≤ i < k we obtain τi+1 from τi by
swapping the order of j and d−j for each j satisfying �(jm+i, (d−j)m+i) = k−1. In this
way we maintain that j and d − j are consecutive in τi for all 0 ≤ i ≤ k and 1 ≤ j < d/2.
Also, with this rule condition (a) is satisfied for 0 ≤ i < k. For any i and j as above we
have �(jm + i, (d − j)m + i) ≡ �(jm, (d − j)m) + i (mod k). Therefore, for any such j ,
the label will be k − 1 for exactly one of the indices 0 ≤ i < k and thus τk will have all the
pairs (j, d − j) swapped. Namely, τk is the order 0, d − 1, 1, d − 2, 2, d − 3, . . . , �d/2�.

Proposition 3 tells us that m ≥ 2k. Let us assume for now that m > 2k. We will come
back to the case m = 2k later. Observe that j and d − j − 1 are consecutive in τk for any
0 ≤ j ≤ d/2 − 1. For k ≤ i < 2k we obtain τi+1 from τi by swapping the order of j

and d − j − 1 for each j satisfying �(jm + i, (d − j − 1)m + i) = k − 1. In this way
we maintain that the vertices j and d − j − 1 are consecutive in τi for all k ≤ i ≤ 2k

and 0 ≤ j ≤ d/2 − 1. Also, this rule makes condition (a) satisfied for k ≤ i < 2k.
Just as before, for any j as above the label condition is satisfied for exactly one index
k ≤ i < 2k and thus τ2k will have all the pairs (j, d − j − 1) swapped. Namely, τ2k is the
order d − 1, 0, d − 2, 1, d − 3, 2, . . . �d/2
 − 1.

We set τi = τ2k for 2k < i < m. This makes condition (a) hold vacuously for 2k ≤
i ≤ m − 1 as τi = τi+1. Condition (b) is also satisfied vacuously, since A precedes B in
τm−1 = τ2k if and only if (A + 1) mod d precedes (B + 1) mod d in τ0. This is so because
τ0 can be obtained from τ2k by replacing each element j by (j + 1) mod d. This finishes
the proof of the theorem in the case m > 2k.

It remains to consider the case m = 2k. We define the orders τi for k < i ≤ 2k the same
way as above. We do not use τ2k in the definition of τ ′, but we will use it in our argument
below.

Condition (a) is satisfied as before. But now condition (b) is not vacuous. We still have
that A precedes B in τ2k if and only if (A + 1) mod d precedes (B + 1) mod d in τ0, so
if A precedes B in τ2k−1 but (B + 1) mod d precedes (A + 1) mod d in τ0 as called for
in condition (b), then A and B appear in different order in τ2k−1 and τ2k and therefore
�(Am + m − 1, Bm + m − 1) = k − 1. This makes condition (b) satisfied and finishes the
proof of the theorem.
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We call the transitive orientation constructed in the previous theorem the blow-up of the
transitive σm-orientation of Q.

To illustrate Theorem 4 we show a σn-partition (that refers to a σn-3-partition, that is
k = 3) which admits a transitive σn-orientation but does not admit a standard one. We take
n = 12 and consider the σ12-3-partition P with defining sequence 000121. Recall that this
is a partition of the edge set of K12 to three isomorphic subgraphs and it has no standard
orientation by Proposition 2. But it is a blow-up of the σ6-partition Q with defining sequence
000. Q has a transitive σ6-orientation, even a standard one by Theorem 2. The first part
of Q and its orientation is depicted in the first illustration on Fig. 1. By Theorem 4 P has
a transitive σ12-orientation. For example orienting the edges consistent with the following
ordering of the vertices gives a transitive σ12-orientation: 0,6,1,7,2,8,11,5,4,10,3,9.

Remark 3 In this remark we show an example of how our results can give non-trivial lower
bounds for the maximal Sperner capacity an orientation of certain graphs can attain. Let
n = 66, k = 3, and a σ66-partition P be an 11-fold blowup of the σ6-partition whose
first graph is shown on Fig. 1 in the very first place. (In fact, any of the four σ6-partitions
admitting the required orientation could be chosen). This already determines the elements
aj of the defining sequence a1, . . . , a33 of P for all j that is not divisible by 6. Thus P

is completely given if we also specify a6r for r = 1, . . . , 5. Note that Theorem 4 ensures
that irrespective of this specification, the resulting σ66-partition will admit a transitive σ66-
orientation. Let a6 = a24 = 0, a12 = a18 = 1, and a30 = 2. Denoting the subgraph of the
label i edges induced by vertices of the form 6r by Zi it is easy to check that Zi is triangle-
free for all the three labels i. Since the graph we referred to on Fig. 1 is bipartite, we get
that the three isomorphic graphs F1, F2, F3 determined by the similarly labeled edges of
our σ66-partition P have clique number at most 4. (In fact, it is 4). Therefore the trivial
lower bound for the maximum Sperner capacity of an oriented version of (say) F1 is 4
(obtained by orienting a largest clique transitively). However, since by Theorem 4 P admits
a transitive σ66-orientation, this ensures that the mentioned maximum Sperner capacity is
at least 3

√
66 > 4. Note that the previous construction can easily be extended to a 13-fold

and even to a 14-fold blowup of the same σ6-partition to obtain a graph with clique number
4 that admits an orientation with Sperner capacity at least 3

√
78 and 3

√
84, respectively. (For

this we can specify a6r for r = 1, . . . , 5 the same as in the previous example and add
a36 = 2 in both cases, while in the case of the 14-fold blowup we also add a42 = 0. In fact,
choosing a42 to be 1 or 2 works as well in the latter case).

5 Additional Transitive σn-Orientations Exist

After seeing Theorems 2 and 4 one might be curious to know whether they describe all
transitive σn-orientations of a σn-partition, namely if all such orientations are blow-ups of
standard orientations. This is, however, not the case, moreover, there exist σn-partitions that
neither admit a standard orientation nor are blow-ups of σm-partitions for some m < n, yet
they do admit a transitive σn-orientation. We found such examples by computer and do not
see a general pattern that would still suggest a complete characterization. (We note that our
examples in this section all concern the simplest possible case k = 3 again).

The σ24-partition with the defining sequence

0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 2, 1
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is such an example. The orientation consistent with the following order of the vertices is a
transitive σ24-orientation for this partition:

0, 1, 2, 23, 22, 21, 3, 9, 4, 10, 20, 5, 11, 8, 7, 19, 6, 18, 12, 13, 14, 17, 16, 15.

(To check that this defines a transitive σ24-orientation one has only to verify that the
edges whose orientation σ24 reverses have label 2. For example, the edge e = {4, 8} is
oriented towards 8 as 8 appears later in this sequence than 4. But σ24(e) = {5, 9} is oriented
towards 5 as 5 appears later than 9. So σ24 reverses the orientation of e. Now �(4, 8) ≡
�(0, 4) + 4 (mod 3) and �(0, 4) is the fourth number of the defining sequence, namely 1,
so �(4, 8) = 2 as required).

6 Necessary Conditions

So far we have seen sufficient conditions for σn-partitions (or σn-k-partitions) to posses a
transitive σn-orientation. While a complete characterization seems elusive it makes sense to
look also for non-trivial necessary conditions. Here we give a simple such condition.

Theorem 5 Let P be a σn-k-partition with defining sequence a1, a2, . . . , a�n/2�. Assume
a1 = 0 and let i be an index with 1 ≤ i < �n/2� such that aj 	= k − 1 for 1 ≤ j ≤ i. If P

has a transitive σn-orientation, then ai+1 ≤ ai + 1.

Proof Fix a transitive σn-orientation T of P . When referring to the orientation of edges we
speak about the orientation in T .

We call a vertex m ∈ [n] a leader if it is divisible by k. Notice that if m is a leader,
then the label �(m, m + j) is aj for all 1 ≤ j ≤ �n/2�. (Recall that vertices are always
understood modulo n.) We call a leader m an in-leader if the edge {m,m + 1} is oriented
towards m, otherwise it is an out-leader.

We claim that if m is an in-leader, then all the edges {m,m + j} for 1 ≤ j ≤ i + 1 are
oriented toward m, while if m is an out-leader, then all these edges are oriented away from
m. By symmetry, it is enough to prove one of the statements. We prove the latter one by
induction on j . The statement of the claim is assumed for j = 1. So let 1 ≤ j ≤ i and
assume {m,m + j} is oriented away from m. The label of this edge is aj 	= k − 1, so σn

does not reverse its orientation. Therefore the edge {m + 1,m + j + 1} is oriented towards
m + j + 1. As m is an out-vertex the edge {m, m + 1} is oriented toward m + 1. To get a
transitive orientation {m, m + j + 1} must therefore be oriented away from m finishing the
inductive proof.

Consider the cycle formed by the edges {m,m + 1} for all m ∈ [n]. If all leader vertices
were in-leaders or all of them were out-leaders, then this cycle would be a directed cycle
contradicting the transitivity of T . So we must have at least one in-leader and also at least
one out-leader. We can therefore fix an out-leader m such that the very next leader vertex,
namely m + k is an in-leader.

By the claim above (and since m is an out-leader) the edge {m,m+ i} is oriented towards
m+i. The label of this edge is ai , so one can apply the permutation σn to this edge k−1−ai

times without it reversing the orientation. Thus, the edge {m+k−1−ai,m+ i +k−1−ai}
is oriented toward m + i + k − 1 − ai . Recall that ai 	= k − 1, so (as m is an out-leader) the
edge {m + k − 2 − ai,m + k − 1 − ai} is oriented toward m + k − 1 − ai . The transitivity
of T therefore implies that the edge e = {m + k − 2 − ai,m + i + k − 1 − ai} is oriented
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toward m + i + k − 1 − ai . We have σ
ai+2
n (e) = {m + k,m + k + i + 1} and this edge

is oriented toward the in-leader m + k by the claim above. We see that σ
ai+2
n reverses the

orientation of e, therefore the label ai+1 of σ
ai+2
n (e) must be less than ai + 2.

Definition 8 Let a1, a2, . . . , a�n/2� be the defining sequence of a σn-k-partition P . We say
that the sequence halts at the index i (1 ≤ i < �n/2�) if ai+1 = ai . We say that it steps at
the index i if ai+1 ≡ ai + 1 (mod k). We say that it jumps at the index i if it neither halts
nor steps there.

We call the σn-k-partition with defining sequence b1, b2, . . . , b�n/2� the dual of P if
bi ≡ i − 1 − ai (mod k) for all i.

Note that if the defining sequence of a σn-k-partition halts at an index i, then the defining
sequence of its dual steps there and vice versa. The defining sequences of a σn-k-partition
and its dual jump at the same indices.

We can rephrase Theorem 3 as follows: A σn-k-partition has a standard orientation if and
only if its defining sequence does not jump at all.

Theorem 6 If a σn-k-partition admits a transitive σn-orientation, then so does its dual.
If a σn-k-partition P admits a transitive σn-orientation and the defining sequence of P

jumps at an index i, then there is an index j < i where it halts and at least k − 1 distinct
indices j ′ < i where it steps, or the other way around: there is an index j < i where it steps
and at least k − 1 distinct indices j ′ < i where it halts. In particular, there is no jump at
indices i ≤ k.

Proof Let P be the σn-k-partition, with parts F0, F1, . . . , Fk−1. The dual Q of P can be
obtained by first relabeling the vertices, namely switching the label v and n − v for 1 ≤
v < k, and then considering the parts in reverse order, namely as Fk−1, Fk−2, . . . , F0. If a
transitive orientation T of Kn is a transitive σn-orientation of P , then T (after the relabeling)
is also a transitive σn-orientation of Q. This proves the first claim in the theorem.

To verify the second claim we assume without loss of generality that the defining
sequence (aj ) of P starts with a1 = 0. Note that this makes the defining sequence (bj ) of
its dual Q start with b1 = 0. Assume that the first jump in (aj ) is at the index i, so at indices
1 ≤ j < i the sequence halts or steps. By Theorem 5 we have ai+1 ≤ ai + 1 unless the
sequence steps for at least k − 1 such indices. Further, it has to step for at least one such
index, as otherwise we would have aj = 0 for all j ≤ i and ai+1 ≤ ai + 1 = 1 contra-
dicting our assumption that the sequence jumps at i. Note that i is also the first index where
the sequence (bj ) jumps, so we similarly have that this sequence steps for at least one index
j < i and we have bi+1 ≤ bi + 1 unless it steps at k − 1 or more such indices. To finish the
proof it is enough to note that (aj ) steps where (bj ) halts and vice versa and if both step at
fewer than k − 1 indices j < i, then ai ≤ ai+1 ≤ ai + 1 contradicting our assumption that
the sequence (aj ) jumps at i.

We conclude the paper with two conjectures. All σn-partitions for which we found a
transitive σn-orientation were for even values of n. We tried to find such examples with odd
n but failed even with a computer. This suggests the following.

Conjecture 1 No σn-partition with n odd has a transitive σn-orientation.
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Although we did not do any computer search for partitions with more than three parts,
we still venture the following stronger conjecture. (Note that σn-k-partitions are meaningful
only when k divides n, so the statement is relevant only when k is odd).

Conjecture 2 No σn-k-partition with k > 1 and n odd has a transitive σn-orientation.
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