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Abstract
The concept of a sectionally pseudocomplemented lattice was introduced in Birkhoff (1979)
as an extension of relative pseudocomplementation for not necessarily distributive lattices.
The typical example of such a lattice is the non-modular lattice N5. The aim of this paper is
to extend the concept of sectional pseudocomplementation from lattices to posets. At first
we show that the class of sectionally pseudocomplemented lattices forms a variety of lat-
tices which can be described by two simple identities. This variety has nice congruence
properties. We summarize properties of sectionally pseudocomplemented posets and show
differences to relative pseudocomplementation.We prove that every sectionally pseudocom-
plemented poset is completely L-semidistributive. We introduce the concept of congruence
on these posets and show when the quotient structure becomes a poset again. Finally, we
study the Dedekind-MacNeille completion of sectionally pseudocomplemented posets. We
show that contrary to the case of relatively pseudocomplemented posets, this completion
need not be sectionally pseudocomplemented but we present the construction of a so-called
generalized ordinal sum which enables us to construct the Dedekind-MacNeille completion
provided the completions of the summands are known.

Keywords Sectional pseudocomplementation · Poset · Congruence · Dedekind-MacNeille
completion · Generalized ordinal sum

1 Introduction

The concept of relative pseudocomplemented lattices was introduced by R. P. Dilworth
in [7]. The usefulness of this concept was shown in numerous papers and books, see e.g.
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orthomodularity”, as well as by ÖAD, project CZ 02/2019, entitled “Function algebras and ordered
structures related to logic and data fusion”, and, concerning the first author, by IGA, project
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the famous paper [1] by R. Balbes and the monograph [2] by G. Birkhoff. This concept
was extended to posets recently by the first and second author and J. Kühr in [5]. Rela-
tively pseudocomplemented lattices turn out to be distributive, a property which also holds
for relatively pseudocomplemented posets (see [5]). In order to extend relative pseudo-
complementation in lattices to the non-distributive case, sectional pseudocomplementation
was introduced in [3], see also [6]. The aim of the present paper is to extend sectional
pseudocomplementation to posets which, of course, need not be distributive.

The concept of a sectionally pseudocomplemented lattice was introduced by the first
author in [3]. Recall that a lattice (L, ∨,∧) is sectionally pseudocomplemented if for all
a, b ∈ L there exists the pseudocomplement of a ∨ b with respect to b in [b, 1], in other
words, there exists a greatest element c of L satisfying (a ∨ b) ∧ c = b. In this case c is
called the sectional pseudocomplement of a with respect to b and it will be denoted by a ∗b.

The aim of this paper is to extend this concept to posets.

2 Properties of Sectionally Pseudocomplemented Posets and Lattices

Let (P, ≤) be a poset, a, b ∈ P and A,B ⊆ P . Recall that

L(A) := {x ∈ P | x ≤ y for all y ∈ A},
U(A) := {x ∈ P | y ≤ x for all y ∈ A}.

Instead ofL({a}),L({a, b}),L(A∪{a}),L(A∪B),L(U(A))we simply writeL(a),L(a, b),
L(A, a), L(A, B), LU(A), respectively. Analogously we proceed in similar cases. We also
put

⏐
�(A) = {x ∈ P | x ≤ y for some y ∈ A}.
We start with the following definition.

Definition 2.1 A poset P = (P, ≤) is called sectionally pseudocomplemented if for all
a, b ∈ P there exists a greatest c ∈ P satisfying L(U(a, b), c) = L(b). This element c is
called the sectional pseudocomplement a ∗ b of a with respect to b. The poset P is called
strongly sectionally pseudocomplemented if it is sectionally pseudocomplemented, it has a
greatest element 1 and it satisfies the condition x ≤ (x ∗ y) ∗ y (which, as we will see later,
is equivalent to the identity x ∗ ((x ∗ y) ∗ y) ≈ 1).

In the following we list several important properties of sectionally pseudocomplemented
posets.

Theorem 2.2 Let P = (P, ≤, ∗, 1) be a sectionally pseudocomplemented poset with 1.
Then the following hold:

(i) x ≤ y if and only if x ∗ y = 1,
(ii) x ∗ x ≈ x ∗ 1 ≈ 1,
(iii) 1 ∗ x ≈ x,
(iv) x ∗ (y ∗ x) ≈ 1,
(v) if x ∗ y = 1 or y ∗ x = 1, then x ∗ ((x ∗ y) ∗ y) = 1,
(vi) if x ∗ y = 1, then (y ∗ z) ∗ (x ∗ z) = 1.

Proof Let a, b, c ∈ P .
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(i) The following are equivalent:

a ≤ b,

U(a, b) = U(b),

LU(a, b) = L(b),

L(U(a, b), 1) = L(b),

a ∗ b = 1.

(ii) It follows from (i).
(iii) The following are equivalent:

L(U(1, a), b) = L(a),

L(b) = L(a),

b = a.

(iv) We have L(U(a, b), b) = L(b) implies b ≤ a ∗ b.
(v) If a ≤ b, then a ≤ b = 1∗ b = (a ∗ b)∗ b according to (iii) and (i), and if b ≤ a, then

L(U(a∗b, b), a) = L(a∗b, a) = L(U(a, b), a∗b) = L(b) and hence a ≤ (a∗b)∗b.
(vi) If a ≤ b, then L(c) ⊆ L(U(a, c), b ∗ c) ⊆ L(U(b, c), b ∗ c) = L(c), i.e.

L(U(a, c), b ∗ c) = L(c) whence b ∗ c ≤ a ∗ c.

In a lattice (P, ∨,∧) the equation L(U(a, b), c) = L(b) is equivalent to (a ∨b)∧c = b.
If P is a join-semilattice then L(U(a, b), c) = L(U(a ∨ b), c) = L(a ∨ b, c).
Recall that a poset P with 0 is called pseudocomplemented (cf. [10]) if for every a ∈ P

there exists a greatest b ∈ P with L(a, b) = L(0). The subsets of P of the form U(x)

(x ∈ P ) are called sections of P. The following are equivalent:

Every section of P is pseudocomplemented,

for all b ∈ P and a ∈ U(b) there exists a greatest c ∈ U(b) with

L(a, c) ∩ U(b) = L(b) ∩ U(b).

(Observe that L(b) ∩ U(b) = {b}.)
If P is a join-semilattice then we have the following analogy between the property

that P is sectionally pseudocomplemented and the property that every section of P is
pseudocomplemented.

The following are equivalent:

P is sectionally pseudocomplemented,

for all a, b ∈ P there exists a greatest c ∈ P with L(a ∨ b, c) = L(b),

for all b ∈ P and a ∈ U(b) there exists a greatest c ∈ P with L(a, c) = L(b),

for all b ∈ P and a ∈ U(b) there exists a greatest c ∈ U(b) with L(a, c) = L(b).

If our sectionally pseudocomplemented poset is even a meet-semilattice we can obtain
more.

Proposition 2.3 In every sectionally pseudocomplemented meet-semilattice P = (P, ≤,

∗, 1) the section U(b) is a pseudocomplemented poset for all b ∈ P .
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Proof Let b ∈ P and a ∈ U(b). Since P is sectionally pseudocomplemented there exists a
greatest c ∈ P satisfying L(U(a, b), c) = L(b). Let us compute

L(U(a, b), c) = L(U(a), c) = L(a, c) = L(b).

Therefore also L(a, c) ∩ U(b) = L(b) ∩ U(b). Now, let d ∈ P such that L(a, d) ∩ U(b) =
L(b) ∩ U(b). Then b ∈ L(a, d). Let us compute

L(U(a, b), d) = L(U(a), d) = L(a, d) = L(a ∧ d) ⊇ L(b).

Hence b ≤ a∧d. Then a∧d ∈ L(a, d)∩U(b) = {b} and we obtain b = a∧d. Therefore
L(U(a, b), d) = L(b), i.e., d ≤ c.

The following example shows that there really exist sectionally pseudocomplemented
posets which are not strongly sectionally pseudocomplemented. Hence, we cannot expect
that every sectionally pseudocomplemented poset satisfies the condition x ≤ (x ∗ y) ∗ y.

Example 2.4 The poset visualized in Fig. 1 is sectionally pseudocomplemented and ∗ has
the operation table shown in Fig. 1, but it is not strongly sectionally pseudocomplemented
since c �≤ a = f ∗ a = (c ∗ a) ∗ a.

In [5], the first and second author also presented a slightly different notion of sec-
tionally pseudocomplemented poset. Hence a poset P introduced in [5] will be called
CKL-sectionally pseudocomplemented if for all a, b ∈ P , there exists d ∈ P (called a
CKL-sectional pseudocomplement) such that for all x ∈ P

(1) L(U(a, b), U(x, b)) = L(b) if and only if d ∈ U(x, b).

Further, it was shown in [5] that if such a d exists then it is unique and satisfies
b ≤ d and L(U(a, b), d) = L(b). If e ∈ P and L(U(a, b), e) = L(b) then b ≤ e and
hence L(U(a, b), U(e, b)) = L(U(a, b), U(e)) = L(U(a, b), e) = L(b), thus, by (1),
d ∈ U(e, b) which implies e ≤ d. This shows that d is the greatest c ∈ P satisfying
L(U(a, b), c) = L(b). In other words, if d is the CKL-sectional pseudocomplement of a

with respect to b then d is the sectional pseudocomplement of a with respect to b as defined
in the present paper.

Fig. 1
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Proposition 2.5 Every CKL-sectionally pseudocomplemented poset P = (P, ≤, ∗, 1) with
top element 1 is strongly sectionally pseudocomplemented.

Proof From the above considerations we have that P is sectionally pseudocomplemented.
Let us check that x ≤ (x∗y)∗y for all x, y ∈ P . By Theorem 2.2 (iv), we have y ≤ (x∗y)∗y.
Because x ∗ y is the sectional pseudocomplement of x with respect to y, we can compute

L(U(x ∗ y, y), U(x, y)) = L(U(x ∗ y), U(x, y)) = L(U(x, y), x ∗ y) = L(y).

Since P is CKL-sectionally pseudocomplemented the CKL-sectional pseudocomplement of
x∗y with respect to y is (x∗y)∗y and, by (1), (x∗y)∗y ∈ U(x, y), i.e., x ≤ (x∗y)∗y.

In particular, we have from Example 2.4 that there exists a sectionally pseudocomple-
mented poset which is not CKL-sectionally pseudocomplemented.

For join-semilattices we know more. We are going to show that every sectionally
pseudocomplemented join-semilattice with 1 is strongly sectionally pseudocomplemented.

Theorem 2.6 Let P = (P, ≤, 1) be a join-semilattice with a top element 1. The following
conditions are equivalent:

(i) P is CKL-sectionally pseudocomplemented.
(ii) P is strongly sectionally pseudocomplemented.
(iii) P is sectionally pseudocomplemented.

Proof Clearly, (i) implies (ii) and (ii) implies (iii). Let us check that (iii) implies (i). Let
a, b ∈ P and let a ∗ b be the sectional pseudocomplement of a with respect to b. Then for
all x ∈ P the following are equivalent:

L(U(a, b), U(x, b)) = L(b),

L(U(a, b), x ∨ b) = L(b),

x ∨ b ≤ a ∗ b,

a ∗ b ∈ U(x, b).

Therefore a ∗ b is the CKL-sectional pseudocomplement of a with respect to b for all
a, b ∈ P .

The following result follows from the previous theorem.

Corollary 2.7 [3] Every sectionally pseudocomplemented lattice L = (L, ∨,∧, ∗) satisfies
x ∨ y ≤ (x ∗ y) ∗ y.

Recall from [5] or [8] that the relative pseudocomplement of a with respect to b is
the greatest d ∈ P satisfying L(a, d) ⊆ L(b). The poset P = (P,≤) is called rela-
tively pseudocomplemented if for all a, b ∈ P the relative pseudocomplement of a with
respect to b exists. Every relatively pseudocomplemented join-semilattice is sectionally
pseudocomplemented. This can be seen as follows: Assume P to be a relatively pseudo-
complemented join-semilattice and let a, b ∈ P . Then there exists a greatest element d

of P with L(a ∨ b, d) ⊆ L(b). Since L(a ∨ b, b) = L(b) we have b ≤ d and hence
L(a ∨ b, d) = L(b). If e ∈ P and L(a ∨ b, e) = L(b) then L(a ∨ b, e) ⊆ L(b) and hence
e ≤ d. This shows that d is the sectional pseudocomplement of a with respect to b.
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It was shown by Y. S. Pawar [8] that the Dedekind-MacNeille completion DM(P) of
a relatively pseudocomplemented poset P is relatively pseudocomplemented and that the
relative pseudocomplementation in DM(P) extends the relative pseudocomplementation in
P if P is canonically embedded into DM(P). We will use this fact to prove the following.

Theorem 2.8 Every relatively pseudocomplemented poset P is sectionally pseudocomple-
mented.

Proof Let a, b ∈ P and let a ◦ b denote the relative pseudocomplement of a with respect to
b. We have to show that a ◦ b is the sectional pseudocomplement of a with respect to b.

From the above note we know that L(a ◦ b) is the relative pseudocomplement of L(a)

with respect to L(b) in the lattice DM(P). Hence it is also the sectional pseudocomplement
of a with respect to b in DM(P). Since DM(P) is a lattice, L(a ◦ b) is the greatest element
C of DM(P) satisfying (L(a) ∨ L(b)) ∧ C = L(b). But this means exactly that L(a ◦ b) is
the greatest element C of DM(P) such that L(U(a, b), U(C)) = L(b). In particular, a ◦ b

is the greatest element c of P such that L(U(a, b), c) = L(U(a, b), U(c)) = L(b).

It was shown in [3] that the class of sectionally pseudocomplemented lattices forms a
variety. However, the defining identities given in [3] are rather complicated. We present
some simpler identities as follows.

Theorem 2.9 The class of sectionally pseudocomplemented lattices forms a variety which
besides the lattice axioms is determined by the following identities:

(i) z ∨ y ≤ x ∗ ((x ∨ y) ∧ (z ∨ y)),
(ii) (x ∨ y) ∧ (x ∗ y) ≈ y.

Proof Let L = (L, ∨,∧) be a lattice and a, b, c ∈ L. First assume L to be sectionally
pseudocomplemented. If d := (a ∨ b) ∧ (c ∨ b), then

a ∨ d = a ∨ ((a ∨ b) ∧ (c ∨ b)) = a ∨ (b ∨ ((a ∨ b) ∧ (c ∨ b))) =
= (a ∨ b) ∨ ((a ∨ b) ∧ (c ∨ b)) = a ∨ b,

c ∨ d = c ∨ ((a ∨ b) ∧ (c ∨ b)) = c ∨ (b ∨ ((a ∨ b) ∧ (c ∨ b))) =
= (c ∨ b) ∨ ((a ∨ b) ∧ (c ∨ b)) = c ∨ b

and hence
d ≤ (a ∨ d) ∧ (c ∨ d) = (a ∨ b) ∧ (c ∨ b) = d,

i.e. (a ∨ d) ∧ (c ∨ d) = d which shows

c ∨ b = c ∨ d ≤ a ∗ d = a ∗ ((a ∨ b) ∧ (c ∨ b))

proving (i). Identity (ii) follows from the definition of ∗. Conversely, assume L to satisfy (i)
and (ii). Then (a ∨ b) ∧ (a ∗ b) = b according to (ii). If (a ∨ b) ∧ c = b, then b ≤ c and
hence (a ∨ b) ∧ (c ∨ b) = (a ∨ b) ∧ c = b whence

c = c ∨ b ≤ a ∗ ((a ∨ b) ∧ (c ∨ b)) = a ∗ b

according to (i). This shows that a ∗ b is the sectional pseudocomplement of a with respect
to b.

Evidently, every relatively pseudocomplemented lattice (L, ∨,∧) is sectionally pseudo-
complemented since for a, b ∈ L we have a ∗ b = (a ∨ b) ◦ b where ∗ and ◦ denote
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sectional and relative pseudocomplementation, respectively. (Observe that (a ∨ b) ∧ b = b

and hence (a ∨ b) ∧ ((a ∨ b) ◦ b) = b.) The following poset is an example of a sectionally
pseudocomplemented poset which is neither a lattice nor relatively pseudocomplemented.

Example 2.10 The poset visualized in Fig. 2 is strongly sectionally pseudocomplemented
and the operation table of ∗ is shown in Fig. 2.

Evidently, this poset is not a lattice. However, it is also not relatively pseudocomple-
mented since the relative pseudocomplement of c with respect to a does not exist. The poset
visualized in Fig. 3 is a strongly sectionally pseudocomplemented lattice and ∗ has the oper-
ation table shown in Fig. 3, but this poset is not relatively pseudocomplemented since the
relative pseudocomplement of c with respect to a does not exist.

Remark 2.11 Assertion (vi) of Theorem 2.2 says that ∗ is antitone in the first variable, i.e.
x ≤ y implies y ∗ z ≤ x ∗ z. Contrary to the case of relatively pseudocomplemented posets,
sectional pseudocomplementation is not monotone in the second variable. Namely, in the
poset visualized in Fig. 2 we have 0 ≤ a, but b ∗ 0 = c �≤ a = b ∗ a. However, ∗ need not
be monotone in the second variable also in sectionally pseudocomplemented lattices as the
following example shows.

Example 2.12 The lattice visualized in Fig. 4 is sectionally pseudocomplemented and ∗ has
the operation table shown in Fig. 4. Here we have 0 < a and b ∗ 0 = d ‖ c = b ∗ a.

For every algebra (A, ∗, 1) of type (2, 0) and every subset B of A put

L(B) := {x ∈ A | x ∗ y = 1 for all y ∈ B},
U(B) := {x ∈ A | y ∗ x = 1 for all y ∈ B}.

We are going to show that sectionally pseudocomplemented posets can be defined as certain
groupoids.

Fig. 2
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Fig. 3

Theorem 2.13 An algebra (A, ∗, 1) of type (2, 0) can be organized into a sectionally
pseudocomplemented poset with 1 if and only if the following hold:

(i) x ∗ x ≈ 1,
(ii) x ∗ y = y ∗ x = 1 ⇒ x = y,
(iii) x ∗ y = y ∗ z = 1 ⇒ x ∗ z = 1,
(iv) L(U(x, y), x ∗ y) = L(y),
(v) L(U(x, y), z) = L(y) ⇒ z ∗ (x ∗ y) = 1.

Fig. 4
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Proof The necessity of the conditions is clear. Conversely, if ≤ is defined on A by x ≤
y if and only if x ∗ y = 1, then conditions (i) – (v) imply (A, ≤, ∗, 1) is a sectionally
pseudocomplemented poset.

Recall that a lattice (L,∨, ∧) is called completely meet-semidistributive if the following
holds:

If ∅ �= M ⊆ L, a, b ∈ L and x ∧ a = b for all x ∈ M, then (
∨

M) ∧ a = b.

For posets, we modify this concept as follows.

Definition 2.14 A poset (P, ≤) is called completely L-semidistributive if the following
holds:

If ∅ �= M ⊆ P, a, b ∈ P and L(x, a) = L(b) for all x ∈ M, then L(U(M), a) = L(b).

Theorem 2.15 Let P = (P, ≤, ∗) be a sectionally pseudocomplemented poset. Then P is
completely L-semidistributive.

Proof If ∅ �= M ⊆ P, a, b ∈ P and L(x, a) = L(b) for all x ∈ M , then b ≤ a and
therefore L(U(a, b), x) = L(a, x) = L(b) for all x ∈ M and hence x ≤ a ∗b for all x ∈ M

whence a ∗ b ∈ U(M) which finally implies

L(b) ⊆ L(U(M), a) ⊆ L(a ∗ b, a) = L(U(a, b), a ∗ b) = L(b),

i.e. L(U(M), a) = L(b).

3 Congruences in Sectionally Pseudocomplemented Posets

Theorem 2.2 (i) shows that in a sectionally pseudocomplemented poset (P, ≤, ∗, 1) with 1,
≤ is uniquely determined by ∗. Let (P, ≤, ∗, 1) be a sectionally pseudocomplemented poset
with 1 and � ∈ Con(P, ∗). We are interested in the question when (P/�,≤′) is a poset
where ≤′ is defined by [x]� ≤′ [y]� if [x]� ∗ [y]� = [1]� (x, y ∈ P ). We will see that
this is the case if � is convex, i.e. every class of � is a convex subset of (P, ≤).

First we show that if (P, ≤, ∗, 1) is a finite sectionally pseudocomplemented poset with
1, then (P, ∗) has convex congruences.

In the following lemma and theorem we frequently use Theorem 2.2 (v).

Lemma 3.1 Let (P, ≤, ∗, 1) be a sectionally pseudocomplemented poset with 1 satisfying
the Ascending Chain Condition, let a, b ∈ P and � ∈ Con(P, ∗) and assume a < b <

(b ∗ a) ∗ a and a � (b ∗ a) ∗ a. Then a � b.

Proof Assume (a, b) /∈ �. Put a1 := a, a2 := b and an := (an−1 ∗ an−2) ∗ an−2 for n ≥ 3.
Then a1 < a2 < a3 and a3 � a1. Now

a4 = (a3 ∗ a2) ∗ a2 � (a1 ∗ a2) ∗ a2 = 1 ∗ a2 = a2.

Moreover, a3 ≤ a4. Now a3 = a4 would imply a1 � a3 = a4 � a2, a contradiction. This
shows a3 < a4. Now

a5 = (a4 ∗ a3) ∗ a3 � (a2 ∗ a3) ∗ a3 = 1 ∗ a3 = a3.
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Moreover, a4 ≤ a5. Now a4 = a5 would imply a1 � a3 � a5 = a4 � a2, a contradiction.
This shows a4 < a5. Going on in this way we would obtain an infinite strictly ascending
chain a1 < a2 < a3 < a4 < a5 < · · · contradicting the Ascending Chain Condition. This
shows a � b.

Hence, we conclude

Theorem 3.2 Let (P, ≤, ∗, 1) be a sectionally pseudocomplemented poset with 1 satisfying
the Ascending Chain Condition and let � ∈ Con(P, ∗). Then � is convex.

Proof Assume a, b, c ∈ P , a < b < c and (a, c) ∈ �. Then b ≤ (b∗a)∗a. If b = (b∗a)∗a,
then b = (b ∗ a) ∗ a � (b ∗ c) ∗ a = 1 ∗ a = a. If b < (b ∗ a) ∗ a, then a � b according to
Lemma 3.1.

Corollary 3.3 If (P, ≤, ∗, 1) is a finite sectionally pseudocomplemented poset with 1, then
(P, ∗) has convex congruences.

For the infinite case we have the following result.

Theorem 3.4 Let (P, ≤, ∗, 1) be a sectionally pseudocomplemented poset with 1 such that
x, y ∈ P , x < y < 1, x �≺ y and x < y ∗ x together imply �(x, y) = P 2. Then (P, ∗) has
convex congruences.

Proof Let � ∈ Con(P, ∗) and a, b, c ∈ P and assume a < b < c and (a, c) ∈ �. If c = 1,
then

a � 1 = a ∗ b � 1 ∗ b = b.

If c < 1 and a < c ∗ a, then �(a, c) = P 2 and hence � = P 2 which implies a � b. If
c < 1 and a = c ∗ a, then

a = 1∗a = (a∗a)∗a � (c∗a)∗a = a∗a = 1 = a∗b = (c∗a)∗b � (a∗a)∗b = 1∗b = b.

This shows that � is convex.

Let (P, ≤, ∗, 1) be a sectionally pseudocomplemented poset with 1 and � ∈ Con(P, ∗).
We define a binary relation ≤′ on P/� by [x]� ≤′ [y]� if [x]�∗[y]� = [1]� (x, y ∈ P ).
Now we can prove

Theorem 3.5 Let (P, ≤, ∗, 1) be a strongly sectionally pseudocomplemented poset and let
a, b ∈ P and � a convex congruence on (A, ∗). Then the following hold:

(i) If [a]� ≤′ [b]�, then there exists some d ∈ [b]� with a ≤ d,
(ii) if a ≤ b, then [a]� ≤′ [b]�,
(iii) (P/�,≤′) is a poset.

Proof

(i) Put d := (a ∗ b) ∗ b. Then d = (a ∗ b) ∗ b � 1 ∗ b = b and a ≤ (a ∗ b) ∗ b = d.
(ii) If a ≤ b, then a ∗ b = 1 according to Theorem 2.2 and hence a ∗ b � 1, i.e.

[a]� ≤′ [b]�.
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(iii) Obviously, ≤′ is reflexive. Now assume [a]� ≤′ [b]� ≤′ [a]�. Then, by (i), there
exists some d ∈ [b]� with a ≤ d. Because of [d]� = [b]� ≤′ [a]� there exists
some e ∈ [a]�with d ≤ e. Since a ≤ d ≤ e, (a, e) ∈ � and� is convex we conclude
(a, d) ∈ �. Therefore [a]� = [d]� = [b]� which proves antisymmetry of ≤′.
Finally, let c ∈ P and assume [a]� ≤′ [b]� ≤′ [c]�. Then, by (i) there exists some
f ∈ [b]� with a ≤ f and because of [f ]� = [b]� ≤′ [c]� some g ∈ [c]� with
f ≤ g. Because of a ≤ f ≤ g we have a ≤ g which implies [a]� ≤′ [g]� = [c]�
by (ii), proving transitivity of ≤′.

Lemma 3.6 Let P = (P, ≤, ∗, 1) be a strongly sectionally pseudocomplemented poset,
a ∈ P and � ∈ Con(P, ∗). Then [a]� is up-directed. Hence, if P satisfies the Ascending
Chain Condition, then [a]� has a greatest element.

Proof If b, c ∈ [a]�, then

(b ∗ c) ∗ c ∈ [(c ∗ c) ∗ c]� = [1 ∗ c]� = [c]� = [a]�,

b ≤ (b ∗ c) ∗ c since P is strongly sectionally pseudocomplemented, and c ≤ (b ∗ c) ∗ c

according to Theorem 2.2 (iv).

From Theorem 3.5 we have: If (P,≤, ∗, 1) is a strongly sectionally pseudocomple-
mented poset, � a convex congruence on (P, ∗), a the greatest element of [a]� and b the
greatest element of [b]�, then a ≤ b if and only if [a]� ≤′ [b]�.

Now we solve the problem for which � ∈ Con(P, ∗) the quotient P/� is again
sectionally pseudocomplemented. We can state a sufficient condition.

Definition 3.7 Let P = (P, ≤, ∗) be a sectionally pseudocomplemented poset and � ∈
Con(P, ∗). We say that � is strong if the following holds: If a, b ∈ P , a is the greatest
element of [a]� and b the greatest element of [b]�, then a ∗ b is the greatest element of
[a ∗ b]�. In this case we define [a]� ∗′ [b]� := [a ∗ b]�.

It is easy to see that if � is strong, a, b, c, d ∈ P , a ≤ b and c is the greatest element of
[a]� and d the greatest element of [b]�, then c ≤ d.

Theorem 3.8 Let P = (P, ≤, ∗, 1) be a strongly sectionally pseudocomplemented poset
and � ∈ Con(P, ∗) a strong congruence. If P satisfies the Ascending Chain Condition, then
(P/�,≤′, ∗′, [1]�) is a strongly sectionally pseudocomplemented poset.

Proof Since P satisfies the Ascending Chain Condition we know from Theorems 3.2 and
3.5 that � is convex and (P/�,≤′) a poset. Moreover, from Lemma 3.6 we have that any
congruence class of � has a greatest element. Put

Q := {x ∈ P | x is the greatest element of [x]�}.
Then (Q, ∗, 1) is a subalgebra of (P, ∗, 1). Assume a, b ∈ Q. Since P is a strongly sec-
tionally pseudocomplemented poset and � is strong we have a, b ≤ (a ∗ b) ∗ b and
a ∗ b, (a ∗ b) ∗ b ∈ Q. This implies

LQ(b) ⊆ LQ(UQ(a, b), a ∗ b) ⊆ LQ(UQ((a ∗ b) ∗ b), a ∗ b) = LQ((a ∗ b) ∗ b, a ∗ b) =
= L((a ∗ b) ∗ b, a ∗ b) ∩ Q = L(U(a ∗ b, b), (a ∗ b) ∗ b) ∩ Q = L(b) ∩ Q = LQ(b).
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Note that the first inclusion follows from the fact that b ≤ a ∗ b and b ∈ LQUQ(a, b). The
second inclusion follows from the fact that LQUQ(a, b) ⊆ LQUQ((a ∗ b) ∗ b). The first
equality follows from LQUQ((a ∗ b) ∗ b) = LQ((a ∗ b) ∗ b). The second equality follows
from the definition of LQ. Since P is sectionally pseudocomplemented we have the next but
one equality.

Now, let c ∈ Q be such that LQ(UQ(a, b), c) = LQ(b). We have UQ(a, b) =
U(a, b)∩Q ⊆ U(a, b). Hence LU(a, b) ⊆ LUQ(a, b) = ⏐

�(LQUQ(a, b)). The last equal-
ity follows from the fact that LQUQ(a, b) ⊆ LUQ(a, b) which yields

⏐
�(LQUQ(a, b)) ⊆

⏐
�(LUQ(a, b)) = LUQ(a, b) and from the fact that y ∈ LUQ(a, b) implies y ≤ x ∈
LQUQ(a, b) where x is the greatest element of [y]�.

We obtain L(b) ⊆ L(U(a, b), c) ⊆ ⏐
�(LQUQ(a, b) ∩ LQ(c)) = ⏐

�(LQ(b)) = L(b)

since b, c ∈ Q. Since P is a sectionally pseudocomplemented poset we have c ≤ a ∗ b, i.e.,
(Q, ∗, 1) is sectionally pseudocomplemented. Since (Q, ∗, 1) is a subalgebra of (P, ∗, 1)
we have that (Q, ∗, 1) is strongly sectionally pseudocomplemented. Moreover, x �→ [x]�
an isomorphism from (Q,≤, ∗, 1) to (P/�,≤′, ∗′, [1]�) and hence (P/�,≤′, ∗′, [1]�)

is also a strongly sectionally pseudocomplemented poset.

The following lemma shows that in a strongly sectionally pseudocomplemented poset
(P, ≤, ∗, 1) where every congruence on (P, ∗) is convex, all principal congruences �(a, b)

with a ≤ b are of the form �(c, 1) (i.e. (P, ∗) has so-called em transferable principal
congruences, see [4]).

Lemma 3.9 Let (P, ≤, ∗, 1) be a strongly sectionally pseudocomplemented poset, assume
that every congruence on (P, ∗) is convex and let a, b ∈ P with a ≤ b . Then �(b ∗ a, 1) =
�(a, b).

Proof Since (a, b) ∈ �(a, b) yields (b ∗ a, 1) = (b ∗ a, b ∗ b) ∈ �(a, b), we have �(b ∗
a, 1) ⊆ �(a, b). Conversely, (b ∗ a, 1) ∈ �(b ∗ a, 1) yields ((b ∗ a) ∗ a, a) = ((b ∗ a) ∗
a, 1∗a) ∈ �(b∗a, 1) which because of a ≤ b ≤ (b∗a)∗a and the convexity of �(b∗a, 1)
implies (a, b) ∈ �(b ∗ a, 1), i.e. �(a, b) ⊆ �(b ∗ a, 1).

4 Completion of Sectionally Pseudocomplemented Posets

Now we consider the Dedekind-MacNeille completion of sectionally pseudocomplemented
posets.

In contrast to the situation of relatively pseudocomplemented posets the Dedekind-
MacNeille completion of a strongly sectionally pseudocomplemented poset P need not be
sectionally pseudocomplemented, even if P is finite and has a greatest element.

Example 4.1 Though the poset visualized in Fig. 5 is strongly sectionally pseudocom-
plemented with the operation table for ∗ as below, its Dedekind-MacNeille completion
visualized in Fig. 6 is not sectionally pseudocomplemented since a ∗ 0 does not exist.

For our next investigations, we introduce the following useful concepts.

Definition 4.2 Let (I, ≤) be a chain with greatest element � and smallest element ⊥. Let
Pi = (Pi,≤i ), i ∈ I, be a family of posets such that P� has a greatest element 1 and such
that the following hold:
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Fig. 5

(i) If i ∈ I , then there are a, b ∈ Pi with a < b,
(ii) if i, j, k ∈ I and i < k < j , then Pi ∩ Pj = ∅,
(iii) if i, j ∈ I and i < j , then |Pi ∩ Pj | ≤ 1,
(iv) if i, j ∈ I , i < j and Pi ∩ Pj = {a}, then Pi = LPi

(a) and Pj = UPj
(a).

Put P = ⋃

i∈I

Pi . For a, b ∈ P , say a ∈ Pi and b ∈ Pj with i, j ∈ I , define

a ≤ b if and only if a = b or (i = j and a ≤i b) or i < j .

We call P = (P, ≤) the generalized ordinal sum of Pi , i ∈ I .

It is elementary that P is a poset with a greatest element 1.
Now, we can state some sufficient conditions under which the Dedekind-MacNeille com-

pletion of a sectionally pseudocomplemented poset is sectionally pseudocomplemented. By
[9] the Dedekind-MacNeille completion of a poset P is (up to isomorphism) any complete

Fig. 6
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lattice Q into which P can be supremum-densely and infimum-densely embedded (i.e., for
every element x ∈ Q there exist M,N ⊆ P such that x = ∨

ϕ(M) = ∧

ϕ(N), where
ϕ : P → Q is the embedding). We usually identify P with ϕ(P ). In this sense Q preserves
all infima and suprema existing in P.

Now we turn our attention to a notion of a DM-yoked family of a generalized ordinal
sum. The importance of this concept is based on the fact that under natural assumptions
(which are e.g. satisfied for a finite index set I ) the Dedekind-MacNeille completion of a
generalized ordinal sum will be isomorphic to a generalized ordinal sum of the respective
DM-yoked family.

Definition 4.3 Let P = (P, ≤) be the generalized ordinal sum of Pi = (Pi,≤i ), i ∈ I . We
say that a familyQi = (Qi,≤i ), i ∈ I, of posets is aDM-yoked family of P if the following
conditions are satisfied:

(y1) Pi is a sub-poset of Qi such that Qi is the Dedekind-MacNeille completion of Pi

for every i ∈ I ,
(y2) if i, j, k ∈ I and i < k < j , then Qi ∩ Qj = ∅,
(y3) if i, j ∈ I and i < j , then |Qi ∩ Qj | ≤ 1,
(y4) if i, j ∈ I , i ≺ j , Pi ∩ Pj = ∅, Pi has a greatest element and Pj has a smallest

element, then Qi ∩ Qj = ∅,
(y5) if i, j ∈ I , i ≺ j , Pi ∩ Pj = ∅, Pi does not have a greatest element and Pj has a

smallest element 0Pj
, then 0Pj

is the greatest element of Qi ,
(y6) if i, j ∈ I , i ≺ j , Pi ∩ Pj = ∅, Pj does not have a smallest element and Pi has a

greatest element 1Pi
, then 1Pi

is the smallest element of Qj ,
(y7) if i, j ∈ I , i ≺ j , Pi ∩ Pj = ∅, Pj does not have a smallest element and Pi does not

have a greatest element, then the greatest element 1Qi
of Qi is the smallest element

0Qj
of Qj ,

(y8) if i, j ∈ I , i < j and Qi ∩ Qj = {a}, then a is the greatest element of Qi and the
smallest element of Qj .

The question when there exists a DM-yoked family for a given poset P which is a gen-
eralized ordinal sum of posets Pi = (Pi,≤i ), i ∈ I, is positively answered in the following
series of lemmas.

We will first need the following definition.

Definition 4.4 Let P = (P, ≤) be the generalized ordinal sum of Pi = (Pi, ≤i ), i ∈ I .
We say that a family Ri = (Ri, ≤i ), i ∈ I, of posets is a DM-related family of P if the
following conditions are satisfied:

(r1) Pi is a sub-poset of Ri such that Ri is the Dedekind-MacNeille completion of Pi for
every i ∈ I ,

(r2) For every i ∈ I , 0Ri
< 1Ri

,
(r3) If i < k < j , then Ri ∩ Rj = ∅,
(r4) For i ≺ j , Ri ∩ Rj �= ∅ if and only if Ri ∩ Rj = {a} with 1Ri

= a = 0Rj
.

Let P = (P, ≤) be the generalized ordinal sum of Pi = (Pi,≤i ), i ∈ I . For every i ∈ I ,
let Ri = (Ri,≤i ) be the Dedekind-MacNeille completion of Pi . We can assume without
loss of generality that

(a) Ri ∩ Rj = ∅ if and only if Pi ∩ Pj = ∅, and
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(b) Ri ∩ Rj = {a} if and only if Pi ∩ Pj = {a}.
Hence a DM-related family Ri = (Ri, ≤i ), i ∈ I, of P always exists.

Lemma 4.5 Let P = (P, ≤) be the generalized ordinal sum of Pi = (Pi,≤i ), i ∈ I .
Then a DM-yoked family Qi = (Qi, ≤i ), i ∈ I , of P exists.

Proof Let Ri = (Ri,≤i ), i ∈ I, be the DM-related family of P which always exists. We
will proceed in two steps.

Step 1: Let i ∈ I . Assume that there exists some j ∈ I with i ≺ j and Pi ∩Pj = ∅. If Pi

does not have a greatest element we put Si := (Ri \ {1Ri
}) ∪ {0Rj

} such that 0Rj
will be the

greatest element of Si and the order ≤i on Si restricted to Ri \ {1Ri
} will be the restriction

of the order on Ri . Clearly Pi ⊆ Si and Pi is a sub-poset of Si . If Pi does have a greatest
element, we put Si := Ri . If Pi ∩Pj = {a}, then a = 1Pi

= 0Pj
. Hence also a = 1Ri

= 0Rj

and we put Si := Ri . If there is no j ∈ I such that i ≺ j , we put again Si := Ri .
Let us verify that Si = (Si,≤Si

), i ∈ I , is a DM-related family of P. Since every Si is
isomorphic to Ri , conditions (r1) and (r2) are satisfied.

Let us check condition (r3). Assume i < k < j and a ∈ Si ∩ Sj . Since Ri ∩ Rj = ∅ we
have a �∈ Ri or a �∈ Rj . Suppose first that a �∈ Ri . Then the poset Pi does not have a greatest
element, there exists some l ∈ I with i ≺ l ≤ k < j , a = 0Rl

< 1Rl
and Pi ∩Pl = ∅. Since

l < j , a = 0Rl
/∈ Rj . Hence a ∈ Sj \ Rj , i.e., a = 0Rm for some m ∈ I , j ≺ m. We have

l < j < m and a ∈ Rl ∩ Rm, a contradiction with (r3) for the family Ri , i ∈ I . Second,
assume that a �∈ Rj . Therefore a = 0Rm for some m ∈ I , j ≺ m. Since i < k < j < m

we have Ri ∩ Rm = ∅. Thus a �∈ Ri , i.e., a = 0Rl
for some l ∈ I , i ≺ l ≤ k. Hence

a ∈ Rl ∩ Rm and l < j < m, again a contradiction with (r3) for the family Ri , i ∈ I .
Let us see that Si , i ∈ I satisfies, condition (r4). Assume that i ≺ j , a ∈ Si ∩ Sj .
Case 1: Si = Ri and Sj = Rj . Then a = 1Ri

= 1Si
and a = 0Rj

= 0Sj
.

Case 2: Si = Ri and Sj = (Rj \ {1Rj
}) ∪ {0Rk

} for k ∈ I , j ≺ k. Hence

a ∈ Si ∩ Sj = Ri ∩ [

(Rj \ {1Rj
}) ∪ {0Rk

}] = Ri ∩ Rj .

Thus Ri ∩ Rj = {a} with a = 1Ri
= 1Si

and a = 0Rj
= 0Sj

.
Case 3: Si = (Ri \ {1Ri

}) ∪ {0Rj
} and Sj = Rj . We have

a ∈ Si ∩ Sj = Rj ∩ [

(Ri \ {1Ri
}) ∪ {0Rj

}] = {0Rj
}.

Hence a = 0Rj
= 0Sj

and a = 1Si
.

Case 4: Si = (Ri \ {1Ri
}) ∪ {0Rj

} and Sj = (Rj \ {1Rj
}) ∪ {0Rk

} for k ∈ I , j ≺ k. Then

Si ∩Sj = [

(Ri \ {1Ri
}) ∪ {0Rj

}]∩ [

(Rj \ {1Rj
}) ∪ {0Rk

}] = {0Rj
} ∩ (Rj \ {1Rj

}) = {0Rj
}.

We obtain that a = 0Rj
= 1Si

= 0Sj
.

Step 2: Let j ∈ I . Assume there exists some i ∈ I with i ≺ j and Pi ∩ Pj = ∅. If
Pj does not have a smallest element, we put Qj := (Sj \ {0Sj

}) ∪ {1Si
} such that 1Si

will
be the smallest element of Qj and the order ≤j on Qj restricted to Sj \ {0Sj

} will be the
restriction of the order on Sj . Clearly Pj ⊆ Qj and Pj is a sub-poset of Qj . Otherwise we
always put Qj := Sj .

Since Si = (Si, ≤Si
), i ∈ I , is a DM-related family of P by the same reasonings as above

we can show that Qi = (Qi,≤Qi
), i ∈ I , is a DM-related family of P.
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Let us now check that Qi = (Qi,≤Qi
), i ∈ I, is a DM-yoked family of P.

(y1), (y2): This follows immediately from (r1) and (r3).
(y3), (y8): This follows immediately from (r3) and (r4).

(y4) Assume i, j ∈ I , i ≺ j , Pi ∩ Pj = ∅, Pi has a greatest element 1Pi
and Pj has

a smallest element 0Pj
. Then Ri ∩ Rj = ∅, Si = Ri and Qj = Sj . Assume a ∈

Qi ∩ Qj . Then a ∈ Qi ∩ Sj . We have either a = 1Sh
for some h ∈ I with h ≺ i

or a ∈ Si = Ri , and either a ∈ Rj or a = 0Rk
for some k ∈ I with j ≺ k. We can

assume
a ∈ Si = Ri or a ∈ Rh ∪ Ri for some h ≺ i < j and a ∈ Sj ⊆ Rj ∪ Rk .

Moreover, Rh ∩(Rj ∪Rk) = ∅ and Ri ∩(Rj ∪Rk) = ∅, a contradiction. We conclude
Qi ∩ Qj = ∅.

(y5) Suppose i, j ∈ I , i ≺ j , Pi ∩Pj = ∅, Pi does not have a greatest element and Pj has
a smallest element 0Pj

. We haveRi ∩Rj = ∅,Qj = Sj and Si = {0Rj
}∪(Ri \{1Ri

}).
Clearly, 0Rj

∈ Qi and 0Rj
∈ Sj = Qj . Hence 0Pj

= 0Rj
∈ Qi ∩ Qj is the greatest

element of Qi .
(y6) Assume i, j ∈ I , i ≺ j , Pi ∩Pj = ∅, Pj does not have a smallest element and Pi has

a greatest element 1Pi
. We obtain Si = Ri ,Qj = (Sj \{0Sj

})∪{1Si
} andRi ∩Rj = ∅.

We have 1Pi
= 1Ri

= 1Si
∈ Qj and 1Si

∈ Qi . Hence 1Pi
is the smallest element of

Qj .
(y7) Assume i, j ∈ I , i ≺ j , Pi ∩ Pj = ∅, Pj does not have a smallest element and

Pi does not have a greatest element. Then Si = {0Rj
} ∪ (Ri \ {1Ri

}) and Qj =
(Sj \{0Sj

})∪{1Si
}. Since 1Si

= 0Rj
= 0Qj

and 1Si
= 1Qi

, we obtain that the greatest
element 1Qi

of Qi is the smallest element 0Qj
of Qj .

Finally, we can state our results on Dedekind-MacNeille completion of posets which are
the generalized ordered sum of their parts (Pi, ≤i ), i ∈ I .

Theorem 4.6 Let P = (P, ≤) be the generalized ordinal sum of Pi = (Pi,≤i ), i ∈ I,

and Qi = (Qi,≤i ), i ∈ I, be a DM-yoked family of P. Then the generalized ordinal sum
Q = (Q,≤) of Qi = (Qi,⊆), i ∈ I, exists. If any non-empty subset of I has a maximal
element, then DM(P) ∼= Q.

Proof First let us check that the assumptions of Definition 4.2 are satisfied. Clearly,
Qi , i ∈ I, is a family of posets such that Q� has a greatest element 1 (we may identify 1
with 1P� ) and condition (i) is satisfied by (y1). Condition (ii) follows from (y2) and condi-
tion (iii) from (y3). From (y8) we obtain condition (iv). Hence the generalized ordinal sum
Q = (Q,≤) of Qi = (Qi,⊆), i ∈ I, exists.
Assume now that any non-empty subset of I has a maximal element and I has a smallest ele-
ment ⊥. Let us show Q ∼= DM(P). Note that we have, for every i ∈ I , order isomorphisms
ϕi : Qi → DM(Pi) and ψi : DM(Pi) → Qi defined by ϕi(a) := LPi

UPi
({x ∈ Pi | x ≤

a}) and ψi(B) := ∨

Qi
(B ∩ Pi) for all a ∈ Qi and B ∈ DM(Pi), and ϕi ◦ ψi = idDM(Pi ),

ψi ◦ ϕi = idQi
.

We define mappings ϕ : Q → DM(P ) and ψ : DM(P ) → Q as follows:

ϕ(a) := LU({x ∈ P | x ≤ a}) and ψ(B) :=
{

ψ⊥(∅) if B = ∅,
∨

Qj
(B ∩ Pj ) otherwise
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where j := max
B∩Pm �=∅

m (a ∈ Q, B ∈ DM(P )). Clearly, ϕ and ψ are well-defined and

order-preserving. Recall also that ϕ(a) = ϕk(a) ∪ ⋃

m<k

Pm where k := max
a∈Qm

m. We have

ψ(ϕ(a)) = ψ(ϕk(a) ∪
⋃

m<k

Pm) =
∨

Qk

((ϕk(a) ∪
⋃

m<k

Pm) ∩ Pk) = ψk(ϕk(a)) = a

for all a ∈ Q, here k := max
a∈Qm

m. Let B ∈ DM(P ). If B = ∅ and B = LU(B), then

ϕ(ψ(∅)) = ϕ(ψ⊥(∅)) = ϕ⊥(0Q⊥). Assume x ∈ ϕ⊥(0Q⊥). Then x is the smallest element
of P⊥, i.e., x ≤ p for all p ∈ P , i.e., x ∈ B, a contradiction. Hence ϕ(ψ(∅)) = ∅. Suppose
now that B �= ∅ and put j := max

B∩Pm �=∅
m. Then

ϕ(ψ(B)) = ϕ(
∨

Qj

(B ∩ Pj )) = ϕj (
∨

Qj

(B ∩ Pj )) ∪
⋃

m<j

Pm = (B ∩ Pj ) ∪
⋃

m<j

Pm = B.

Now we show that the construction of a generalized ordinal sum preserves the property
of sectional pseudocomplementation.

Theorem 4.7 Let P = (P,≤) be a generalized ordinal sum of Pi = (Pi, ≤i ), i ∈ I, assume
that (Pi, ≤, ∗i ) are sectionally pseudocomplemented for all i ∈ I , that j ∈ I , Lj (Pj ) = ∅
implies Us(Ps) = ∅ where s := max

m<j
m and that any non-empty subset of I has a maximal

element. Then P is sectionally pseudocomplemented.

Proof Let i, j ∈ I , a ∈ Pi and b ∈ Pj such that i and j are maximal with this property. We
put

a ∗ b :=
⎧

⎨

⎩

1 if a ≤ b,

a ∗i b if a �≤ b and i = j,

b if a �≤ b and i > j .

We prove that a ∗ b is the sectional pseudocomplement of a and b in P.
Case 1. a ≤ b.
We have L(U(a, b), 1) = L(b, 1) = L(b).
Case 2. a �≤ b and i = j .
We have

L(U(a, b), a ∗i b) = L(U(a, b) ∩ Pi, a ∗i b)=(L(U(a, b) ∩ Pi, a ∗i b) ∩ Pi) ∪
⋃

m<i

Pm =

= Li(Ui(a, b), a ∗i b) ∪
⋃

m<i

Pm = Li(b) ∪
⋃

m<i

Pm = L(b).

Now assume L(U(a, b), c) = L(b), c ∈ Pk , k ∈ I . Then b ≤ c which implies k ≥ i. Now
k > i would imply

a ∈ L(U(a, b), c) = L(b),

a contradiction. Hence k = i and

Li(Ui(a, b), c) = L(U(a, b), c) ∩ Pi = L(b) ∩ Pi = Li(b)

which implies c ≤ a ∗i b.
Case 3. a �≤ b and i > j .
We have L(U(a, b), b) = L(b). Now assume L(U(a, b), c) = L(b), c ∈ Pk , k ∈ I . Then
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b ≤ c which implies k ≥ j and L(b) = L(a, c).
Case 3a. i > k.
We have c ≤ b which yields b = c.
Case 3b. i < k.
We have L(b) = L(a, c) = L(a), i.e., a ≤ b, a contradiction.
Case 3c. i = k.
We obtain k > j . Since L(b) = L(a, c), b = 1j is the greatest element of Pj . If Pi has a
smallest element 0i , then necessarily b = 0i ∈ Pi , a contradiction to the assumption that
j is the maximal index from I with b ∈ Pj . Hence Pi does not have a smallest element.
Put r := max

m<k
m. Assume first that j < r < k = i. Then there exist by Definition 4.2

(i) elements x, y ∈ Pr with b ≤ x < y ≤ a, c. We conclude y ∈ L(a, c), y �≤ b, a
contradiction. Suppose now that j = r < k = i. Since Li(Pi) = ∅ and b is the greatest
element of Pj we obtain {b} = Ur(Pr) = ∅, a contradiction. Hence the only possible case
is 3a which yields b = c and finally that P is sectionally pseudocomplemented.

Altogether, we can summarize our results as follows.

Corollary 4.8 Let P = (P, ≤) be the generalized ordinal sum of Pi = (Pi,≤i ), i ∈ I .
Let (DM(Pi ), ≤i , ∗i ) be sectionally pseudocomplemented for all i ∈ I and assume that
any non-empty subset of I has a maximal element and that j ∈ I and Lj (Pj ) = ∅ imply
Us(Ps) = ∅ where s := max

m<j
m. Then DM(P) is sectionally pseudocomplemented.

Proof From Lemma 4.5 we have that there exists a DM-yoked family Qi = (Qi, ≤i ),
i ∈ I, of P such that Qi is isomorphic to a sectionally pseudocomplemented poset DM(Pi )

for every i ∈ I . From Theorem 4.6 we know that DM(P) is isomorphic to the generalized
ordinal sum Q of the DM-yoked family Qi = (Qi,≤i ), i ∈ I, of P. Since every Qi is
sectionally pseudocomplemented we have from Theorem 4.7 that Q and hence also DM(P)

are sectionally pseudocomplemented.

Fig. 7
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The situation described in Theorem 4.7 and Corollary 4.8 can be illustrated by the
following example.

Example 4.9 Consider the sectionally pseudocomplemented poset P visualized in Fig. 2.
It is evident that P is the generalized ordinal sum of the sectionally pseudocomplemented
posets P1 = (P1,≤) = ({0, a, b, c}, ≤) and P2 = (P2,≤) = ({d, e, 1},≤). Of course,
P1 ∩ P2 = ∅. Hence the conditions of Definition 4.2 are satisfied. Then DM(P1) is the
lattice N5 and DM(P2) the four-element Boolean algebra, i.e. both are sectionally pseudo-
complemented lattices. The generalized ordinal sum of DM(P1) and DM(P2) is visualized
in Fig. 7. According to Theorem 4.7 it is again sectionally pseudocomplemented.

The Dedekind-MacNeille completion of the poset visualized in Fig. 3 is visualized in
Fig. 7. Here L(x) is abbreviated by x for x ∈ {0, a, b, c, d, e, 1} and f is an abbreviation of
L(d, e). The operation table of ∗ in DM(P) is shown in Fig. 7.

According to Corollary 4.8, DM(P) is just the generalized ordinal sum of DM(P1) and
DM(P2).
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611 37 Brno, Czech Republic

546 Order (2021) 38:527–546

http://orcid.org/0000-0002-7030-4080
mailto: ivan.chajda@upol.cz
mailto: paseka@math.muni.cz

	Sectionally Pseudocomplemented Posets
	Abstract
	Introduction
	Properties of Sectionally Pseudocomplemented Posets and Lattices
	Congruences in Sectionally Pseudocomplemented Posets
	Completion of Sectionally Pseudocomplemented Posets
	References
	Affiliations




