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Abstract

A subposet Q′ of a poset Q is a copy of a poset P if there is a bijection f between
elements of P and Q′ such that x ≤ y in P iff f(x) ≤ f(y) in Q′. For posets P, P ′, let the
poset Ramsey number R(P, P ′) be the smallest N such that no matter how the elements of
the Boolean lattice QN are colored red and blue, there is a copy of P with all red elements
or a copy of P ′ with all blue elements. Axenovich and Walzer introduced this concept in
Order (2017), where they proved R(Q2, Qn) ≤ 2n + 2 and R(Qn, Qm) ≤ mn + n + m,
where Qn is the Boolean lattice of dimension n. They later proved 2n ≤ R(Qn, Qn) ≤
n2 +2n. Walzer later proved R(Qn, Qn) ≤ n2 +1. We provide some improved bounds for
R(Qn, Qm) for various n, m ∈ N. In particular, we prove that R(Qn, Qn) ≤ n2 − n + 2,
R(Q2, Qn) ≤ 5

3 n + 2, and R(Q3, Qn) ≤ 37
16 n + 39

16 . We also prove that R(Q2, Q3) = 5, and
R(Qm, Qn) ≤ (m − 2 + 9m−9

(2m−3)(m+1) )n + m + 3 for all n ≥ m ≥ 4.

1 Introduction

Ramsey theory roughly says that any 2-coloring of elements in a sufficiently large discrete
system contains a monochromatic system of given size. In the domain of complete graphs,
the classical Ramsey theorem states that for any two graphs G and H there is a integer N0

such that if the edges of a complete graph KN with N ≥ N0 are colored in two colors then
there exists either a red copy of G or a blue copy of H in KN . The least such number N0

is called the Ramsey number R(G, H). This theorem was proved by Ramsey [12] in 1930,
but the problem of exactly determining these, “multicolor” Ramsey numbers, and k-uniform
hypergraph Ramsey numbers remains open and is the subject of continuing research. For
examples, see [2, 4, 5, 6, 7, 10].

In this paper, we will consider the poset Ramsey number instead of the graph Ramsey
number. Given two posets (P, ≤) and (Q, ≤′), we say (P, ≤) is a subposet of (Q, ≤′), if there
is an injective mapping f : P → Q such that for any x, y ∈ P we have

x ≤ y if and only if f(x) ≤′ f(y). (1)

The image f(P ) is called a copy of P in Q. A Boolean lattice of dimension n, denoted Qn,
is the power set of an n-element ground set X equipped with the inclusion relation. The
2-dimension of a poset P , defined by Trotter [13] and denoted by dim2(P ), is the smallest n

such that Qn contains a copy of P .
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A poset X has Ramsey property if for any poset P there is a poset Z such that when
one colors the copies of X in Z red or blue, there is a copy of P in Z such that all copies
of X in this copy of P are red or all of them are blue. The general problem of determining
which posets have Ramsey property was solved by Nes̆etr̆il and Rödl [11]. In this paper, X is
the single-element poset. In other words, the elements of posets are colored instead of more
complicated substructures.

For posets P and P ′, let the poset Ramsey number R(P, P ′) be the least integer N

such that whenever the elements of QN are colored in red or blue, there exists either a red
copy of P or a blue copy of P ′. The focus of this paper is the case where P and P ′ are
Boolean lattices Qm and Qn for m, n ∈ N. Axenovich and Walzer [1] give upper bound and
lower bounds for R(Qm, Qm) for various values of m, n ∈ N. In particular, they prove the
following.

Theorem 1. For any integers n, m ≥ 1,

(i) 2n ≤ R(Qn, Qn) ≤ n2 + 2n,

(ii) R(Q1, Qn) = n + 1,

(iii) R(Q2, Qn) ≤ 2n + 2,

(iv) n + m ≤ R(Qn, Qm) ≤ mn + n + m,

(v) R(Q2, Q2) = 4, R(Q3, Q3) ∈ {7, 8},

(vi) A Boolean lattice Q3n log(n) whose elements are colored red or blue randomly and
independently with equal probability contains a monochromatic copy of Qn asymptotically
almost surely.

Walzer, in his master’s thesis [14], improved the upper bound in Theorem 1, part (i) to
the following.

Theorem 2. R(Qn, Qn) ≤ n2 + 1.

Axenovich and Walzer also studied Ramsey numbers for Boolean algebras in [1]. A
Boolean algebra Bn of dimension n is a set system {X0∪

⋃

i∈I Xi : I ⊆ [n]}, where X0, X1, . . . , Xn

are pairwise disjoint sets, Xi 6= ∅ for i = 1, . . . , n. Boolean algebras have a more restrictive
structure than Boolean lattices. If a subset of QN contains a Boolean algebra of dimension
n, then it contains a copy of Qn. The converse, however, is not always true. Gunderson,
Rödl, and Sidorenko [8] first considered the number RAlg(n), defined to be the smallest N

such that any red/blue coloring of subsets of [N ] contains a red or a blue Boolean algebra
of dimesnion n. Here, "contains" means subset containment in 2[N ], not containment as a
subposet. The following theorem states the best known bounds on RAlg(n). The lower bound
is given without proof by Brown, Erdős, Chung, and Graham [3], and the upper bound was
proved by Axenovich and Walzer [1].

Theorem 3. There is a positive constant c such that

2cn ≤ RAlg(n) ≤ min{22n+1n log n, nRh(Kn(2, . . . , 2))}.
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Here, Kn(s, . . . , s) is a complete n-uniform n-partite hypergraph with parts of size s and
Rh(Kn(2, . . . , 2)) is the smallest N ′ such that any 2-coloring of Kn(N ′, . . . , N ′) contains a
monochromatic Kn(2, . . . , 2).

Gunderson, Rödl, and Sidorenko [8] also considered the number b(n, d), defined to be the
maximum cardinality of a Bd-free family contained in 2[n]. They proved the following bounds:

n
−

(1+o(1))d

2d+1−2 · 2n ≤ b(n, d) ≤ 10d2−21−d

dd−2−d

n−1/2d

· 2n.

Johnston, Lu, and Milans [9] later used the Lubell function to improve the upper bound
to the following, where C is a constant:

b(n, d) ≤ Cn−1/2d

· 2n.

In this paper, we improve the upper bounds on the poset Ramsery numbers R(Qm, Qn)
given by Axenovich and Walzer in [1]. In Section 3, we prove that for any integer n ≥ 1,

Theorem 4. R(Q2, Qn) ≤ 5
3n + 2.

Theorem 5. R(Qn, Qn) ≤ n2 − n + 2.

Theorem 6. R(Q3, Qn) ≤ 37
16n + 39

16 .

In Section 3, for all integers n ≥ m ≥ 4, we also prove the following.

Theorem 7. R(Qm, Qn) ≤ (m − 2 + 9m−9
(2m−3)(m+1) )n + m + 3 for all n ≥ m ≥ 4.

Additionally, we are now able to identify the following previously unknown poset Ramsey
number.

Theorem 8. R(Q2, Q3) = 5.

In Section 2, we give more definitions and introduce notation. Also in Section 2, we state
and prove Lemma 1, the key embedding lemma we use to prove Theorems 4, 5, 6, and 7. We
prove theorems 4, 5, 6, 7, and 8 in Section 3, and we devote Section 4 to concluding remarks.

2 Notation and Key Lemma

A partially ordered set, or poset, consists of a set S together with a partial order ≤, which is
a binary relation on S satisfying

Reflexive Property: x ≤ x, for any x ∈ S.

Transitive Property: If x ≤ y and y ≤ z then x ≤ z for any x, y, z ∈ S.

Antisymmetric Property: If x ≤ y and y ≤ x then x = y for any x, y ∈ S.

3



Let [n] denote the set {1, 2, . . . , n} and Qn = (2[n], ⊆) be the poset over the family of all
subsets of [n]. The k-th level of Qn is the set of all k-element subsets of the ground set [n],
where 0 ≤ k ≤ n. For any two subsets (of [n]) S ⊂ T , let Q[S,T ] be the induced poset of Qn

over all sets F such that S ⊆ F ⊆ T . Let Q∗
n := Qn \ {∅, [n]}. Let R̂(Qm, Qn) denote the

smallest N such that any red/blue coloring of Q∗
N contains either a red copy of Q∗

m or a blue
copy of Q∗

n. Equivalently, R̂(Qm, Qn) is the least N such that if ∅ and [N ] are assumed to be
both red and blue while the rest of QN is colored either red or blue, then QN contains either
a red copy of Qm or a blue copy of Qn. For a subset S ⊆ N , let S̄ denote the complement
set of S in [N ]. When S = {x}, we simply write x̄ for {x}.

The following key lemma generalizes the blob lemma of Axenovich and Walzer (see [1],
Lemma 3). The special case a = b = 0 gives the blob lemma.

Lemma 1. For any nonnegative integers N , m, n, n′, a, b satisfying N ≥ n′ ≥ n ≥ a + b

and N ≥ m, suppose that the Boolean lattice QN on the ground set [N ] is colored in two
colors red and blue satisfying

1. There is an injection i : Qn → Qn′ ⊂ QN with the following properties.

• i maps the bottom a-layers of Qn to blue sets.

• For all sets S in the top b layers of Qn, i(S) ∪ ([N ] \ [n′]) is blue.

2. N ≥ n′ + (n + 1 − a − b) ∗ m.

Then either a blue subposet Qn or a red subposet Qm exists in QN .

Proof of Lemma 1: Let QN be the Boolean lattice on the ground set [N ] colored red and
blue with the properties listed above.

Let k = n + 1 − (a + b). Since N ≥ n′ + (n + 1 − (a + b)) ∗ m = n + k ∗ m, we can partition
[N ] like so:

[N ] = [n′] ∪ X1 ∪ X2 ∪ · · · ∪ Xk

where |Xi| ≥ m for all i ∈ [k]. With this partition in mind, we create an injection f of
Qn into the blue sets of QN . Consider the map f : Qn → QN defined by

f(∅) = ∅

f(S) = i(S) for all S with |S| ≤ a

f(S) = i(S) ∪ X∗
1 for all S with |S| = a + 1

...

f(S) = i(S) ∪ X1 ∪ X2 ∪ · · · ∪ X∗
j for all S with |S| = a + j

...

f(S) = i(S) ∪ X1 ∪ X2 ∪ · · · ∪ X∗
k for all S with |S| = [n] − b

f(S) = i(S) ∪ X1 ∪ X2 ∪ . . . Xk for all S with |S| ≥ [n] − b + 1

4



f([n]) = [N ].

Here, i(S)∪X1∪X2∪· · ·∪X∗
j denotes an arbitrarily chosen blue element from the subposet

with bottom element S∪X1∪X2∪. . . Xj−1∪∅ and top element i(S)∪X1∪X2∪· · ·∪Xj−1∪Xj.
If no such blue element exists, this entire subposet is red and QN contains a red Qm.

If such a blue element always exists, this function is well-defined and preserves all the
subset relations found in Qn. Its image consists entirely of blue elements, so QN contains a
blue Qn.

3 Proof of Theorems

Proof of Theorem 4. For any integer n ≥ 2, let N ∈ N be such that there exists a red/blue
coloring of QN containing no red copy of Q2 and no blue copy of Qn. Consider such a red-blue
coloring c of QN . Let T be a red element such that min{N − |T |, |T |} ≤ min{N − |T ′|, |T ′|}
for all red elements T ′ ∈ QN . Without loss of generality, let N − |T | ≤ |T |. Let a := N − |T |.
Let S be a red element such that |S| ≤ |S′| for all red elements S′ ∈ Q[∅,T ]. Let b := |S|.

Claim a: |T | − |S| ≤ n + 1.
Proof of Claim a: Proof by contradiction. Otherwise, suppose |T |−|S| ≥ n+2. Let u, v be
two red elements in Q[S,T ]. If u and v are incomparable, {S, u, v, T } form a red Q2. So every
red element in Q[S,T ] lies on the same maximal chain. With the exception of this maximal
chain, the rest of Q[S,T ] is blue, and we can find a blue Qn.

Claim b: N ≤ 3n + 1 − 2(a + b).
Proof of Claim b: Otherwise, we assume N ≥ 3n + 2 − 2(a + b). We have N ≥ n + (n +
1 − (a + b)) ∗ 2. Since the bottom a-layers of QN are all colored blue, the bottom a-layers
of Q[∅,[n]] are all colored in blue. If we let m = 2, by Lemma 1, QN contains either a blue
subposet Qn or a red subposet Qm.

From Claim a, we have

a + b = N − (|T | − |S|) ≥ N − (n + 1). (2)

Combining (2) with Claim b, we have

N ≤ 3n + 1 − 2[N − (n + 1)] = 5n + 3 − 2N. (3)

We get

N ≤
5n

3
+ 1,

which gives us the desired result.

Proof of Theorem 5. Let n ∈ N. The result is known to hold for n = 1 and n = 2, so let
n ≥ 3. Let R̂(Qn, Qn) denote the smallest N such that any red-blue coloring of QN , where
∅ and [N ] are assumed to be both red and blue, contains either a red or blue copy of Qn.
Equivalently, any red/blue coloring of QN \ {∅, [N ]} contains either a red or blue copy of Q∗

n.
To prove the theorem, we first prove the following claim.
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Claim c. R̂(Qn, Qn) ≤ n2 − n for all n ≥ 3.
Proof of Claim c. By way of contradiction, suppose there is a red-blue coloring c of QN

(with N = n2 −n) such that ∅ and [N ] are colored both red and blue while all other elements
of QN only receive one color. Since N = n2 − n, there are n2 − n ≥ 2n singleton sets in the
first row of QN . By the Pigeonhole Principle, there are n sets in the first row of QN with the
same color. Without loss of generality, suppose at least n of these sets are blue. Then there
is a subposet Q∗

n of QN such that level 1 of Q∗
n consists of some subset of these blue sets.

We consider an injection i : Qn → Q∗
n ⊂ QN , which maps the bottom a = 2 layers of Qn

to blue sets. Also, we also consider the top b = 1 layer of QN to be colored blue. By Lemma
1, since N ≥ n2 − n = n + (n − 2) ∗ n = n + (n + 1 − a − b) ∗ m, either a blue subposet Qn or
a red subposet Qm exists in QN .

Let N = n2 − n + 2. Consider a QN , and let QN be colored with a coloring c : QN →
{ red, blue }. We now consider the following cases.

Case 1. Sets ∅ and [N ] are the same color.

Without loss of generality, we assume both ∅ and [N ] are colored in red. If we can find
two blue sets S and T with |S| = 1, |T | = N −1, and S ⊂ T , then we can consider the Q[S,T ].
Since |T | − |S| = N − 2 ≥ n2 − n, by Claim c, Q[S,T ] either a red or blue copy of Qn \ {∅, [n]},
which can be extended to a red or blue copy of Qn.

If we fail to find such two blue sets S and T , there are only three subcases:

1. All level 1 sets are red.

2. All level N − 1 sets are red.

3. There exists an element x ∈ N such that {x} an [N ] \ {x} are blue but all other sets in
level 1 and level N − 1 are red.

In subcase one, since N ≥ n + n(n − 2), we can partition [N ] = [n] ∪ X1 ∪ · · · ∪ Xn−2 so
that |Xi| ≥ n. We map the first two layers and the last layer of Qn into QN and extend this
map as in the proof of Claim c to get a red copy of Qn. Subcase two is similar. In subcase
three, similar argument works for the subposet Q[∅,x̄], where x̄ = [N ] \ {x}. Note that the
first two layers of Q[∅,x̄] are red, while the top element x̄ can be treated as red since [N ] is
red.

Case 2. Sets ∅ and [N ] are not the same color. Without loss of generality, suppose ∅ is red
and [N ] is blue.

Suppose there is a pair S, T of comparable elements, where S is blue, T is red, |S| = 1,
and |T | = N − 1. Since ∅ is red and S is blue, and [N ] is red and T is blue, the poset Q[S,T ]

of dimension n2 − n can be viewed as having bottom and top elements colored both red and
blue. By Claim c, Q[S,T ] contains a red Qn or a blue Qn.

Otherwise, there are only four subcases:

1. All level 1 sets are red and all level N − 1 sets are blue.

2. All level 1 sets are red, and there exists a red N − 1-set.
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3. All level N − 1 sets are blue, and there exists a blue 1-set.

4. There exists an element x ∈ N such that all level 1 sets except {x} are red and all level
N − 1 sets except x̄ are blue.

A similar argument works for subcases 2, 3, and 4 since we can find a Q[N−1] so that
there are three layers of one color.

In subcase 1, suppose there exists a blue set in level 2. Then we can find a blue Q[N−2]

and a similar argument works. If there does not exist such a blue set, the bottom three layers
of QN are red.

In this case, since
n2 − n + 2 ≥ n + (n − 2) ∗ n,

we can partition [N ] = [n] ∪ X1 ∪ · · · ∪ Xn−2 so that |Xi| ≥ n. We map the first three layers
of Qn into QN to get a red copy of Qn. Applying Lemma 1 with a = 3 and b = 0, we get the
desired monochromatic copy of Qn.

In any case where N = n2 − n + 2, we have shown QN must contain a red Qn or a blue
Qn. It follows that R(Qn, Qn) ≤ n2 − n + 2, the desired result.

Proof of Theorem 6. For any integer n ≥ 4, let N ∈ N be such that there exists a red/blue
coloring of QN containing no red copy of Q3 and no blue copy of Qn. Consider a red-blue
coloring c of QN . Let T be a red element such that min{N − |T |, |T |} ≤ min{N − |T ′|, |T ′|}
for all red elements T ′ ∈ QN . Without loss of generality, let N − |T | ≤ |T |. Let a := N − |T |.
Let S be a red element such that |S| ≤ |S′| for all red elements S′ ∈ Q[∅,T ]. Let b := |S|.

Let R̂(Q3, Qn) denote the smallest N such that any red/blue coloring of QN , where ∅ and
[N ] are assumed to be both red and blue, contains either a red copy of Q3 or a blue copy
of Qn. Equivalently, any red-blue coloring of Q∗

N contains either a red copy of Q∗
3 or a blue

copy of Q∗
n. To prove the theorem, we first prove the following claim.

Claim d: R̂(Q3, Qn) ≤ 7
4n + 9

4 for all n.
Proof of Claim d: By way of contradiction, suppose there is a red-blue coloring c of Q∗

N

(with N ≥ 7
4n + 9

4 ) such that it contains neither red subposet Q∗
3 nor blue subposet Q∗

n.
Let ℓ = ⌈3

8n + 5
8⌉ be a fixed integer. Consider the bottom ℓ layers of QN . We look for red

sets A1, A2, A3 with the following property.

∀i ∈ [3], ∃xi ∈ [N ] such that xi ∈ Ai, but xi 6∈ Aj ∀j ∈ [3]\i. (4)

We consider the following cases.

Case 1. There exist sets A1, A2, A3 with property 4.

Since

ℓ = ⌈
3

8
n +

5

8
⌉ = ⌈

7
4n − n + 5

4

2
⌉ ≤ ⌈

N − n − 1

2
⌉ ≤

N − n + 1

2

N + 1 ≥ 2ℓ + n,

N + 1 ≥ ℓ + (ℓ − 1) + n + 1

7



we are able to create an injection of Q3 into the red sets of QN . Consider the map
f : Q3 → QN defined by

f({i}) = Ai for all i ∈ [3],

f({i, j}) = X∗
i,j for all {i, j} ⊂ [3].

Here, X∗
i,j denotes an arbitrarily chosen red element from the subposet with bottom

element Ai ∪ Aj and top element x̄k, where {i, j, k} = [3]. If no such red element exists, this
entire n-dimenional subposet is blue and QN contains a blue Qn.

If such a red element always exists, this function is well-defined and preserves all the
subset relations found in Qn. Its image consists entirely of red elements, so QN contains a
red Q3, a contradiction.

Case 2. There exist red sets B1, B2, B3 in the top ℓ layers of QN with the following property.

∀i ∈ [3], ∃xi ∈ [N ] such that xi 6∈ Bi, but xi ∈ Bj ∀j ∈ [3]\i. (5)

This case is the same is as Case 1, except everything is flipped over the middle layer(s)
of QN . Using a similar argument, we show that QN contains a blue Qn or a red Q3.

Case 3. There do not exist such sets A1, A2, A3 or B1, B2, B3.

Suppose we are only able to find one red set A1. Then every set of elements of [N ]\A1 in
the first ℓ layers is blue. Note that |A1| ≤ ℓ − 1.

Suppose we are only able to find 2 sets with property 4. Let a3 be an arbitrarily chosen
ℓ-element subset of A1 ∪ A2. We claim that every set of elements of [N ]\a3 in the first ℓ

layers is blue. Suppose this is not the case, and there is a red set X ⊆ [N ]\a3 in the first
ℓ layers. Since |A1 ∪ A2| ≤ 2(ℓ − 1), we know |A1 ∪ A2\a3| ≤ ℓ − 2. Thus, there exists an
x ∈ X such that x 6∈ A1 ∪ A2. We let x be x3, X be A3, and A1, A2, A3 have property 4, a
contradiction. We can eliminate at most ℓ elements from [N ] and guarantee that sets formed
from the remaining elements in the bottom ℓ layers are all blue.

Similarly, if we are only able to find at most two red sets with property 5, we can require
the inclusion of at most ℓ elements from [N ] and guarantee that sets formed in the top ℓ

layers of QN are all blue. Since n < n + 1 = 7
4n + 9

4 − 2(3
8n + 5

8) , we can define a mapping
i : Qn → Q∗

n ⊂ QN such that the bottom ℓ layers of Qn map to blue elements in the bottom
ℓ layers of QN and the top ℓ layers of Qn map to blue elements in the top ℓ layers of QN .

Since

ℓ = ⌈
3

8
n +

5

8
⌉

2ℓ = 2⌈
3

8
n +

5

8
⌉ ≥ 2(

3

8
n +

5

8
) − 1

−2ℓ ≤ −
3

4
n −

1

4

8



1 − 2ℓ = −
3

4
n +

3

4

n + 1 − 2ℓ =
1

4
n +

3

4
=

3
4n + 9

4

3
=

7
4n − n + 9

4

3
≤

N − n

3
,

we have

N ≥ n + (n + 1 − 2ℓ) ∗ 3.

The bottom a = ℓ layers and the top b = ℓ layers of Q∗
n are blue and m = 3, by Lemma

1, QN contains either a blue subposet Qn or a red subposet Q3.

In any case where N ≥ 7
4n + 9

4 and [N ] and ∅ are colored both red and blue, we have

shown that QN must contain a red Q3 or a blue Qn. It follows that R̂(Q3, Qn) ≤ 7
4n + 9

4 .

Suppose a 6= 0 and b 6= 0. It follows that |T | − |S| + 1 ≤ 7
4n + 9

4 for all n ∈ N.

Claim e: N ≤ n + 3(n + 1 − (a + b)) − 1.
Proof of Claim e: Otherwise, we assume N ≥ n+3(n+1− (a+b)). Let k = n+1− (a+b),
so N ≥ a + b + 3k.

We can partition [N ] like so:

[N ] = [n] ∪ X1 ∪ X2 ∪ · · · ∪ Xk,

where |Xi| ≥ 3 for all i ∈ [k]. With this partition in mind, we define a mapping i : Qn →
Q∗

n ⊂ QN , an injection of Qn into the blue sets of QN . By Lemma 1, QN contains either a
blue copy of Qn or a red copy of Q3, a contradiction.

From Claim d, we have

a + b = N − (|T | − |S|) ≥ N − (
7

4
n +

5

4
). (6)

Combining (6) with Claim e, we have

N ≤ n + 3(n + 1 − (a + b)) − 1 ≤ n + 3(n + 1 − (N −
7

4
n −

5

4
)) − 1. (7)

We get

N ≤
37

16
n +

23

16
.

Now suppose a = 0. We consider the remaining two cases. In each case, we assume, by
way of contradiction, that N > 37

16n + 23
16 .

Case 1. a = 0 and b = 0.

In this case, both ∅ and [N ] are necessarily red. If we can find two blue sets S and T with
|S| = 1, |T | = N − 1, and S ⊂ T , then we can consider Q[S,T ]. In this case, since ∅ is red and
S is blue, we can consider the bottom element of Q[S,T ] to be both red and blue. Since [N ]

9



is red and T is blue, we can consider the top element of Q[S,T ] to be both red and blue. By

Claim d, R̂(Q3, Qn) + 2 ≤ 7
4n + 9

4 + 2 < 37
16n + 23

16 for n ≥ 4.
If we cannot find such sets S and T , we are left with the following three subcases:

1. All level 1 sets are red.

2. All level N − 1 sets are red.

3. There exists an element x ∈ N such that {x} and x̄ are blue but all other sets in levels
and N − 1 are red.

In subcase 1, since N > 37
16n + 23

16 > n + 3 = 3 + (3 + 1 − 1 − 2) ∗ n, we can partition
[N ] = [3] ∪ X with |X| ≥ n. We map the first b = 2 layers and the last a = 1 layer of Q3 into
QN . By Lemma 1, QN contains either a blue Qn or a red Q3. Subcase 2 is similar.

In subcase 3, a similar argument works for Q[∅,x̄]. Note that the first two layers of Q[∅,x̄]

are red, while the top element x̄ can be treated as red since [N ] is red.

Case 2. a = 0 and b 6= 0.

In this case, ∅ is necessarily blue and [N ] is necessarily red. Suppose there is a pair
S, T of comparable elements, where S is red, T is blue, |S| = 1, and |T | = N − 1. Since
∅ is blue and S is red, and T is blue and [N ] is red, the poset Q[S,T ] of dimension at least

N − 2 > 37
16n + 23

16 − 2 > 7
4n can be viewed as having bottom and top elements colored both

red and blue. By Claim d, Q[S,T ] contains a red Q3 or a blue Qn.

Otherwise, there are only four subcases:

1. All level 1 sets are blue.

2. All level N − 1 sets are red, and there exists a red 1-set.

3. There exists an element x ∈ N such that all level 1 sets except {x} are blue and all
level N − 1 sets except x̄ are red.

In subcase 2, let S be the red 1-set. Since N−1 > 37
16n+ 23

16 −1 > n+3 = 3+(3+1−1−2)∗n,
we can map the first b = 1 layer and the last a = 2 layers of Q3 into Q[S,[N ]]. By Lemma 1,
QN contains either a blue Qn or a red Q3.

In subcase 3, a similar argument works for Q[x,[N ]]. Note that the bottom layer and top
two layers of Q[x,[N ]] are red.

In subcase 1, let S be a red set such that |S| ≤ |S′| for all red sets S′ in QN . Suppose
S is in level ℓ. Suppose ℓ ≥ n + 1. Then the bottom n + 1 layers of QN are blue, and QN

contains a blue copy of Qn. Thus ℓ ≤ n.
Suppose there exists a blue N − 1- set T . Suppose ℓ ≤ ⌊ 9

16n − 1
4⌋. Since ∅ is blue and S

is red, and T is blue and [N ] is red, we consider the top and bottom elements of Q[S,T ] to be

both red and blue. We have N + 1 > 37
16n + 23

16 + 1 > 9
16n − 1

4 + 1 + 7
4n ≥ ℓ + 1 + 7

4n. By
Claim d, Q[S,T ] contains a red Q3 or a blue Qn, so QN contains a red Q3 or a blue Qn.

Suppose there exists a blue N − 1-set T , but ℓ ≥ ⌊ 9
16n + 3

4⌋. We have

N >
37

16
n +

23

16
> n + (

7

16
n −

1

4
) ∗ 3 = n + (n + 1 − 1 −

9

16
n −

1

4
) ∗ 3
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≥ n + (n + 1 − 1 − ℓ) ∗ 3.

We can map the first b = ℓ layers and the last a = 1 layer of Qn into QN . By Lemma 1,
QN contains either a blue Qn or a red Q3.

Now suppose there is no blue N − 1-set. That is, the top 2 layers of QN are red. We
consider Q[S,[N ]]. Since N > 37

16n + 23
16 ≥ 2n + 3 = ℓ + 3 + (3 + 1 − 1 − 2) ∗ n, we map the first

b = 1 layer and the last a = 2 layers of Q3 into Q[S,[N ]]. By Lemma 1, Q[S,[N ]] contains either
a blue Qn or a red Q3, so QN contains either a blue Qn or a red Q3.

Proof of Theorem 7. For any integers m, n ∈ N with n ≥ m ≥ 3, let N ∈ N be such that
there exists a red/blue coloring of QN containing no red copy of Q3 and no blue copy of Qn.
Consider a red-blue coloring c of QN . Let T be a red element such that min{N − |T |, |T |} ≤
min{N −|T ′|, |T ′|} for all red elements T ′ ∈ QN . Without loss of generality, let N −|T | ≤ |T |.
Let a := N − |T |. Let S be a red element such that |S| ≤ |S′| for all red elements S′ ∈ Q[∅,T ].
Let b := |S|.

Let R̂(Qm, Qn) denote the smallest N such that any red/blue coloring of QN , where ∅
and [N ] are colored both red and blue, contains either a red copy of Qm or a blue copy of
Qn. Equivalently, any red-blue coloring of Q∗

N contains either a red copy of Q∗
m or a blue

copy of Q∗
n. To prove the theorem, we first prove the following claim.

Claim f: R̂(Qm, Qn) ≤ (m − 2 + 3
2m−3 )n + m for all n ≥ m ≥ 4.

Proof of Claim f: By way of contradiction, suppose there is a red-blue coloring c of Q∗
N

(with N = (m − 2 + 3
2m−3)n + m) such that it contains neither red subposet Q∗

m nor blue
subposet Q∗

n.
Let ℓ = ⌈1 + 3n

m(2m−3) ⌉ be a fixed integer. Consider the bottom ℓ layers of QN . We look
for red sets A1, A2, . . . , Am with the following property.

∀i ∈ [m], ∃xi ∈ [N ] such that xi ∈ Ai, but xi 6∈ Aj ∀j ∈ [m]\i. (8)

We consider the following cases.

Case 1. There exist sets A1, A2, . . . , Am with property 8.

Since

ℓ =

⌈

1 +
3n

m(2m − 3)

⌉

ℓ ≤ 2 +
3n

m(2m − 3)

ℓ − 1 ≤ 1 +
3n

m(2m − 3)

m(ℓ − 1) ≤ m +
3n

2m − 3

m(ℓ − 1) + n(m − 2) + 1 ≤ m +
3n

2m − 3
+ n(m − 2) + 1

11



m(ℓ − 1) + n(m − 2) + 1 ≤ N + 1,

we are able to create an injection of Qm into the red sets of QN . We can partition [N ]
like so:

[N ] = [n] ∪ X1 ∪ X2 ∪ · · · ∪ Xm−1,

where X1 =
⋃m

i=1(Ai\{xi}) and |Xi| ≥ n for all i with 2 ≤ i ≤ m − 1. We create an
injection of Qm into the red sets of QN . Consider the map f : Qm → QN defined by

f(∅) = ∅

f({i}) = Ai for all i ∈ [m]

f({i, j}) = Ai ∪ Aj ∪ X∗
2 for all {i, j} ⊂ [m]

...

f(S) =
⋃

i∈S

Ai ∪ X2 ∪ · · · ∪ X∗
d for all S ⊂ [m] with |S| = d

...

f([m]) = [N ].

Here,
⋃

i∈S Ai ∪X2 ∪· · ·∪X∗
d denotes an arbitrarily chosen red element from the subposet

with bottom element
⋃

i∈S Ai ∪ X2 ∪ · · · ∪ Xd−1 and top element
⋃

i∈S Ai ∪ X2 ∪ · · · ∪ Xd. If
no such red element exists, this entire n-dimenional subposet is blue and QN contains a blue
Qn.

If such a red element always exists, this function is well-defined and preserves all the
subset relations found in Qn. Its image consists entirely of red elements, so QN contains a
red Qm.

Case 2. There exist red sets B1, B2, . . . , Bm in the top ℓ layers of QN with the following
property.

∀i ∈ [m], ∃xi ∈ [N ] such that xi 6∈ Bi, but xi ∈ Bj ∀j ∈ [m]\i. (9)

This case is the same as Case 1, except everything is flipped over the middle layer(s) of
QN . Using a similar argument, we show that QN contains a blue Qn or a red Q3.

Case 3. There do not exist such sets A1, A2, . . . , Am or B1, B2, . . . , Bm.

Suppose we are only able to find at most most m−1 sets A1, A2, . . . , Am−1 with property
8. Let am be an arbitrarily chosen subset of

⋃m−1
i=1 Ai such that |am| = (m−2)(ℓ−1)+1. We

claim that every set of elements of [N ]\am in the first ℓ layers is blue. Suppose this is not the
case, and there is a red set X ⊆ [N ]\am in the first ℓ layers. Since |

⋃m−1
i=1 Ai| ≤ (m−1)(ℓ−1),

12



we know |
⋃m−1

i=1 Ai\am| ≤ ℓ − 2. Thus, there exists an x ∈ X such that x 6∈
⋃m−1

i=1 Ai. We let
x be xm, X be Am, and A1, A2, . . . , Am have property 8, a contradiction. We can eliminate at
most (m−2)(ℓ−1)+1 elements from [N ] and guarantee that sets formed from the remaining
elements in the bottom ℓ layers are all blue.

Similarly, if we are only able to find at most m−1 red sets with property 9, we can require
the inclusion of at most (m − 2)(ℓ − 1) elements from [N ] and guarantee that sets formed in
the top ℓ layers of QN are all blue.

Since n < N −2(m−2)(ℓ−1) for all m, n ≥ 4, we can define a mapping i : Qn → Q∗
n ⊂ QN

such that the bottom ℓ layers of Qn map to blue elements in the bottom ℓ layers of QN and
the top ℓ layers of Qn map to blue elements in the top ℓ layers of QN .

Since

ℓ = ⌈1 +
3n

m(2m − 3)
⌉

ℓ ≥ 1 +
3n

m(2m − 3)

ℓ − 1 ≥
3n

m(2m − 3)

(m − 2)(ℓ − 1) ≥
3n(m − 2)

m(2m − 3)

−2(m − 2)(ℓ − 1) ≤
−6n(m − 2)

m(2m − 3)

n + 1 − 2(m − 2)(ℓ − 1) ≤ n + 1 +
−6n(m − 2)

m(2m − 3)

=
(m − 3 + 3

2m−3 )n + m

m

=
(m − 2 + 3

2m−3 )n + m − n

m
≤

N − n

m
,

we have

N ≥ n + (n + 1 − 2(m − 2)(ℓ − 1)) ∗ m.

The bottom a = ℓ layers and the top b = ℓ layers of Q∗
n are blue, By Lemma 1, QN

contains either a blue subposet Qn or a red subposet Qm.

In any case where N ≥ (m − 2 + 3
2m−3 )n + m and [N ] and ∅ are colored both red

and blue, we have shown that QN must contain a red Qm or a blue Qn. It follows that
R̂(Q3, Qn) ≤ (m − 2 + 3

2m−3 )n + m.

Suppose a 6= 0 and b 6= 0. It follows that |T | − |S| + 1 ≤ (m − 2 + 3
2m−3 )n + m for all

n ≥ m ≥ 4.

Claim g: N ≤ n + m(n + 1 − (a + b)) − 1
Proof of Claim g: Otherwise, we assume N ≥ n+m(n+1−(a+b)). Let k = n+1−(a+b),
so N + 1 ≥ a + b + mk.
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We can partition [N ] like so:

[N ] = [n] ∪ X1 ∪ X2 ∪ · · · ∪ Xk,

where k = N−n
m and |Xi| ≥ m for all i ∈ [k]. With this partition in mind, we define a

mapping i : Qn → Q∗
n ⊂ QN , an injection of Qn into the blue sets of QN . By Lemma 1, QN

contains either a blue copy of Qn or a red copy of Qm, a contradiction.

From Claim f, we have

a + b = N − (|T | − |S|) ≥ N − ((m − 2 +
3

2m − 3
)n + m − 1). (10)

Combining (10) with Claim g, we have

N ≤ n + m(n + 1 − (a + b)) − 1

≤ n + m(n + 1 − (N − (m − 2 +
3

2m − 3
)n − m + 1)) − 1 (11)

We get

N ≤ (m − 2 +
9m − 9

(2m − 3)(m + 1)
)n + m − 1. (12)

Now suppose a = 0. We consider the remaining two cases. In each case, we assume, by
way of contradiction, that N > (m − 2 + 9m−9

(2m−3)(m+1) )n + m + 2.

Case 1. a = 0 and b = 0.

In this case, both ∅ and [N ] are necessarily red. We consider levels 1, 2, N − 2, and
N − 1. If we can find two blue sets S and T with |S| ≤ 2, |T | ≥ N − 2, |T | − |S| ≥ N − 3,
and S ⊂ T , then we can consider Q[S,T ]. In this case, since ∅ is red and S is blue, we
can consider the bottom element of Q[S,T ] to be both red and blue. Since [N ] is red and
T is blue, we can consider the top element of Q[S,T ] to be both red and blue. By Claim f,

R̂(Qm, Qn) + 3 ≤ (m − 2 + 3
2m−3 )n + m + 3 < (m − 2 + 9m−9

(2m−3)(m+1) )n + m + 2 < N for
sufficiently large m and n.

If we cannot find such sets S and T , we are left with the following subcases:

1. All sets in levels 1 and 2 are red.

2. All sets in levels N − 2 and N − 1 are red.

3. All sets in levels 1 and N − 1 are red.

4. There exist blue sets S and T with |S| ≤ 2 and |T | ≥ N − 2, but S 6⊂ T .

In subcase 1, since N > (m − 2 + 9m−9
(2m−3)(m+1) )n + m + 2 > m + (m − 3) ∗ n, we can

partition [N ] = [m] ∪ X1 ∪ X2 ∪ · · · ∪ Xm−3 with |Xi| ≥ n for all i ∈ [m − 3]. We map the
first b = 3 layers and the last a = 1 layer of Qm into QN . By Lemma 1, QN contains either
a blue Qn or a red Qm. Subcase 2 is similar. Subcase 3 is similar, except we map the first
b = 2 layers and the last a = 2 layers of Qm into QN .

14



In subcase 4, either S is in level 1 or T is in level N − 1. Otherwise, we apply the same
strategy as in subcases 1, 2, or 3. Suppose, without loss of generality, that T is in level N −1.
Then a similar argument works for Q[∅,T ]. Note that the first three layers of Q[∅,T ] are red,
while the top element T can be treated as red since [N ] is red.

Case 2. a = 0 and b 6= 0.

In this case, ∅ is necessarily blue and [N ] is necessarily red. Suppose there is a pair S, T

of comparable elements, where S is red, T is blue, |S| ≤ 2, |T | ≥ N −2, and |T |−|S| ≥ N −4.
Since ∅ is blue and S is red, and T is blue and [N ] is red, we can consider the top and bottom
elements of Q[S,T ] to be both red and blue. By Claim f, R̂(Qm, Qn) + 4 ≤ (m − 2 + 3

2m−3 )n +
m

2m−3 + 4 < (m − 2 + 9m−9
(2m−3)(m+1) )n + m + 2 for sufficiently large m and n.

Otherwise, there are only four remaining subcases:

1. All sets in levels 1 and 2 are blue and all sets in levels N − 2 and N − 1 are red.

2. All sets in levels 1 and 2 are blue and there exists a blue set T with |T | ≥ N − 2.

3. All sets in levels N − 2 and N − 1 are red and there exists a red set S with |S| ≤ 2.

4. There exists a red set S and a blue set T with |S| ≤ 2 and |T | ≥ N − 2, but S 6⊂ T .

A similar argument works for subcases 3 and 4 since we can find a Q[N−2] so that there

are four red layers. In subcase 3, we consider Q[S,[N ]]. Since N −2 > (m−2+ 9m−9
(2m−3)(m+1) )n+

m + 2 − 2 > m + (m − 3) ∗ n, we can map the first b = 1 layer and the last a = 3 layers of Qm

into Q[S,[N ]]. By Lemma 1, Q[S,[N ]] contains either a blue Qn or a red Qm, so QN contains
either a blue Qn or a red Qm. Subcase 4 is similar; we consider Q[S,[N ]].

In subcase 2, we consider Q[∅,T ], a poset of dimension at least N − 2. Both S and T

are blue. We consider red sets of maximum and minimum cardinality in Q[∅,T ], and apply

the same argument we used to get (12). Since N − 2 > (m − 2 + 9m−9
(2m−3)(m+1) )n + m, Q[∅,T ]

contains either a blue Qn or a red Q3, so QN contains either a blue Qn or a red Q3.
In subcase 1, the top 3 layers of QN are red. Let S be a element such that |S| ≤ |T |

for all red elements T . We consider Q[S,[N ]]. Since N > (m − 2 + 9m−9
(2m−3)(m+1) )n + m + 2 ≥

(m − 2)n + 3n
m(2m−3) + 5 for sufficiently large m and n, we have

N > (m − 2)n +
3n

m(2m − 3)
+ 5 ≥ (m − 2)n + ⌈1 +

3n

m(2m − 3)
⌉ + 3

≥ (m − 3)(n + 1) + ℓ + 3 = (m − 3) + (m − 3)n + ℓ + 3

= ℓ + m + (m + 1 − 1 − 3) ∗ n.

We map the first b = 1 layer and the last a = 3 layers of Q3 into Q[S,[N ]]. By Lemma 1,
Q[S,[N ]] contains either a blue Qn or a red Q3, so QN contains either a blue Qn or a red Q3.

Proof of Theorem 8. Consider a coloring c of Q4 defined by

c(S) =

{

blue if |S| is even
red if |S| is odd
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for all sets S in Q4. This coloring of Q4 contains no red copy of Q2 and no blue copy of
Q3. Thus, R(Q2, Q3) > 4. Now we need only show R(Q2, Q3) ≤ 5.

Consider a red-blue coloring of Q5 containing no red Q2 and no blue Q3. We consider
the following cases.

Case 1. Both ∅ and [5] are colored red.

Let u, v be two red elements in Q5. If u and v are incomparable, {∅, u, v, [5]} form a red
Q2. So every red elements in Q5 lies on the same maximal chain. With the exception of this
maximal chain, the rest of Q5 is blue, and we can find a blue Q3, a contradiction.

Case 2. One of ∅ and [5] is colored red, and the other is blue.

Without loss of generality, suppose ∅ is red and [5] is blue. Suppose there exists a red
set T with |T | = 4. Without loss of generality, let T be {1, 2, 3, 4}. Consider Q[∅,T ], and
let U, V be two red elements in Q[∅,T ]. If U and V are incomparable, {∅, U, V, T } form a
red Q2. So every red element in Q[∅,T ] lies on the same maximal chain. Without loss of
generality, suppose this maximal chain is {∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}. Then the sets
{4}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} all must be blue. These sets, along with
[5] form a blue Q3. Thus, every set in level 4 of Q5 must be blue.

Suppose there exists two red sets S1 and S2 with |S1| = |S2| = 1. Then S1 ∪ S2 must be
blue. Moreover, every set in Q[S1∪S2,[5]] must be blue. Then Q[S1∪S2,[5]] is a blue copy of Q3,
a contradiction. Thus, Q5 has at most one red level 1 set.

Without loss of generality, suppose {1} is the only red level 1 set in Q5. Note that 2̄, 3̄,

and 4̄ are all blue. Consider Q[{5},2̄∩3̄]. If 2̄ ∩ 3̄ = {1, 4, 5} and {4, 5} are both red, then
{∅, {1}, {4, 5}, {1, 4, 5}} is a red copy of Q2. Thus, at least one of {4, 5} and {1, 4, 5} is blue.
Similarly, when we consider Q[{5},2̄∩4̄] and Q[{5},3̄∩4̄], we conclude that at least one of {3, 5}
and {1, 3, 5} is blue and at least one of {2, 5} and {1, 2, 5} is blue. These blue sets, along
with {5}, 2̄, 3̄, 4̄, and [5] form a blue copy of Q3. Thus, Q5 has no red level 1 set.

Now, note that {1, 2}, {1, 3}, and {1, 4} cannot all be blue. Otherwise,
{{1}, {1, 2}, {1, 3}, {1, 4}, 2̄, 3̄, 4̄, [5]} is a blue copy of Q3. Suppose, without loss of gen-

erality, that {1, 2} is red. Consider Q[{1},{1,2,3}]. If {2, 3} and {1, 2, 3} are both red, then
{∅, {1, 2}, {2, 3}, {1, 2, 3}} is a red copy of Q2. Thus, at least one of {2, 3} and {1, 2, 3} is
blue. Similarly, when we consider Q[{1},{1,2,4}] and Q[{1},{1,2,5}], we conclude that at least one
of {2, 4} and {1, 2, 4} is blue and at least one of {2, 5} and {1, 2, 5} is blue. These blue sets,
along with {1}, 3̄, 4̄, 5̄, and [5] form a blue copy of Q3, a contradiction.

Case 3. Both ∅ and [5] are colored blue.

Suppose Q5 has at most 2 red level 1 sets. In other words, Q5 has at least 3 blue level 1
sets. Without loss of generality, suppose {1}, {2}, and {3} are all blue. Consider Q[{1,2},3̄]. If
every set in Q[{1,2},3̄] is red, Q[{1,2},3̄] is a red copy of Q2. Thus, there is at least one blue set
in Q[{1,2},3̄]. Similarly, there is at least one blue set in Q[{1,3},2̄] and at least one blue set in
Q[{2,3},1̄]. These sets, along with ∅, {1}, {2}, {3}, and [5], form a blue copy of Q3. Thus, Q5

has at least 3 red level 1 sets. By a similar argument, Q5 also has at least 3 red level 4 sets.
Let S1, S2, S3 be 3 red level 1 sets, and let T1, T2, T3 be 3 level 4 sets. We consider the

following subcases.
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Subcase 3.1 At least one of S1, S2, and S3 is a subset of T1, T2, and T3.

Without loss of generality, let S1 = {1} be red and a subset of T1 = 3̄ = {1, 2, 4, 5},
T2 = 4̄ = {1, 2, 3, 5}, and T3 = 5̄ = {1, 2, 3, 4}, all of which are red. Note that no two of
{1, 2, 3}, {1, 2, 4}, and {1, 2, 5} can be red without creating a red copy of Q2. Also, no two
of {1, 2}, {1, 3}, {1, 4}, and {1, 5} can be red without creating a red copy of Q2.

Suppose {1, 2} is red, which means {1, 3}, {1, 4}, and {1, 5} must all be blue, and {1, 4, 5},
{1, 3, 5}, and {1, 3, 4} must all be blue. These 6 sets, along with ∅ and [5], form a blue copy
of Q3, a contradiction.

Suppose exactly one of {1, 2, 3}, {1, 2, 4}, and {1, 2, 5} is red. Without loss of generality,
suppose {1, 2, 3} is red. Neither {1, 4} nor {1, 5} can be red without creating a red copy of
Q2 with {1}, {1, 2, 3}, and {1, 2, 3, 4}. Suppose {1, 3} is red, which means {1, 2}, {1, 4}, and
{1, 5} must all be blue. Then {1, 4, 5} must be red. If {1, 3, 4, 5} is red, it forms a red copy
of Q2 with {1}, {1, 3}, and {1, 4, 5}. If {1, 3, 4, 5} is blue, it forms a blue copy of Q3 with ∅,
{1, 2}, {1, 4}, {1, 5}, {1, 2, 4}, {1, 2, 5}, and [5]. Thus, Q5 contains a red copy of Q2 or a blue
copy of Q3, a contradiction.

Suppose {1, 2, 3} is red and none of {1, 3}, {1, 4}, and {1, 5} are red. Then {1, 4, 5} must
be red, and {1, 3, 4} and {1, 3, 5} must be blue. Then {2, 4}, {2, 5}, {3, 4}, and {3, 5} must
be blue, and {2, 4, 5} must be red. Then {4}, {5}, and {4, 5} must be blue. Then {4},
{5}, {1, 2}, {4, 5}, {1, 2, 4}, and {1, 2, 5}, along with ∅ and [5], form a blue copy of Q3, a
contradiction.

Now suppose none of {1, 2, 3}, {1, 2, 4}, or {1, 2, 5} are red. Again, no two of {1, 2}, {1, 3},
{1, 4} and {1, 5} are red. Suppose one of {1, 3}, {1, 4}, and {1, 5} is red. Without loss of
generality, suppose {1, 3} is red. Then {1, 4, 5} is must be red, and {1, 3, 4, 5} must be blue.
Then {1, 2}, {1, 4}, {1, 5}, {1, 2, 3}, {1, 2, 5}, and {1, 3, 4, 5}, along with ∅ and [5], form a
blue copy of Q3, a contradiction.

Suppose none of {1, 2}, {1, 3}, {1, 4}, or {1, 5} are red. Then {1, 4, 5}, {1, 3, 4}, and
{1, 3, 5} must all be red, and {1, 3, 4, 5} must be blue. Then {1, 2}, {1, 3}, {1, 4}, {1, 2, 3},
{1, 2, 4}, and {1, 3, 4, 5}, along with ∅ and [5], form a blue copy of Q3, a contradiction.

In any case where at least one of S1, S2, and S3 is a subset of T1, T2, and T3, Q5 contains
a red copy of Q2 or a blue copy of Q3.

Subcase 3.2 None of S1, S2, and S3 is a subset of T1, T2, and T3.

Without loss of generality, let S1 = {1}, S2 = {2}, S3 = {3}, T1 = 1̄ = {2, 3, 4, 5},
T2 = 2̄ = {1, 3, 4, 5}, and T3 = 3̄ = {1, 2, 4, 5} all be red. Certainly, if every level 2 set and
every level 3 set is blue, or if one or both of {4, 5} and {1, 2, 3} are the only red sets, then
Q5 contains a blue copy of Q3.

Suppose one of {1, 2}, {1, 3} and {2, 3} is red. Without loss of generality, suppose {1, 2}
is red. Then {1, 4}, {1, 5}, {2, 4}, {2, 5}, {1, 4, 5}, and {2, 4, 5} must all be blue. Suppose
either {1, 2, 3, 4} or {1, 2, 3, 5} is red. Without loss of generality, suppose {1, 2, 3, 4} is red.
Then {1, 3}, {2, 3}, {1, 3, 4}, and {2, 3, 4} must all be blue, and {1, 2, 3, 5} must be red. Then
{1, 3, 5} and {2, 3, 5} must be blue. The sets {1, 4}, {1, 5}, {1, 3}, {1, 4, 5}, {1, 3, 4}, and
{1, 3, 5}, along with ∅ and [5], form a blue copy of Q3, a contradiction.

Now suppose {1, 2} is red and {1, 2, 3, 4} and {1, 2, 3, 5} are both blue. Then {1, 3} must
be red, and {1, 2, 3} must be blue. Then {1, 4}, {1, 5}, {1, 2, 3}, {1, 4, 5}, {1, 2, 3, 4}, and
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{1, 2, 3, 5}, along with ∅ and [5], form a blue copy of Q3, a contradiction. The argument is
similar if any one of {1, 4, 5}, {2, 4, 5}, and {3, 4, 5} is red.

Suppose any level 2 set other than {1, 2}, {1, 3}, {2, 3}, or {4, 5} is red. Without loss of
generality, suppose {1, 4} is red. Then {1, 2}, {1, 3}, {1, 5}, {1, 2, 5}, and {1, 3, 5} are all blue.
Then {1, 2, 3} must be red, and {1, 2, 3, 4} must be blue. Then {1, 2}, {1, 3}, {1, 5}, {1, 2, 5},
{1, 3, 5}, and {1, 2, 3, 4}, along with ∅ and [5], form a blue copy of Q3, a contradiction. The
argument is similar if any level 3 set other than {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, or {1, 2, 3} is red.

In any case where none of S1, S2, and S3 is a subset of T1, T2, and T3, Q5 contains a red
copy of Q2 or a blue copy of Q3.

4 Concluding Remarks

There remains a significant gap between our upper bounds and the best known lower bounds
given by Axenovich and Walzer. We believe the true values of R(Qm, Qn) for sufficiently large
m and n are significantly less than our upper bounds. Assuming, without loss of generality,
that n ≥ m, we make the following conjecture for sufficiently large m and n.

Conjecture 1. R(Qm, Qn) = o(n2).
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