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Abstract

The k-th spectral moment Mk(G) of the adjacency matrix of a graph G repre-
sents the number of closed walks of length k in G. We study here the partial order �
of graphs, defined by G � H if Mk(G) ≤ Mk(H) for all k ≥ 0, and are interested
in the question when is � a linear order within a specified set of graphs? Our main
result is that � is a linear order on each set of starlike trees with constant number of
vertices. Recall that a connected graph G is a starlike tree if it has a vertex u such
that the components of G − u are paths, called the branches of G. It turns out that
the � ordering of starlike trees with constant number of vertices coincides with the
shortlex order of sorted sequence of their branch lengths.
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1 Introduction

Let G = (V,E) be a simple, connected graph with at least one edge. A walk of length k
in G is a sequence of its vertices W : v0, . . . , vk such that vivi+1 is an edge of G for each
i = 0, . . . , k−1. It is a folklore result in graph theory that the number of walks of length k
between vertices u and v is equal to Ak(G)u,v, where A(G) is the adjacency matrix of G.

The number of all walks Wk(G) of length k in G is thus the sum of entries of Ak(G).
Inequalities between numbers of walks of different lengths and other graph parameters
attracted attention of many researchers, and we mention in passing a few such results. Let
dv denote the degree of a vertex v, and let d̄ = 2|E|/n denote the average vertex degree,
where n = |V | is the number of vertices of G. Erdös and Simonovits [11] proved that
nd̄k ≤ Wk(G) for k ∈ N, while Fiol and Garriga [18] proved that Wk(G) ≤

∑
v∈V d

k
v ,

which is a special case of an older result by Hoffman [22]. Dress and Gutman [10]
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showed that W 2
a+b(G) ≤ W2a(G)W2b(G) for a, b ∈ N, while Täubig [37] showed that

(Wa(G)/n)b ≤ Wab(G)/n. Further examples of inequalities of this type are surveyed in
a recent book by Täubig [37].

A walk W : v0, . . . , vk in G is closed if v0 = vk. Let Mk(G, v) denote the number of
closed walks of length k starting and ending at a vertex v of G. The sequence of numbers
Mk(G, v), k ≥ 2, provides a certain glimpse into the density of edges in the vicinity of v.
For example, M2(G, v) is equal to the degree of v, M3(G, v) is equal to twice the number
of triangles containing v, while for larger values of k, Mk(G, v) counts a mix of closed
walks going up to the distance bk/2c from v. Cumulatively, letMk(G) =

∑
v∈V Mk(G, v)

denote the total number of closed walks of length k in G.
The numbers of all walks and closed walks are closely related to spectral properties

of a connected graph. Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix
A(G), with x1, . . . , xn the appropriate eigenvectors forming an orthonormal basis. From
the spectral decomposition [36]

A(G) =
n∑
i=1

λixix
T
i

and orthonormality of eigenvectors we have A(G)k =
∑n

i=1 λ
k
i xix

T
i , so that

Wk(G) =
n∑
i=1

λki

(∑
u∈V

xi,u

)2

, and Mk(G) =
n∑
i=1

λki , (1.1)

i.e., the numbers of closed walks at the same time represent the spectral moments ofA(G).
From the Perron-Frobenius theorem [19, Chapter XIII] which implies that λ1 ≥ |λi| for
each i = 2, . . . , n and that the entries of x1 are positive when G is connected and has at
least one edge, we further get [6]

λ1 = lim
k→∞

k
√
Wk(G) = lim

k→∞
2k
√
M2k(G). (1.2)

Closed walks of even length are taken above to avoid dealing separately with bipartite
graphs, which do not have closed walks of odd lengths.

Lexicographical ordering of graphs by spectral moments had been used earlier in pro-
ducing graph catalogues [7]. Some theoretical properties of such orderings, mostly within
the sets of trees and unicyclic graphs, have been reported in the literature [8, 38, 31, 3,
32, 4, 28]. However, while helping to produce ordering of graphs from the sparsest to the
densest in an intuitive sense, lexicographical ordering by spectral moments does not have
implications on behaviour of spectral radius or other spectral properties of graphs. We are
therefore rather interested in the following partial order of graphs that takes into account
the totality of their spectral moments.
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Definition 1.1. For two graphs G and H , let G � H if Mk(G) ≤Mk(H) for each k ≥ 0.
Further, let G ≺ H if G � H and there exists k′ ≥ 0 such that Mk′(G) < Mk′(H).

Hence from (1.2) we have

G � H ⇒ λ1(G) ≤ λ1(H).

The � order also has implications on the Estrada index of graphs. Estrada and Highman
[16, Section 3] proposed the use of a weighted series of the numbers of closed walks

fc(G, v) =
∑
k≥0

ckMk(G, v)

as a descriptor of complex networks, where (ck)k≥0 is a predefined sequence of nonnega-
tive weights that makes the series convergent. Values fc(G, v) may then be considered as
the closed walk based measure of vertex centrality, while

fc(G) =
∑
v∈V

fc(G, v) =
∑
k≥0

ckMk(G)

represents a cumulative closed walk based descriptor of a network. The Estrada’s original
suggestion [12] for the sequence (ck)k≥0 was ck = 1/k!, which puts more emphasis on
shorter closed walks and ensures the convergence, since from (1.1)

fc(G) =
∑
k≥0

Mk(G)

k!
=

n∑
i=1

∑
k≥0

λki (G)

k!
=

n∑
i=1

eλi(G).

This so-called Estrada index EE(G) =
∑n

i=1 e
λi has been initially applied in measuring

the degree of protein folding [12, 13, 14], the centrality of complex networks [15] and the
branching of molecular graphs [17, 20]. It has been steadily gaining popularity in mathe-
matical community, as Zentralblatt now reports more than a hundred research articles on
the Estrada index.

Properties of the � order have been studied in a few earlier papers. Ilić and the au-
thor [23] provided an analogue of the Li-Feng lemma [27] (see also [9, Theorem 6.2.2]),
that represents a basic tool in dealing with the � order.

Lemma 1.2 ([23]). Let u be a vertex of a connected graph G with at least one edge. For
nonnegative integers p and q, letG(u; p, q) denote the graph obtained fromG by attaching
two pendent paths of lengths p and q, respectively, at u. If p ≥ q + 2, then

G(u; p, q) ≺ G(u; p− 1, q + 1).

Csikvári [5] further introduced a generalized tree shift GTS, that generalizes a trans-
formation introduced earlier by Kelmans [25], and showed that for any tree T with T 6∼=
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GTS(T ) holds T ≺ GTS(T ). In the induced poset of the generalized tree shift, the
path is the unique minimal, while the star is the unique maximal element, so that these
two trees have, respectively, the smallest and the largest number of closed walks of any
given length among trees with n vertices. Note that the latter result can be shown using
Lemma 1.2 as well.

Bollobás and Tyomkyn [2] extended Csikvári’s result to show that the generalized
tree shift also increases the number of all walks, showing that the path and the star have,
respectively, the smallest and the largest number of all walks of any given length among
trees with n vertices.

Andriantiana and Wagner [1] studied trees with a given degree sequence, and proved
that the so-called greedy trees have maximum number of closed walks of any given length
among such trees, although they do not have to be unique such trees. They further showed
that, if a degree sequence D1 majorizes another degree sequence D2, then the greedy
tree for D1 has more closed walks of any given length than the greedy tree for D2, which
implied a proof of the conjecture of Ilić and the author [23] about trees with the maximum
number of closed walks among trees with a given number of vertices and maximum vertex
degree.

Let us now define the class of trees that we will mostly study here. Let Pn denote a
path on n vertices.

Definition 1.3. A graph G is a starlike tree if for some positive integers a1, . . . , ak, k ≥ 3,
it can be obtained from the union of paths

⋃k
i=1 Pai+1 by identifying one end of each path

to a single vertex u, so that G − u =
⋃k
i=1 Pai . Such starlike tree is denoted shortly as

S(a1, . . . , ak).

The vertex u from the above definition is called the center of S(a1, . . . , ak), while
the constituting paths, whose lengths are a1, . . . , ak, are called branches. The numbers
a1, . . . , ak form a partition of n− 1, and it is usual to order the lengths as a1 ≤ · · · ≤ ak.
We can extend the above definition to k ≤ 2 as well, but both S(n−1) and S(l, n− l−1),
1 ≤ l ≤ n− 2, are then trivial starlike trees that are isomorphic to the path Pn.

Successive application of Lemma 1.2 directly provides an initial ≺ ordering of trees
on n vertices for n ∈ N:

Pn ≺ S(1, 1, n− 3) ≺ S(1, 2, n− 4) ≺ · · · ≺ S

(
1,

⌊
n− 2

2

⌋
,

⌈
n− 2

2

⌉)
.

A natural question is then how far this initial ordering extends as a linear order? The
answer is actually not too far, as the presence of just two vertices of degree at least three
may lead to pairs of � incomparable graphs, an example of which is depicted in Fig. 1.
Hence the most that one could expect is that � is a linear order among starlike trees, and
that is exactly what we will prove here. Moreover, our main result gives an easy way to
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Figure 1: A pair of graphs incomparable by �.

compare starlike trees by � using their branch lengths only, and without calculating their
numbers of closed walks. Recall now the definition of the shortlex order [34]: for two
finite number sequences a = (a1, . . . , ak) and b = (b1, . . . , bl) we have a <lex b if either
k < l or, when k = l, ai < bi holds for the smallest index i at which the two sequences
differ. We can now state our main result.

Theorem 1.4. Let 1 ≤ a1 ≤ · · · ≤ ak, k ≥ 3, and 1 ≤ b1 ≤ · · · ≤ bl, l ≥ 3, be two
partitions of a natural number n. Then

S(a1, . . . , ak) ≺ S(b1, . . . , bl) ⇔ (a1, . . . , ak) <
lex (b1, . . . , bl).

Before we start proving the main theorem, let us demonstrate its usefulness on an
example. Following the method described in [36, Section 2.2], it is easy to show that for
fixed k the spectral radius of S(a1, . . . , ak) tends to k√

k−1 , when all the branch lengths
a1, . . . , ak independently tend to infinity. Eigenvalue calculations in Octave, which use
LAPACK routines, for example, yield numerically indistinguishable values

λ1(S(80, 90, 100)), λ1(S(85, 90, 95)), λ1(S(90, 90, 90)) ≈ 2.12132034355964,

and also

EE(S(80, 90, 100)), EE(S(85, 90, 95)), EE(S(90, 90, 90)) ≈ 616.507916871363,

while we know from the order isomorphism of ≺ and <lex, as announced above, that the
spectral radii are ordered as

λ1(S(80, 90, 100)) ≤ λ1(S(85, 90, 95)) ≤ λ1(S(90, 90, 90))

and Estrada indices as

EE(S(80, 90, 100)) < EE(S(85, 90, 95)) < EE(S(90, 90, 90)).

The weak inequality between spectral radii above is implied by the appearance of limit
in (1.2). The strict inequality between spectral radii of these starlike trees holds as well, as
Oliveira et al. [30] have recently used the Jacobs-Trevisan diagonalization algorithm [24]
to show that also

(a1, . . . , ak) <
lex (b1, . . . , bl) ⇔ λ1(S(a1, . . . , ak)) < λ1(S(b1, . . . , bl)). (1.3)
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Note that Oboudi dealt with the same problem in [29], where he showed that if (a1, . . . , ak)

is majorized by (b1, . . . , bl) then λ1(S(a1, . . . , ak)) ≤ λ1(S(b1, . . . , bl)). However, Oboudi
proved weak inequalities only and did not provide a complete characterization as in (1.3).

Structure of the paper is as follows. In Section 2 we briefly discuss properties of the
shortlex order and use the analogue of the Li-Feng lemma to cover a simple part of the
proof. In Section 3 we present a walk embedding that settles the case of pairs of starlike
trees with different numbers of branches. Finally, Section 4 contains the main part of the
proof that deals with the remaining case when Lemma 1.2 is not applicable.

2 Shortlex order of partitions and the case with only two
changing parts

A slight modification of the Hindenburg’s iterative algorithm for generating partitions [21,
26], which consists in reversing the list of parts from nonincreasing into nondecreasing
order, shows that two partitions of n:

(a1, . . . , ak) with a1 ≤ · · · ≤ ak and (b1, . . . , bl) with b1 ≤ · · · ≤ bl

are consecutive in the shortlex order if one of the following cases occur:

Case I: l = k, ak−1 ≤ ak − 2. Then

(b1, . . . , bk−2, bk−1, bk) = (a1, . . . , ak−2, ak−1 + 1, ak − 1).

Case II: l = k, aj ≤ ak − 2 for 1 ≤ j ≤ k − 2 and ak − 1 ≤ at ≤ ak for t =

j + 1, . . . , k − 1. Then

(b1, . . . , bj−1,bj, . . . , bk−1, bk) =

(a1, . . . , aj−1,aj + 1, . . . , aj + 1,
k∑
t=j

at − (k − j)(aj + 1)).

Case III: l = k + 1 and there exists j such that

a1 = · · · = aj =
⌊n
k

⌋
, aj+1 = · · · = ak =

⌈n
k

⌉
,

while
b1 = · · · = bk = 1, bk+1 = n− k.

Since ≤lex is a linear order on the finite set of partitions of n, in order to prove Theo-
rem 1.4 it is enough to show that

S(a1, . . . , ak) ≺ S(b1, . . . , bl) (2.1)
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holds whenever (b1, . . . , bl) is a successor of (a1, . . . , ak) in the shortlex order, according
to the cases listed above.

To prove (2.1) for Case I in which only two parts change their values, we can use
Lemma 1.2 directly.

Proposition 2.1. Let 1 ≤ a1 ≤ · · · ≤ ak, k ≥ 3, be a partition of n such that ak−1 ≤
ak − 2. Then

S(a1, . . . , ak−2, ak−1, ak) ≺ S(a1, . . . , ak−2, ak−1 + 1, ak − 1).

Proof. In order to apply Lemma 1.2, simply observe that S(a1, . . . , ak−2, ak−1, ak) and
S(a1, . . . , ak−2, ak−1 + 1, ak − 1) can be viewed as G(u; p, q) and G(u; p − 1, q + 1),
respectively, forG ∼= S(a1, . . . , ak−2), q = ak−1 and p = ak, with the vertex u determined
as follows:

• if k ≥ 5, S(a1, . . . , ak−2) is a proper starlike tree, so that u is its central vertex;

• if k = 4, S(a1, a2) denotes the path Pa1+a2+1, so that u should be taken as a vertex
at distance a1 from one of its leaves;

• if k = 3, S(a1) denotes the path Pa1+1, so that u should be taken as one of its
leaves.

Case III is proved in the following section, while Case II is proved in Section 4.

3 Starlike trees with different degrees of central vertices

Here we use an interesting embedding of closed walks to prove Case III. Although this
case requests to compare S

(⌊
n
k

⌋
, . . . ,

⌊
n
k

⌋
,
⌈
n
k

⌉
, . . . ,

⌈
n
k

⌉)
to S(1, . . . , 1, n−k) only, the

proof is applicable to all starlike trees with k branches and we state it in that form.

Proposition 3.1. Let 1 ≤ a1 ≤ · · · ≤ ak, k ≥ 3, be an arbitrary partition of n. Then

S(a1, . . . , ak) ≺ S(1, . . . , 1︸ ︷︷ ︸
k branches

, n− k).

Proof. Let u be the center of S(a1, . . . , ak). For i = 1, . . . , k, let vi be the neighbor of u in
the branch of length ai and letBi denote the branch containing vi, but without the vertex u
and the edge uvi (see Fig. 2). Hence Bi has length ai− 1. Similarly, let u′ be the center of
S(1, . . . , 1, n − k) and let v′1, . . . , v

′
k be the neighbors of u′ that form branches of length

one. Let B′ denote the subpath S(1, . . . , 1, n− k)− {v′1, . . . , v′k}, which contains u′ and
has length n− k.

Closed walks of S(a1, . . . , ak) may be classified into the following three types:
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Figure 2: Starlike trees S(a1, . . . , ak) and S(1, . . . , 1, n− k).

Type i) closed walks that do not contain any of the edges uv1,. . . ,uvk;

Type ii.a) closed walks that start and end at u;

Type ii.b) closed walks that contain u, but do not start at u.

We will now construct an injective embedding F from the set of closed l-walks of
S(a1, . . . , ak) into the set of closed l-walks of S(1, . . . , 1, n− k), according to the above
walk types.

Type i) Note that the total number
∑k

i=1(ai − 1) of edges in subpaths B1, . . . , Bk

is equal to the number of edges in the subpath B′ of S(1, . . . , 1, n − k). We can thus
partition the edges of B′ into edge-disjoint subpaths B′1, . . . , B

′
k such that B′i has length

ai−1, i = 1, . . . , k. Let gi be an isometric embedding that mapsBi toB′i for i = 1, . . . , k.
Now, let W : w0, w1, . . . , wl be a closed l-walk of S(a1, . . . , ak) that does not con-

tain any of the edges uv1, . . . , uvk. This implies that W fully belongs to a subpath Bi

for some 1 ≤ i ≤ k. We now set F (W ) to be the walk gi(w0), gi(w1), . . . , gi(wl),
so that W is essentially translated from Bi to B′i. Hence F bijectively maps closed l-
walks of S(a1, . . . , ak) that fully belong to some Bi, 1 ≤ i ≤ k, into closed l-walks of
S(1, . . . , 1, n− k) that fully belong to the corresponding B′i.

Type ii.a) For i = 1, . . . , k let hi be an isometric embedding that maps Bi to B′ such
that hi(vi) = u′. Thus each Bi is mapped by hi to the initial part of B′ of the same length.

Now, let W be a closed l-walk of S(a1, . . . , ak) that starts and ends at u. For some m
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and i1, . . . , im ∈ {1, . . . , k} it has the form

W : u,W1, u,W2, u, . . . , u,Wm, u

where Wj is a subwalk fully contained in Bij , j = 1, . . . ,m. Hence Wj starts and ends
with vij , so that hij(Wj) is an isometric copy of Wj in B′ that starts and ends at u′. Now
set

F (W ) : u′, v′i1 , hi1(W1), v
′
i2
, hi2(W2), . . . , v

′
im , him(Wm).

Thus F (W ) is obtained by replacing the first edge uvij and the last edge viju from each
subwalk u,Wj, u with a pair of edges u′v′ij , v

′
ij
u′ followed by a copy ofWj inB′. This en-

ables easy reconstruction of W from F (W ) as occurrences of vertices v′1, . . . , v′l in F (W )

serve to extract subwalks hi1(W1), . . . , him(Wm) from F (W ). Each subwalk hij(Wj) is
isometrically mapped back to the subwalk Wj in the branch of S(a1, . . . , ak) that corre-
sponds to its leading v′ij vertex, which shows injectivity of F in this case.

Type ii.b) Finally, letW be a closed l-walk of S(a1, . . . , ak) that contains u, but does
not start at it. It has the form

W : W0, u,W1, u, . . . , u,Wm, u,Wm+1

for some m and i0, . . . , im+1 ∈ {1, . . . , k} such that a subwalk Wj is fully contained
in Bij , j = 0, . . . ,m+ 1. Note that since W is closed, W0 and Wm+1 belong to the same
branch Bi0 = Bim+1 . Similar to the previous case, set

F (W ) : hi0(W0), v
′
i1
, hi1(W1), v

′
i2
, . . . , v′im , him(Wm), v′im+1

, him+1(Wm+1).

Again, occurrences of vertices v′1, . . . , v
′
k in F (W ) serve to delimit the subwalks hi0(W0),

. . . , him+1(Wm+1) in F (W ). One can then reconstruct the original walk W by isometri-
cally mapping back each subwalk hij(Wj) to the subwalkWj in the branch of S(a1, . . . , ak)

that corresponds to its leading v′ij vertex, where hi0(W0) is mapped back to the same
branch Bim+1 as him+1(Wm+1). Hence F is injective in this case as well.

It is easily seen that F is actually injective over its whole domain, as the closed l-walks
of S(a1, . . . , ak) of different types above get mapped by F to disjoint subsets of l-walks
of S(1, . . . , 1, n− k):

• walks of type i) are mapped to closed walks that do not contain any of the edges u′v′j ,

• walks of type ii.a) are mapped to closed walks that contain at least one of the
edges u′v′j and start at u′, while

• walks of type ii.b) are mapped to closed walks that contain at least one of the edges
u′v′j and do not start at u′.
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On the other hand, F is not surjective as it embeds closed walks either into disjoint
parts of B′ or into initial parts of B′ together with the edges u′v′1, . . . , u

′v′k. Hence no
closed walk of S(a1, . . . , ak) may be mapped by F to a closed walk of S(1, . . . , 1, n− k)

that contains two vertices of B′ that are at distance at least maxi ai apart.

4 The case with at least three changing parts

In this section we settle the remaining Case II.

Proposition 4.1. Let 1 ≤ a1 ≤ · · · ≤ ak, k ≥ 3, be a partition of n such that aj ≤ ak − 2

for some j ≤ k − 2 and at ∈ {ak − 1, ak} for t = j + 1, . . . , k − 1. Then

S(a1, . . . , aj−1, aj, . . . , ak)

≺ S(a1, . . . , aj−1, aj + 1, . . . , aj + 1,
k∑
t=j

at − (k − j)(aj + 1)).

To simplify notation, denote by a = aj and b = ak − 1 and let p and q be such that
aj+1 = · · · = aj+p = b, while aj+p+1 = · · · = aj+p+q = b + 1, where j + p + q = k.
Further, let

f =
k∑
t=j

at − (k − j)(aj + 1) = (p+ q − 1)(b− a) + b− p.

The statement to be proved now becomes

S(a1, . . . , aj−1, a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

)

≺ S(a1, . . . , aj−1, a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f). (4.1)

Note that f ≥ b+ 1 unless b− a = 1 and q = 1, in which case f = b and (4.1) reduces to

S(a1, . . . , aj−1, a, a+1, . . . , a+1︸ ︷︷ ︸
p times

, a+ 2) ≺ S(a1, . . . , aj−1, a+1, . . . , a+1︸ ︷︷ ︸
p+2 times

),

that follows directly from Lemma 1.2 applied to the branches of lengths a and a + 2 in
the first starlike tree. Hence we can assume that f ≥ b+ 1 in the sequel.

To prove (4.1) in the general case, we will need a lemma on closed walks in coales-
cences of graphs. Recall that a coalescence of two vertex disjoint graphs G and H , with
respect to a vertex u of G and a vertex v of H , denoted by G(u = v)H , is obtained from
the union of G and H by identifying vertices u and v.



Ordering starlike trees 11

Lemma 4.2. Let G, H1 and H2 be three vertex disjoint graphs, and let u be a vertex of G,
v1 a vertex of H1 and v2 a vertex of H2. If H1 � H2 and Mk(H1, v1) ≤ Mk(H2, v2) for
all k ≥ 0, then

G(u = v1)H1 � G(u = v2)H2.

Strict inequality holds if either H1 ≺ H2 or Mk(H1, v1) < Mk(H2, v2) for some k.

Proof. Since Mk(H1, v1) ≤ Mk(H2, v2) for each k ≥ 0, we can choose an injective
mapping F c

k from the set of closed walks in H1 of length k starting from v1 to the set of
closed walks in H2 of length k starting from v2. As the domains, as well as codomains,
of F c

k are mutually disjoint for distinct values of k, the union of these mappings F c =

∪k≥0F c
k will injectively map the set of closed walks in H1 starting from v1 to the set of

closed walks in H2 starting from v2. Note that for each closed walk W in H1 starting
from v1, its image F c(W ) has the same length as W .

In a similar way, we see that due to H1 � H2 we can choose an injective mapping F a

from the set of closed walks in H1 to the set of closed walks in H2, such that for any
closed walk W in H1 its image F a(W ) has the same length as W .

Now we will construct an injective mapping Ik from the set of closed k-walks of
G(u = v1)H1 to the set of closed k-walks of G(u = v2)H2. Let W be an arbitrary closed
k-walk of G(u = v1)H1. If W contains edges from G only, then we can set Ik(W ) = W .
If, on the other hand, W contains edges from H1 only, then we set Ik(W ) = F a(W ).

The more interesting cases arise when W contains edges from both G and H1. The
vertex u = v1 then serves as the gate through which the walk can pass from G to H1 and
vice versa, and W has to contain at least two appearances of u. Let m and W0, . . . ,Wm

be such that W has the form

W : W0, u,W1, u, . . . , u,Wm−1, u,Wm (4.2)

and that none of W0, . . . ,Wm contains u, so that each Wi belongs fully to either G or H1.
We will now choose W ′

0, . . . ,W
′
m so that Ik maps W to

Ik(W ) : W ′
0, u,W

′
1, u, . . . , u,W

′
m−1, u,W

′
m. (4.3)

For i 6= 0,m, if Wi belongs to G, it is mapped to itself so that W ′
i = Wi, while if Wi

belongs to H1, determine W ′
i from the image F c(v1,Wi, v1) = v2,W

′
i , v2.

For W0 and Wm, if they are both empty or both belong to G, then we can also set
W ′

0 = W0 and W ′
m = Wm.

In the case that W0 and Wm both belong to H1, then let Y0 and Ym be such that
W0 : w, Y0 and Wm : Ym, w, where w is the first and the last vertex of the closed walk W .
Then W ∗ : v1, Ym, w, Y0, v1 is a closed walk in H1 starting at v1. The image F c(W ∗) is a
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closed walk in H2 starting at v2 that has the same length as W ∗. Now let Y ′0 and Y ′m be
such that

F c(W ∗) : v2, Y
′
m, w

′, Y ′0 , v2

and that the walks v1, Ym, w and v2, Y ′m, w
′, as well as w, Y0, v1 and w′, Y ′0 , v2, have the

same length. Finally, set W ′
0 : w′, Y ′0 and W ′

m : Y ′m, w
′.

One can see from the previous construction that Ik(W ) is a closed walk in G(u =

v2)H2 that has the same length as W , i.e., k. The mapping Ik is injective, as we can easily
reconstruct W uniquely from W ′ = Ik(W ):

• if W ′ contains edges from G only, then W = W ′;

• if W ′ contains edges from H2 only, then W = (F a)−1(W ′);

• ifW ′ contains edges from bothG andH2, thenW ′ can be partitioned into subwalks
W ′

0, . . . ,W
′
m according to (4.3). Each subwalk W ′

i then yields an appropriate sub-
walkWi using either identity map ifW ′

i belongs toG or (F c)−1 ifW ′
i belongs toH2

(with appropriate recombination of W ′
0 and W ′

m when they both belong to H2), and
W can be obtained by combining subwalks W0, . . . ,Wm according to (4.2).

If either H1 ≺ H2 or Mk(H1, v1) < Mk(H2, v2) for some k, then either F a or F c is
not surjective, so that G(u = v)H1 ≺ G(u = v2)H2 holds.

Note that the previous lemma can also be extended to multiple coalescences of graphs,
considered in [35], that are obtained by identifying several pairs of vertices at once.

In order to apply Lemma 4.2, let u be the central vertex of S(a1, . . . , aj−1) (or an ap-
propriately chosen vertex when j ≤ 3, see the proof of Proposition 2.1), v1 the central ver-
tex of S(a, b, . . . , b︸ ︷︷ ︸

p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

), and v2 the central vertex of S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f).

Then S(a1, . . . , aj−1, a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

) and S(a1, . . . , aj−1, a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f)

can be considered as the coalescences:

S(a1, . . . , aj−1, a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

)

∼= S(a1, . . . , aj−1)(u = v1)S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

),

S(a1, . . . , aj−1, a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f)

∼= S(a1, . . . , aj−1)(u = v2)S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f).
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By Lemma 4.2, the statement (4.1) will follow from the following two statements:

S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

) ≺ S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f),

Mk(S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

), v1) ≤ Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f), v2),

for all k ≥ 0, which we prove in the next two subsections.

4.1 All closed walks in S(a, b, . . . , b, b+1, . . . , b+1) and S(a+1, . . . , a+
1, f)

Proposition 4.3. For arbitrary positive integers a, b and q and nonnegative integer p
such that a < b and p + q ≥ 2, except the case when b = a + 1 and q = 1, let f =

(p+ q − 1)(b− a) + b− p. Then

S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

) ≺ S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f).

Proof. The excluded case b = a + 1 and q = 1 (that has been dealt with by Lemma 1.2
right after (4.1) was stated) yields f = b, while all other cases imply that f ≥ b+ 1.

We prove the inequality between the numbers of closed walks in these starlike trees by
factoring their characteristic polynomials, that reveals a common part of their spectra that
cancels out after taking a difference of their spectral moments, and by suitably interpreting
the difference of the numbers of closed walks of appropriate subgraphs.

For a polynomial Q(λ), let Sp(Q) denote the family of roots of Q. For a family L and
a natural number m, let mL denote the family in which every element of L is repeated
m times. Then for a graph G, let P (G, λ) = det(λI − A(G)) denote the characteristic
polynomial of the adjacency matrix of G, whose family of roots forms the spectrum con-
sisting of all eigenvalues ofG, that we will denote directly as Sp(G). To simplify notation,
we will further abbreviate P (Pn, λ) by Pn.

Lemma 4.4. For q ≥ 2 and arbitrary positive integers c and d,

P (S(c, d, . . . , d︸ ︷︷ ︸
q times

), λ) = P q−1
d (Pc+d+1 − (q − 1)PcPd−1) . (4.4)

Proof of Lemma 4.4. Schwenk [33] proved that if uv is a cut edge of G, then

P (G, λ) = P (G− uv, λ)− P (G− u− v, λ)

where G−uv means removal of edge uv only, while G−u−v means removal of vertices
u and v and all incident edges from G. Applying this result to an edge incident with the
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center of S(c, d, d) that belongs to one of the branches of length d, we obtain

P (S(c, d, d), λ) = Pc+d+1Pd − PcPdPd−1

= Pd (Pc+d+1 − PcPd−1) ,

which proves the lemma in the case q = 2. Taking this case as the basis of induction, and
assuming that (4.4) is valid for some q−1 ≥ 2, we obtain by applying Schwenk’s formula
to an edge incident with the center of S(c, d, . . . , d) that belongs to one of the branches of
length d,

P (S(c, d, . . . , d︸ ︷︷ ︸
q times

), λ) = PdP (S(c, d, . . . , d︸ ︷︷ ︸
q−1 times

), λ)− Pd−1PcP
q−1
d

= PdP
q−2
d (Pc+d+1 − (q − 2)PcPd−1)− Pd−1PcP

q−1
d

= P q−1
d (Pc+d+1 − (q − 1)PcPd−1) ,

which proves (4.4) for q as well.

From Lemma 4.4 we now get

P (S(a, b+ 1, . . . , b+ 1︸ ︷︷ ︸
p+q times

), λ) = P p+q−1
b+1 (Pa+b+2 − (p+ q − 1)PaPb) ,

P (S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, b), λ) = P p+q−1
a+1 (Pa+b+2 − (p+ q − 1)PaPb) .

A common factor of these characteristic polynomials means that these two starlike trees
share a part of the spectrum:

Sp(S(a, b+1, . . . , b+1︸ ︷︷ ︸
p+q times

), λ) = (p+q−1)Sp(Pb+1) ∪ Sp (Pa+b+2−(p+q−1)PaPb) ,

Sp(S(a+1, . . . , a+1︸ ︷︷ ︸
p+q times

, b), λ) = (p+q−1)Sp(Pa+1) ∪ Sp (Pa+b+2−(p+q−1)PaPb) ,

which cancels out if we subtract their spectral moments (1.1):

Mk((S(a, b+ 1, . . . , b+ 1︸ ︷︷ ︸
p+q times

))−Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, b))

= (p+ q − 1) (Mk(Pb+1)−Mk(Pa+1)) . (4.5)

Interpretation of the difference of the numbers of closed walks of paths, appearing in
the previous equation, is provided by the following lemma and its corollaries.

Lemma 4.5. Let c and d be positive integers and let u be a vertex of a graph G such that
G contains a path Pc+1 as a proper subgraph, with u as one of its leaves. If v is a leaf of
a path Pd+1 that is vertex disjoint from G, then

Mk(G(u = v)Pd+1) ≥Mk(G) +Mk(Pc+d+1)−Mk(Pc+1). (4.6)

Strict inequality holds above for all sufficienly large values of k.
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Proof of Lemma 4.5. After identifying u and v in the coalescence G(u = v)Pd+1, the
path Pd+1 contributes d new edges to the coalescence. Color the edges of G(u = v)Pd+1

such that the edges of Pd+1 are red, the edges of the proper subgraph Pc+1 of G are
blue, while the remaining edges of G are black. Edge disjoint paths Pc+1 and Pd+1 in the
coalescence Pc+1(u = v)Pd+1 form a path Pc+d+1 consisting of a total of c + d blue and
red edges. Now Mk(G) represents closed k-walks of G(u = v)Pd+1 consisting of blue
and black edges, while Mk(Pc+d+1)−Mk(Pc+1) represents closed k-walks consisting of
blue and red edges, that contain at least one red edge. Sets of closed k-walks that these
two terms count are disjoint, from which the inequality (4.6) follows directly. Moreover,
for all sufficiently large values of k, G(u = v)Pd+1 contains closed k-walks that contain
both black and red edges, which are not counted by either of the two terms on the right
hand side, so that strict inequality then holds in (4.6).

Repeated application of this lemma yields the following corollaries.

Corollary 4.6. Let c1, . . . , cl and d1, . . . , dl be two sequences of positive integers for some
l ≥ 1, and let u be a vertex of a graph G such that G contains a path Pmax{c1,...,cl}+1 as
a proper subgraph, with u as one of its leaves. If paths Pd1+1, . . . , Pdl+1 are mutually
vertex disjoint, and also vertex disjoint from G, and if vi is a leaf of the path Pdi+1 for
i = 1, . . . , l, then

Mk(G(u = v1)Pd1+1 · · · (u = vl)Pdl+1)

≥Mk(G) +
l∑

i=1

(Mk(Pci+di+1)−Mk(Pci+1)) .

Corollary 4.7. Let c1, . . . , cl and d1, . . . , dl be two sequences of positive integers for some
l ≥ 1. Let Pd1+1, . . . , Pdl+1 be vertex disjoint paths, with ui as one and vi as another leaf
of Pdi+1 for i = 1, . . . , l. Let G be a graph, vertex disjoint from all of Pd1+1, . . . , Pdl+1,
and v0 one of its vertices, such that G contains a path Pc1+1 as a proper subgraph with v0
as one of its leaves. If further G(v0 = u1)Pd1+1 · · · (vi−2 = ui−1)Pdi−1+1 contains a path
Pc1+···+ci+1 with vi as one of its leaves for each i = 2, . . . , l, then

Mk(G(v0 = u1)Pd1+1 · · · (vl−1 = ul)Pdl+1)

≥Mk(G) +
l∑

i=1

(Mk(Pci+di+1)−Mk(Pci+1)) .
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Proof of Corollary 4.7. Repeated application of Lemma 4.5 yields

Mk(G(v0=u1)Pd1+1 · · · (vl−1=ul)Pdl+1)
≥Mk(G(v0=u1)Pd1+1 · · · (vl−2=ul−1)Pdl−1+1)+(Mk(Pcl+dl+1)−Mk(Pcl+1))

≥Mk(G(v0=u1)Pd1+1 · · · (vl−3=ul−2)Pdl−2+1)+
l∑

i=l−1

(Mk(Pci+di+1)−Mk(Pci+1))

. . .

≥Mk(G)+
l∑

i=1

(Mk(Pci+di+1)−Mk(Pci+1)) .

Back to the trees S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

) and S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f) that we

are concerned with in Proposition 4.3, application of Corollary 4.6 yields

Mk(S(a, b+ 1, . . . , b+ 1︸ ︷︷ ︸
p+q times

))

≥Mk(S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

)) + p (Mk(Pb+1)−Mk(Pb)) , (4.7)

while, recalling that f = (p+ q− 1)(b− a) + b− p = b+ (q− 1)(b− a) + p(b− a− 1),
application of Corollary 4.7 yields

Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f))

≥Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, b))

+ (q − 1) (Mk(Pb+1)−Mk(Pa+1)) + p (Mk(Pb)−Mk(Pa+1)) . (4.8)
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Finally, we have

Mk(S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

))

≤Mk(S(a, b+ 1, . . . , b+ 1︸ ︷︷ ︸
p+q times

))− p (Mk(Pb+1)−Mk(Pb)) (by (4.7))

= Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, b)) + (p+q−1) (Mk(Pb+1)−Mk(Pa+1))

− p (Mk(Pb+1)−Mk(Pb)) (by (4.5))

= Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, b)) + (q−1) (Mk(Pb+1)−Mk(Pa+1))

+ p (Mk(Pb)−Mk(Pa+1))

≤Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, b+ (q − 1)(b− a) + p(b− a− 1))) (by (4.8))

= Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f)).

Repeated application of Lemma 4.5, that was needed to obtain (4.7) and (4.8), shows that
strict inequality holds above for all sufficiently large values of k, concluding the proof
that S(a, b, . . . , b︸ ︷︷ ︸

p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

) ≺ S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f).

4.2 Closed walks starting at the centers of S(a, b, . . . , b, b+ 1, . . . , b+
1) and S(a+ 1, . . . , a+ 1, f)

Proposition 4.8. For arbitrary positive integers a, b and q and nonnegative integer p such
that a < b and p+ q ≥ 2, let f = (p+ q − 1)(b− a) + b− p. Then for all k ≥ 0

Mk(S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

), u) ≤Mk(S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f), u′),

where u and u′ are the centers of the respective starlike trees.

Proof. To describe the embedding of closed k-walks of S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+1, . . . , b+1︸ ︷︷ ︸
q times

) start-

ing at u into closed k-walks of S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f) starting at u′, let us name the ap-

propriate parts of these starlike trees (see Fig. 3). For each i = 1, . . . , p, let vi be the
neighbor of u in the i-th branch of length b in S(a, b, . . . , b︸ ︷︷ ︸

p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

), and for

i = p+1, . . . , p+q, let vi be the neighbor of u in the (i−p)-th branch of length b+1. For
i = 1, . . . , p + q, let Bi denote the branch containing vi, but without the vertex u and the
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edge uvi. LetD denote the remaining branch of length a in S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

),

together with the center u. Similarly, for i = 1, . . . , p + q, let v′i be the neighbor of u′ in
the i-th branch of length a + 1 in S(a+ 1, . . . , a+ 1︸ ︷︷ ︸

p+q times

, f), and let B′i be the branch con-

taining v′i, but without the vertex u and the edge u′v′i. Let F denote the remaining branch
of length f in S(a+ 1, . . . , a+ 1︸ ︷︷ ︸

p+q times

, f), together with the center u′.

Figure 3: Starlike trees S(a, b, . . . , b, b+ 1, . . . , b+ 1) and S(a+ 1, . . . , a+ 1, f).

Further, for i = 1, . . . , p+ q let ri be an isometric embedding that maps the branch Bi

to F such that ri(vi) = u′, and let si be an isometric embedding that maps the branch D
to B′i such that si(u) = v′i. Also, let t be an isometric embedding that maps the branch D
to F such that t(u) = u′. These isometric embeddings exist as the branchBi is isomorphic
to either the path Pb or Pb+1 and F is isomorphic to the path Pf+1, where f ≥ b ≥ a+ 1,
while D and each B′i are isomorphic to the path Pa+1.

Now, let W be a closed k-walk of S(a, b, . . . , b︸ ︷︷ ︸
p times

, b+ 1, . . . , b+ 1︸ ︷︷ ︸
q times

) that starts at u. Ap-
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pearances of edges uv1,. . . ,uvp+q in W may be used to represent it in the form

W : u, Y0,u, vi1 ,W1, vi1 , u, Y1,

. . . ,

u, vim ,Wm, vim , u, Ym, u,

where the closed walk u, Yj, u (that possibly consists of u only) fully belongs to the
branch D for j = 0, . . . ,m, while the closed walk vij ,Wj, vij (that possibly consists
of vij only) fully belongs to the branch Bij for j = 1, . . . ,m. Now set

Q(W ) : u′, t(Y0),u
′, v′i1 , si1(Y1), v

′
i1
, u′, ri1(W1),

. . . ,

u′, v′im , sim(Ym), v′im , u
′, rim(Wm), u′.

Q(W ) is a closed k-walk in S(a+ 1, . . . , a+ 1︸ ︷︷ ︸
p+q times

, f), as the first and the last vertex of Y0

are mapped by t to a neighbor of u′ in F , the first and the last vertex of Yj for j = 1, . . . ,m

are mapped by sij to a neighbor of v′ij in B′ij , while the first and the last vertex of Wj for
j = 1, . . . ,m are mapped by rij to a neighbor of u′ in F . Less formally, the initial part
of W until the first edge uvij is translated by Q from D to F , while in the remaining parts
of W , that are delineated by appearances of the edges uvij , the Bij part is translated to F ,
the D part is translated to B′ij and their positions in the walk are switched. One can then
use appearances of the edges u′v′ij in Q(W ) to determine t(Y0) and sij(Yj) and rij(Wj)

for j = 1, . . . ,m and then use the inverses t−1, s−1ij and r−1ij to uniquely reconstruct the
original walk W , showing that Q is an injective map.

5 Completing the proof of the main theorem

Propositions 4.3 and 4.8 complete the proof of Proposition 4.1. Propositions 2.1, 3.1
and 4.1 now show that whenever two partitions α = (a1, . . . , ak) and β = (b1, . . . , bl)

of n are consecutive in the shortlex order with α <lex β, then

S(α) ≺ S(β).

The shortlex order is a linear order on the set of partitions of n, so that for arbitrary
two different partitions π and τ of n holds either π <lex τ or τ <lex π and there exists
partitions π0, π1, . . . , πm such that {π0, πm} = {π, τ} and for each i = 0, . . . ,m − 1

partitions πi and πi+1 are consecutive in the shortlex order with πi <lex πi+1. Then by
Propositions 2.1, 3.1 and 4.1 we have

S(π0) ≺ S(π1) ≺ · · · ≺ S(πm)
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showing that
π <lex τ ⇔ S(π) ≺ S(τ),

which completes the proof of our main result, Theorem 1.4.
At the end, let us note that the results presented here for the ordering of starlike trees

by the numbers of closed walks can be extended analogously to the ordering by the num-
bers of all walks, which is still isomorphic to the shortlex ordering of their sorted branch
lengths.
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[5] Csikvári, P.: On a poset of trees. Combinatorica 30, 125–137 (2010)
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