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Abstract
A vertical 2-sum of a two-coatom latticeL and a two-atom latticeU is obtained by removing
the top of L and the bottom of U , and identifying the coatoms of L with the atoms of U .
This operation creates one or two nonisomorphic lattices depending on the symmetry case.
Here the symmetry cases are analyzed, and a recurrence relation is presented that expresses
the number of nonisomorphic vertical 2-sums in some desired family of graded lattices.
Nonisomorphic, vertically indecomposable modular and distributive lattices are counted and
classified up to 35 and 60 elements respectively. Asymptotically their numbers are shown
to be at least �(2.3122n) and �(1.7250n), where n is the number of elements. The number
of semimodular lattices is shown to grow faster than any exponential in n.

Keywords Counting · Vertical 2-sum · Modular lattice · Distributive lattice

1 Introduction

Let L and U be finite lattices. Their vertical sum is obtained by identifying the top of L

with the bottom of U . If L has two coatoms and U has two atoms, their vertical 2-sum is
obtained by removing the top of L and the bottom of U , and identifying the coatoms of L

with the atoms of U .
The vertical sum leads to a simple and well-known recurrence relation. A lattice is a vi-

lattice (short for vertically indecomposable) if it is not a vertical sum of two non-singleton
lattices. If f (n) and fvi(n) are the numbers of nonisomorphic n-element lattices and vi-
lattices, respectively, then

f (n) =
n∑

k=2

fvi(k) f (n − k + 1), for n ≥ 2. (1)

We call this Cartesian counting because each term expresses the cardinality of a Cartesian
product, namely, of the set of k-element vi-lattices and the set of (n−k+1)-element lattices.
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One does not need to list the members of a Cartesian product to find its cardinality. The
recurrence in Eq. 1 has been used in counting small lattices [1–5] and in proving lower
bounds [1, 6].

Many vi-lattices can be further decomposed as vertical 2-sums of smaller lattices. So let
us use this decomposition to pursue a kind of Cartesian counting of vi-lattices. Nowwe must
observe that from two given lattices, one obtains two vertical 2-sums, because there are two
ways to match the coatoms and the atoms. Whether the results are isomorphic depends on
the symmetries of L and U .

Our main result, Theorem 1, is a recurrence relation that distinguishes the symmetry
cases, and expresses the exact number of nonisomorphic lattices obtainable as vertical 2-
sums, in terms of the numbers of component lattices. The new relation is analogous to Eq. 1
but works with the vertical 2-sum. To apply it we need to classify and count the component
lattices by symmetry type.

The motivations of this study are threefold. First, our recurrence provides a new way of
counting small lattices. Only the component lattices are generated explicitly; their vertical
2-sums are then counted with the recurrence in the Cartesian fashion. It is relatively easy to
restrict methods of generating modular and distributive lattices so that they only generate
the components, and leave out all vertical 2-sums. This is faster, so we can count further.
We count modular and distributive vi-lattices of at most 35 and 60 elements, respectively.
This also verifies previous countings (of at most 33 and 49 elements), because the method
is different.

The second motivation is a more compact lattice listing. A full listing of distributive vi-
lattices of at most 60 elements would contain about 4.9 × 1012 lattices. We can shrink the
list to less than 1/200 of that size, to 2.3 × 1010 lattices, by leaving out all vertical 2-sums.
A smaller listing is more practical to store and to study, and if desired, one can still recover
the left-out lattices by performing vertical 2-sums on the listed components.

The third motivation is in improving lower bounds. A simple recurrence for vertical 2-
sums was derived in [6], but it is only a loose lower bound as it does not consider the
symmetry cases. The new recurrence gives tighter bounds because of an extra factor of 2 in
the asymmetric cases. It may not sound like much, but the factor compounds when vertical
2-sum is applied repeatedly. Some further improvement comes from counting small lattices
larger than before. For modular vi-lattices we improve the lower bound from�(2.1562n) [6]
to �(2.3122n). For distributive vi-lattices we improve from �(1.678n) [1] to �(1.7250n),
which is close to the empirical growth rate.

2 Vertical 2-sum and Symmetry

In order to understand how the vertical 2-sum operates on lattices, we classify them by the
number and symmetry of their atoms and coatoms. Our aim is in modular and distributive
vi-lattices, but we state the results more generally when convenient. All lattices considered
in this work are finite. If L is a lattice, we write a(L) and c(L) for the numbers of its atoms
and coatoms, and 0L and 1L for its bottom and top.

Definition 1 Let L and U be disjoint lattices of length 3 or greater, such that L has two
coatoms c1, c2 and U has two atoms a1, a2. Then their vertical 2-sums are the two lattices
obtained by removing 1L and 0U , and identifying (c1, c2) with either (a1, a2) or (a2, a1).
We say that L and U are the summands of the vertical 2-sum.
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Note that vertical 2-sums are indeed lattices, those of graded lattices are graded, and those
of vi-lattices are vi-lattices [6]. We do not consider summands of length 2 as that would be
essentially an identity operation. If S is a vertical 2-sum ofL andU , then |S| = |L|+|U |−4.

Definition 2 If a lattice has two coatoms [atoms], they are symmetric if the lattice has an
automorphism that swaps them, and fixed otherwise.

Lemma 1 Let L and U be lattices with vertical 2-sums S1 and S2. Then S1 and S2 are
nonisomorphic if and only if L has fixed coatoms and U has fixed atoms.

Proof If L has an automorphism that swaps the coatoms, then extending it with the identity
mapping on U yields an isomorphism S1 → S2. If U has symmetric atoms, the case is
similar. Finally, if there is an isomorphism S1 → S2, it must either fix the coatoms of L and
swap the atoms of U , or vice versa; but this is impossible if L has fixed coatoms and U has
fixed atoms, so in that case S1 and S2 are nonisomorphic.

So far we have allowed both graded and nongraded lattices. For the rest of this work, we
will require the vertical 2-sums and their summands to be graded. This is sufficient for our
main concern (modular and distributive lattices), and makes it easy to define an inverse oper-
ation of the vertical 2-sum, namely, decomposition into a lower and upper summand such
that the upper summand is not itself a vertical 2-sum. This decomposition is uniquely deter-
mined by locating the highest-ranked non-coatom two-element level (if one exists). It might
be possible to extend this idea to the nongraded case and still ensure unique decomposition,
but we sidestep such issues with our restriction.

We also restrict our attention to vertically indecomposable lattices. After we have
counted those, we can easily use Eq. 1 to include vertically decomposable lattices in the
counts. So, we are now concerned with graded vi-lattices, and we divide them into three
kinds as follows.

Definition 3 If L is a graded vi-lattice, then its kth level, denoted Lk , is the set of elements
that have rank k. A neck is a two-element level other than the atoms and the coatoms. We
say that L is:

1. a composition, if it contains a neck;
2. a piece, if does not contain a neck, has rank 3 or greater, and at least one of a(L) and

c(L) equals two;
3. special otherwise.

A composition has necessarily at least 8 elements, and a piece has at least 6. It is clear that
all compositions ensue from pieces by repeated application of the vertical 2-sum. Specials
are not vertical 2-sums, but also cannot act as their summands, because they are too short
(rank two or smaller) or contain too many atoms and coatoms.

Definition 4 A piece L is:

1. a middle piece, if a(L) = c(L) = 2;
2. a bottom piece, if a(L) ≥ 3 and c(L) = 2;
3. a top piece, if a(L) = 2 and c(L) ≥ 3.
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A middle piece can act as either summand of a vertical 2-sum. A bottom piece can act
only as the lower summand, and a top piece only as the upper summand. Pieces are further
divided into symmetry types as follows (see also Fig. 1).

Definition 5 A middle piece is of symmetry type:

1. MF, if its atoms and coatoms are fixed;
2. MA, if its atoms are symmetric and coatoms are fixed;
3. MC, if its atoms are fixed and coatoms are symmetric;
4. MX, if it has an automorphism that swaps the atoms but fixes the coatoms, and another

automorphism that swaps the coatoms but fixes the atoms;
5. MH, if it is not MX, but has an automorphism that swaps both the atoms and the

coatoms.

Note that in an MX piece, atoms and coatoms can be swapped independently, but in an
MH piece only simultaneously. The shapes of the letters X and H are meant as mnemonics
for this (think of the center of X as a freely rotating joint). The distinction between MX and
MH will be essential when building larger lattices.

Definition 6 A bottom piece is of symmetry type:

1. BF, if its coatoms are fixed;
2. BS, if its coatoms are symmetric.

Definition 7 A top piece is of symmetry type:

1. TF, if its atoms are fixed;
2. TS, if its atoms are symmetric.

Fig. 1 Example pieces of each symmetry type (and a special)
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The example pieces in Fig. 1 are small for illustration purposes, but generally pieces can
be much larger: in our enumerating tasks some pieces will have more than 50 elements.
We will form compositions “bottom up”. A vertical 2-sum of two pieces is a composition.
Given a composition, adding a piece on top yields one or two bigger compositions. To keep
track of the number and symmetry of the results, we need to define symmetry types for
compositions too.

Definition 8 A composition is of symmetry type:

1. CF, if it has two coatoms and they are fixed;
2. CS, if it has two coatoms and they are symmetric;
3. CN (“composition-nonextensible”), if it has three or more coatoms.

For example, if we take the BF piece from Fig. 1 as the lower summand, and the
MC piece as the upper summand, we obtain two nonisomorphic vertical 2-sums of type CS,
as shown in Fig. 2. More generally, the following lemma characterizes how many and what
kinds of compositions are formed.

Lemma 2 If L is a piece or a composition, and U is a piece, then the number and type of
their nonisomorphic vertical 2-sums are as follows.

U type

L type, any of MF MA MC MX MH TF TS

CF/BF/MF/MA 2×CF 1×CF 2×CS 1×CS 1×CF 2×CN 1×CN
CS/BS/MC/MX/MH 1×CF 1×CF 1×CS 1×CS 1×CS 1×CN 1×CN
CN/TF/TS none none none none none none none

Proof Let us first prove the numbers. We proceed by the rows.
On the first row, L has two fixed coatoms. By Lemma 1, if U has fixed atoms (MF, MC

or TF), then there are two nonisomorphic vertical 2-sums; otherwise there is one.

Fig. 2 The two vertical 2-sums of a BF piece and an MC piece, with hollow circles indicating the neck where
the summands connect
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On the second row, L has two symmetric coatoms. By Lemma 1 there is one vertical
2-sum up to isomorphism.

On the third row, L has 3 or more coatoms, so no vertical 2-sums are formed.
Next we deduce the symmetry type of each vertical 2-sum Si (i = 1, 2). We proceed by

the columns.
If U is MF or MA, it has fixed coatoms. Then Si cannot have an automorphism that

swaps the coatoms of Si , because its restriction to U would be an automorphism that swaps
the coatoms of U . Thus Si has fixed coatoms.

If U is MC or MX, it has an automorphism that swaps its coatoms and fixes its atoms;
extending with the identity mapping in L gives, in each Si , an automorphism that swaps the
coatoms. Thus Si has symmetric coatoms.

If U is MH, then an automorphism of Si that swaps the coatoms also swaps the atoms
of U , which are also the coatoms of L. Thus Si has symmetric coatoms if and only if L has
symmetric coatoms.

If U is TF or TS, then Si has three or more coatoms and is of type CN.

3 Cartesian Counting in a Lattice Family

In this section we present our main result, a recurrence relation that counts all nonisomor-
phic compositions in some desired lattice family, provided that the family has suitable form.
We also give examples of such families.

Definition 9 A family F of graded vi-lattices is (vertically) 2-summable if the following
conditions hold:

(C1) If L,U ∈ F and S is one of their vertical 2-sums, then S ∈ F .
(C2) If S ∈ F is a vertical 2-sum of L and U , then L,U ∈ F .

The first condition ensures that vertical 2-sums stay in the family, and the second ensures
that all compositions in F are indeed obtained as vertical 2-sums of smaller lattices in F .

Theorem 1 Let F be a 2-summable family, and let XXn denote the number of non-
isomorphic n-element lattices in F having symmetry type XX. Then for n < 8 we have
CFn = CSn = CNn = 0, and for n ≥ 8 the following recurrences hold:

CFn =
n−2∑

j=6

(
LFj · (2 · MFk + MAk + MHk) + LSj · (MFk + MAk)

)

CSn =
n−2∑

j=6

(
LFj · (2 · MCk + MXk) + LSj · (MCk + MXk + MHk)

)

CNn =
n−2∑

j=6

(
LFj · (2 · TFk + TSk) + LSj · (TFk + TSk)

)

where k = n − j + 4, and

LFj = CFj + BFj + MFj + MAj

LSj = CSj + BSj + MCj + MXj + MHj .
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Proof For n < 8 the claim holds because compositions have at least 8 elements.
Let then n ≥ 8 and consider an n-element CF-type composition S ∈ F . There is exactly

one way of expressing S as a vertical 2-sum of two lattices L,U such that U is a piece.
This U contains the elements of S above and including its highest-ranked neck, plus an
augmented bottom element. By condition (C2) we have L,U ∈ F . Furthermore, because
|U | ≥ 6 and and |L| + |U | − 4 = n, it follows that |L| ≤ n − 2.

We also observe that different nonisomorphic choices of L and U , where U is a piece,
lead to nonisomorphic results. To be more precise: If L � L′ or U � U ′, and U and U ′ are
pieces, then the vertical 2-sums of L and U are isomorphic to the vertical 2-sums of L′ and
U ′.

All nonisomorphic n-element CF-type compositions inF can be counted by considering
(for all j = 6, . . . , n − 2) first the choices of a j -element lower summand L ∈ F , and
then the choices of an upper summand U ∈ F such that U is a piece with k = n − j + 4
elements, subject to the requirement that the resulting vertical 2-sums are of type CF.

Now LFj is the number of nonisomorphic lower summands that have fixed coatoms. For
each such lower summand, by collecting the CF-type results from the first row of the table
in Lemma 2, we get 2 ·MFk +MAk +MHk nonisomorphic vertical 2-sums, which are in F
by condition (C1).

Similarly, LSj is the number of nonisomorphic lower summands that have symmetric
coatoms. For each such lower summand, by collecting the CF-type results from the second
row of the table in Lemma 2, we get MFk +MAk nonisomorphic vertical 2-sums, which are
in F by condition (C1).

Adding up the cases we obtain the stated expression for CFn. The expressions for CSn

and CNn follow in the same manner.

Not all families of graded vi-lattices are 2-summable. For a simple example, finite graded
rank-four vi-lattices fail both conditions (C1) and (C2). Interestingly, finite geometric
lattices are 2-summable but in a vacuous way.

Theorem 2 The only finite geometric lattice that has a two-element level is M2.

Proof Let L be a finite geometric lattice that has a two-element level {a, b}. Because L is
atomistic, neither a nor b has any join-irreducible covers, thus a and b are each covered
by exactly one element c. Further, because L is necessarily vertically indecomposable, it
follows that c = 1L, and a, b are the coatoms.

The numbers of atoms and coatoms in a finite geometric lattice of rank r are known
as the Whitney numbers W1 and Wr−1. It is known that W1 ≤ Wr−1; see e.g. Dowling
and Wilson [7]. This implies that our L has two atoms. But we have shown that L cannot
have two-element levels other than the coatoms; thus the atoms are the coatoms, and L =
M2.

In other words, Theorem 2 says that all finite geometric lattices are special; there are
no pieces and no compositions, so no use for the vertical 2-sum. Modular and distributive
lattices will be more interesting for our purposes. We first prove an auxiliary result by
elementary means.

Lemma 3 In the Hasse diagram of a finite semimodular lattice, the subgraph induced by
two consecutive levels is connected.
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Proof Let L be a finite semimodular lattice, Lk its kth level, and Hk the subgraph induced
by Lk and Lk+1. We use induction on k. Clearly H0 is connected. Assume then that Hk−1 is
connected. IfLk is a singleton, then obviouslyHk is connected. Otherwise, let (U, V ) be any
partition of Lk into two nonempty subsets. Because Hk−1 is connected, there is an element
in Lk−1 that is covered by some two elements u ∈ U and v ∈ V . Then by semimodularity
u and v are covered by some w ∈ Lk+1, so there is a path from U to V in Hk . Finally, from
every element in Lk+1 there is an edge to Lk . Thus Hk is connected.

Note that Lemma 3 also follows from previously known, more general results:
Björner [8] proved that finite semimodular lattices are lexicographically shellable, and
Collins [9] proved that graded lexicographically shellable lattices are rank-connected
(i.e. the subgraph induced by two consecutive levels is connected).

Lemma 4 The family of finite semimodular vi-lattices is 2-summable.

Proof We use subscripted symbols ∧L, ∨L and ≺L to denote meet, join and covered-by in
lattice L.

(C1) Let L and U be finite semimodular vi-lattices, S their vertical 2-sum, and N the
two identified elements of L and U . Clearly S is a vi-lattice. We show that S is
semimodular by using Birkhoff’s condition [10, p. 331]. Let a, b ∈ S such that they
cover a ∧S b. Then a and b have the same rank, and are either below N , in N or
above N . If a, b are below N , then because L is semimodular, a, b ≺S a ∨L b =
a ∨S b. If a, b are in or above N , then because U is semimodular, a, b ≺S a ∨U b =
a ∨S b.

(C2) Let S be a finite semimodular vi-lattice that is a vertical 2-sum of L and U . Clearly
L and U are vi-lattices. We show that they are semimodular, again using Birkhoff’s
condition.

First let a, b ∈ L such that they cover a ∧L b. If a, b are not the coatoms of L,
then a ∨L b = a ∨S b. If a, b are the coatoms of L, then a ∨L b = 1L. In both cases
a, b ≺L a ∨L b. Thus L is semimodular.

Let then a, b ∈ U such that they cover a ∧U b. If a, b are not the atoms of U , then
a ∧U b = a ∧S b, and because S is semimodular, a, b ≺U a ∨U b = a ∨S b. If a, b

are the atoms of U , then they are a neck of S. Because S is semimodular, it follows
from Lemma 3 that a, b have a common upper cover c in S. Then also a, b ≺U c.
Thus U is semimodular.

Lemma 5 The family of finite modular vi-lattices is 2-summable.

Proof Follows from Lemma 4 by duality.

Lemma 6 The family of finite distributive vi-lattices is 2-summable.

Proof We recall that a finite modular lattice is distributive if and only if it does not contain
a cover-preserving diamond [10, p. 109], that is, five distinct elements o, a, b, c, i such that
o ≺ a, b, c ≺ i.

(C1) Let L and U be finite distributive vi-lattices and S their vertical 2-sum. By Lemma 5
S is modular. Since L and U do not contain a cover-preserving diamond, the only
possibility for S to contain one would be with o ∈ L and i ∈ U , but the neck
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consisting of the two identified elements of L and U cannot contain three distinct
elements a, b, c. Thus S is distributive.

(C2) Let S be a finite distributive vi-lattice that is a vertical 2-sum of L and U . By
Lemma 5 L and U are modular vi-lattices. Since S does not contain a cover-
preserving diamond, the only possibility for L to contain one would be with i = 1L,
but this is impossible because L has only two coatoms. Thus L is distributive. The
case of U is similar.

4 Computations

4.1 Method of Classifying a Lattice

Given a graded vi-lattice represented by its covering graph, a short piece of program code
classifies the lattice into the types described in Section 2. Calculating lattice length, count-
ing atoms and coatoms, and finding possible necks is straightforward. For analyzing the
symmetry type we use Nauty version 2.7r1 [11, 12].

Nauty returns the automorphism group of a given directed graph as a list of generators
(γ1, . . . , γk). To classify a bottom piece we check if any generator swaps the coatoms; in
that case the coatoms are symmetric, otherwise fixed. With a top piece we check if any
generator swaps the atoms. To classify a middle piece some more cases are required. For
each generator, we check if it:

A. swaps the atoms and fixes the coatoms; or
B. swaps both the atoms and the coatoms; or
C. swaps the coatoms and fixes the coatoms.

Generators that touch neither atoms nor coatoms are ignored. Then:

1. If there are no generators of types A/B/C, the piece is MF.
2. If there are generators of type A, but none of B/C, the piece is MA.
3. If there are generators of type C, but none of A/B, the piece is MC.
4. If there are generators of type B, but none of A/C, the piece is MH.
5. If there are generators of at least two of the types A/B/C, the piece is MX.

It is easily seen that this procedure produces the correct classification. Note that for an MX
piece, Nauty does not necessarily return generators of types A and C. It can instead return,
for example, a generator γi of type A, and a generator γj of type B. But then γi ◦ γj is an
automorphism that swaps the coatoms and fixes the atoms, and then we know that the piece
is indeed MX.

4.2 Modular Lattices

Modular vi-lattices were previously generated and counted up to 30 elements in [5], and up
to 33 elements in unpublished work [13]. That was done with a program that starts from
length-two seed lattices, and then adds new levels of elements recursively. The program lists
exactly one representative lattice from each isomorphism class.

We use here essentially the same lattice-generating program, modified so that it skips all
compositions, and generates only the pieces and the specials. The modification is simply
that two-element levels are not allowed between coatom and atom levels, because such a
level would form a neck.
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With this program, all modular pieces and specials of n ≤ 35 elements were generated
(up to isomorphism), and classified as described in Section 4.1. The numbers of modular
compositions of n ≤ 35 elements were then calculated using Lemma 5 and Theorem 1.

The results of the exact counting are shown in Table 1. Rows MF–TS and “special” are
from direct counting with the lattice-generating program. Rows CF–CN are calculated with
the recurrence in Theorem 1. Row “vi-latt.” contains the numbers of all modular vi-lattices:
this is the sum of specials, pieces and compositions. Finally, row “all” has the numbers of
all modular lattices (including vertical sums of vi-lattices), calculated with the vertical sum
recurrence in Eq. 1.

An exponential lower bound is derived as follows. Using Theorem 1 with the known
numbers of modular pieces of up to 35 elements, and plugging in zeros for larger pieces
(whose numbers we do not know), we obtain lower bounds on CFn, CSn and CNn for n

arbitrarily large. We observe that the growth ratios (from n to n + 1) of all three bounds
settle a little above 2.3122 for n large enough. To obtain rigorous lower bounds, we choose
a convenient starting point n = 50, convenient constant coefficients in front, and apply
induction.

Theorem 3 The numbers of nonisomorphic modular compositions of types CF, CS and CN
have the following lower bounds, when n ≥ 50:

CFn ≥ 0.002910 × 2.3122n

CSn ≥ 0.000035 × 2.3122n

CNn ≥ 0.002470 × 2.3122n

Proof For 50 ≤ n ≤ 85 the claim follows by direct calculation with Theorem 1, using the
numbers of pieces from Table 1, and zeros when the number of pieces is not known.

For n > 85 the claim follows by induction on n. Let n > 85 be arbitrary, and assume
that the claimed lower bounds hold on CFm, CSm and CNm when n − 35 ≤ m ≤ n − 1.
Then applying Theorem 1 gives the claimed lower bounds on CFn, CSn and CNn, which
completes the induction.

Corollary 1 There are at least 0.005415 × 2.3122n nonisomorphic modular vi-lattices of
n elements when n ≥ 50.

Proof Add up the three lower bounds from Theorem 3.

Theorem 4 There are at least 0.02×2.3713n nonisomorphic modular lattices of n elements
when n ≥ 100.

Proof For 100 ≤ n ≤ 400 the claim follows by direct calculation. First use Theorem 1
to compute the exact numbers of modular vi-lattices for n ≤ 35, and lower bounds for
35 < n ≤ 400 by replacing the unknown piece counts with zeros. Then apply Eq. 1 to
compute lower bounds on modular lattices.

For the induction step, let n > 400 be arbitrary, and assume that the claimed lower bound
holds for the previous 300 values. Applying Eq. 1 then gives the claimed lower bound for
the number of n-element modular lattices. This completes the induction.

122 Order (2022) 39:113–141



Ta
bl
e
1

N
um

be
r
of

m
od
ul
ar

la
tti
ce
s
up

to
is
om

or
ph
is
m

n

ty
pe

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

M
F

0
0

0
0

0
1

0
0

2
3

3
13

24
48

10
5

24
2

M
A

0
0

0
0

0
0

0
0

0
0

0
1

1
2

5
7

M
C

0
0

0
0

0
0

0
0

0
0

0
1

1
2

5
7

M
X

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

M
H

0
0

0
0

0
0

0
0

1
0

1
0

1
0

2
2

B
F

0
0

0
0

0
0

1
1

1
4

6
11

25
56

11
3

25
7

B
S

0
0

0
0

0
0

0
0

0
1

1
2

4
5

9
15

T
F

0
0

0
0

0
0

1
1

1
4

6
11

25
56

11
3

25
7

T
S

0
0

0
0

0
0

0
0

0
1

1
2

4
5

9
15

C
F

0
0

0
0

0
0

0
2

2
6

16
38

80
20
8

46
4

11
15

C
S

0
0

0
0

0
0

0
0

0
0

0
0

0
3

5
15

C
N

0
0

0
0

0
0

0
0

2
4

10
28

66
15
4

37
5

88
4

sp
ec
ia
l

1
1

0
1

1
1

1
3

3
5

10
20

35
75

15
1

31
7

pi
ec
es

0
0

0
0

0
1

2
2

5
13

18
41

85
17
4

36
1

80
3

co
m
po
s.

0
0

0
0

0
0

0
2

4
10

26
66

14
6

36
5

84
4

20
14

vi
-l
at
t.

1
1

0
1

1
2

3
7

12
28

54
12
7

26
6

61
4

13
56

31
34

al
l

1
1

1
2

4
8

16
34

72
15
7

34
3

76
6

17
18

38
99

88
98

20
47
5

123Order (2022) 39:113–141



Ta
bl
e
1

(c
on
tin

ue
d) n

ty
pe

17
18

19
20

21
22

23
24

M
F

51
8

11
85

26
64

60
92

13
84
9

31
93
2

73
45
8

17
01
12

M
A

15
28

61
12
2

27
0

57
0

12
59

27
29

M
C

15
28

61
12
2

27
0

57
0

12
59

27
29

M
X

1
4

5
11

18
35

63
12
4

M
H

5
8

11
19

22
43

51
10
5

B
F

55
7

12
50

27
63

62
67

14
12
5

32
22
5

73
56
1

16
93
04

B
S

30
52

10
9

20
7

42
2

83
5

17
21

35
44

T
F

55
7

12
50

27
63

62
67

14
12
5

32
22
5

73
56
1

16
93
04

T
S

30
52

10
9

20
7

42
2

83
5

17
21

35
44

C
F

25
80

61
56

14
38
2

34
23
6

80
70
3

19
21
41

45
55
48

10
86
26
9

C
S

35
84

19
1

45
7

10
54

24
82

57
95

13
60
1

C
N

20
91

49
59

11
73
6

27
83
2

66
00
9

15
68
45

37
29
56

88
81
93

sp
ec
ia
l

65
7

14
26

30
74

67
83

15
00
6

33
70
7

75
94
4

17
28
93

pi
ec
es

17
28

38
57

85
46

19
31
4

43
52
3

99
27
0

22
66
54

52
14
95

co
m
po
s.

47
06

11
19
9

26
30
9

62
52
5

14
77
66

35
14
68

83
42
99

19
88
06
3

vi
-l
at
t.

70
91

16
48
2

37
92
9

88
62
2

20
62
95

48
44
45

11
36
89
7

26
82
45
1

al
l

47
32
1

11
00
24

25
67
91

60
19
91

14
15
76
8

33
40
84
7

79
04
70
0

18
75
29
43

124 Order (2022) 39:113–141



Ta
bl
e
1

(c
on
tin

ue
d)

n

ty
pe

25
26

27
28

29
30

M
F

39
43
56

91
85
97

21
42
88
5

50
16
59
3

11
76
66
61

27
67
31
69

M
A

60
54

13
39
5

29
98
1

67
30
8

15
22
90

34
58
97

M
C

60
54

13
39
5

29
98
1

67
30
8

15
22
90

34
58
97

M
X

23
9

47
4

94
5

19
11

39
17

80
94

M
H

14
8

29
0

45
4

82
6

13
59

23
52

B
F

39
02
58

90
47
69

21
02
58
3

49
05
59
7

11
47
22
36

26
90
87
06

B
S

74
75

15
90
2

34
37
9

75
03
0

16
57
52

36
91
40

T
F

39
02
58

90
47
69

21
02
58
3

49
05
59
7

11
47
22
36

26
90
87
06

T
S

74
75

15
90
2

34
37
9

75
03
0

16
57
52

36
91
40

C
F

25
86
65
2

61
79
94
3

14
76
38
45

35
34
79
71

84
67
06
99

20
31
33
68
6

C
S

31
93
1

75
12
0

17
69
99

41
78
63

98
80
02

23
40
24
5

C
N

21
17
27
6

50
54
55
9

12
07
87
48

28
90
21
61

69
22
85
82

16
60
12
18
7

sp
ec
ia
l

39
50
73

90
88
30

20
98
04
3

48
66
32
0

11
32
05
74

26
42
77
88

pi
ec
es

12
02
31
7

27
87
49
3

64
78
17
0

15
11
52
00

35
35
24
93

82
93
11
01

co
m
po
s.

47
35
85
9

11
30
96
22

27
01
95
92

64
66
79
95

15
48
87
28
3

37
14
86
11
8

vi
-l
at
t.

63
33
24
9

15
00
59
45

35
59
58
05

84
64
95
15

20
15
60
35
0

48
08
45
00
7

al
l

44
58
88
03

10
62
47
12
0

25
36
44
31
9

60
66
03
02
5

14
53
02
95
16

34
85
70
70
07

125Order (2022) 39:113–141



Ta
bl
e
1

(c
on
tin

ue
d)

n

ty
pe

31
32

33
34

35

M
F

65
20
38
34

15
39
63
39
1

36
41
51
88
6

86
27
79
75
4

20
47
14
51
14

M
A

79
04
96

18
13
61
5

41
80
88
6

96
73
36
3

22
46
73
66

M
C

79
04
96

18
13
61
5

41
80
88
6

96
73
36
3

22
46
73
66

M
X

16
97
5

35
87
6

76
74
9

16
56
15

36
08
78

M
H

39
58

66
96

11
46
6

19
46
5

33
80
7

B
F

63
24
53
92

14
89
91
34
2

35
16
20
38
0

83
13
65
58
3

19
68
78
08
07

B
S

82
95
76

18
77
30
7

42
77
55
8

98
00
07
8

22
57
11
55

T
F

63
24
53
92

14
89
91
34
2

35
16
20
38
0

83
13
65
58
3

19
68
78
08
07

T
S

82
95
76

18
77
30
7

42
77
55
8

98
00
07
8

22
57
11
55

C
F

48
76
82
31
0

11
72
23
72
43

28
19
86
06
68

67
89
96
56
27

16
36
18
98
24
5

C
S

55
51
71
6

13
19
10
92

31
38
85
74

74
79
80
62

17
84
82
51
4

C
N

39
84
94
23
8

95
75
17
79
9

23
02
84
49
11

55
43
37
39
58

13
35
48
84
17
7

sp
ec
ia
l

61
85
31
33

14
51
60
95
0

34
14
31
58
9

80
48
78
00
6

19
01
05
85
38

pi
ec
es

19
49
55
69
5

45
93
70
49
1

10
84
39
77
49

25
64
64
28
82

60
75
17
84
55

co
m
po
s.

89
17
28
26
4

21
42
94
61
34

51
54
09
41
53

12
40
81
37
64
7

29
89
52
64
93
6

vi
-l
at
t.

11
48
53
70
92

27
47
47
75
75

65
79
92
34
91

15
77
76
58
53
5

37
87
15
01
92
9

al
l

83
73
27
38
35

20
13
94
98
21
7

48
49
60
79
93
9

11
69
05
71
51
14

28
20
98
86
97
30

126 Order (2022) 39:113–141



The accompanying SageMath code [14] demonstrates how the lower bounds can be
verified by calculation: see functions paper_1ower_bound_verify_modular and
paper_v1_lower_bound_verify_modular.

4.3 Distributive Lattices

Distributive vi-lattices have been previously counted up to 49 elements by Erné et al. [1,
15]. To count n-element distributive lattices, they actually generated posets that have
n antichains; these are in a one-to-one correspondence with the distributive lattices.

Our approach is more direct. We generate the distributive lattices directly, using the same
program that we used for modular lattices, with some modifications. The first modification
is a condition that ensures that we generate only the distributive lattices. Since the original
program generates modular lattices, we only need to check that whenever a new element
is created, it does not create a cover-preserving diamond [10, p. 109]. This ensures that we
generate the distributive lattices but no others.

We also employ an important optimization that cuts short search branches that cannot
lead to distributive lattices. Our lattice-generating program (see [5] for more details) builds
lattices levelwise, top down, until the number of elements reaches a preset maximum. When
creating a new level, it adds new elements in decreasing order of updegree. The last step
on each level is thus to create meet-irreducible elements. In the original algorithm, this step
can create a large number of meet-irreducible elements, limited only by the maximum lat-
tice size. But in a distributive lattice we can limit their number as follows. We recall (see
Corollary 112 in [10]) that the number of meet-irreducible elements in a distributive lat-
tice equals the lattice length. As we build a lattice, we keep track of the meet-irreducible
elements created so far, and at each level we compute an updated upper bound M on the
lattice length (based on the current length and the budget of remaining elements). The num-
ber of meet-irreducible elements, including the ones already created, is then limited to be at
most M .

With this program, all distributive pieces and specials of n ≤ 60 elements were generated
(up to isomorphism), and classified with the method described in Section 4.1. Compositions
were then counted using Theorem 1. The results are shown in Table 2.

An exponential lower bound is derived in the same way as with modulars. Using Theo-
rem 1 with the known numbers of distributive pieces of up to 60 elements, and plugging in
zeros for larger pieces, we obtain lower bounds on CFn, CSn and CNn whose growth ratios
settle a little above 1.7250 for n large enough. To obtain rigorous lower bounds, we choose
a convenient starting point n = 100, convenient constant coefficients in front, and apply
induction.

Theorem 5 The numbers of nonisomorphic distributive compositions of types CF, CS and
CN have the following lower bounds, when n ≥ 100:

CFn ≥ 0.010600 × 1.7250n

CSn ≥ 0.000092 × 1.7250n

CNn ≥ 0.001950 × 1.7250n

Proof For 100 ≤ n ≤ 161 the claim follows by direct calculation with Theorem 1, using
the numbers of pieces from Table 2, and zeros when the number of pieces is not known.
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For n > 161 the claim follows by induction on n. Let n > 161 be arbitrary, and assume
that the claimed lower bounds hold on CFm, CSm and CNm when n − 61 ≤ m ≤ n − 1.
Then applying Theorem 1 gives the claimed lower bounds on CFn, CSn and CNn, which
completes the induction.

Corollary 2 There are at least 0.012642 × 1.7250n nonisomorphic distributive vi-lattices
of n elements when n ≥ 100.

Proof Add up the three lower bounds from Theorem 5.

Theorem 6 There are at least 0.088×1.8433n nonisomorphic distributive lattices of n ele-
ments when n ≥ 100.

Proof For 100 ≤ n ≤ 400 the claim follows by direct calculation. First use Theorem 1
to compute the exact numbers of distributive vi-lattices for n ≤ 60, and lower bounds for
60 < n ≤ 400 by replacing the unknown piece counts with zeros. Then apply Eq. 1 to
compute lower bounds on distributive lattices.

For the induction step, let n > 400 be arbitrary, and assume that the claimed lower bound
holds for the previous 300 values. Applying Eq. 1 then gives the claimed lower bound for
the number of n-element distributive lattices. This completes the induction.

The accompanying SageMath code [14] demonstrates how the lower bounds can be veri-
fied by calculation: see functions paper lower bound verify distributive and
paper v1 lower bound verify distributive.

4.4 Semimodular Lattices

Although semimodular vi-lattices are 2-summable, vertical 2-sum is not very useful with
them. For example, only about 23% of the 25-element semimodular vi-lattices are compo-
sitions (from data in [16]). This is in stark contrast with modular and distributive lattices.
Basically this is because semimodular lattices are short and wide (cf. Figures 4–5 in [5]).
For this reason we do not include tables of semimodular lattices here, but such tables can be
easily computed using the accompanying program code.

We could apply the same techniques as above to obtain an exponential lower bound. But
an asymptotically stronger lower bound is obtained by constructing semimodular lattices
from Steiner triple systems. A Steiner triple system is a set of k elements (points) and a
collection of their 3-sets (triples), such that each pair of distinct points occurs in exactly one
triple. By counting the pairs it is easily seen that the number of triples must be k(k − 1)/6.
It is known that Steiner triple systems on k points exist if and only if k ≡ 1 or 3 (mod 6);
such values of k are called admissible.

Given a Steiner triple system on k ≥ 7 points, if we take the points as atoms, the triples
as coatoms, and augment a top and a bottom, we obtain a rank-three semimodular vi-lattice,
because each pair of atoms is covered by exactly one coatom. The lattice has k + k(k −
1)/6 + 2 elements.

Theorem 7 For any n ≥ 100, the number of nonisomorphic semimodular rank-three vi-
lattices containing n elements is at least

(
0.3286 n1/8

)n.
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k + k(k − 1)/6 + 2 ≤ n.

Then k ≥ 21, and because admissible values are at most 4 units apart, we have

n < (k + 4) + (k + 4)(k + 3)/6 + 2 < k2/3. (2)

Let N be the number of nonisomorphic Steiner triple systems on k points. By Wilson’s
Theorem 2 [17], we have

N ≥ (e−5k)k
2/12,

and using the bound k >
√
3n from Eq. 2 we obtain

N ≥ (
e−5 · √

3n
)n/4 = (

e−5/4 · 31/8 · n1/8
)n ≥ (

0.3286 n1/8
)n.

From these N Steiner triple systems we obtain N nonisomorphic semimodular rank-
three vi-lattices that have n′ = k + k(k − 1)/6 + 2 elements. By our choice of k we have
n′ ≤ n. To each lattice, add n−n′ coatoms covering an arbitrarily chosen atom of the highest
updegree. This makes the lattices have exactly n elements, preserving semimodularity and
nonisomorphism, so the claim follows.

The lower bound in Theorem 7 is very loose (it does not even exceed 1 until n ≈ 7000),
and is presented here in simple terms just to demonstrate the asymptotic behaviour, that
the number of semimodular vi-lattices grows faster than any exponential in n. The bound
might be improved in several ways, for example, by using Keevash’s recent improvement
on Wilson’s lower bound [18].

4.5 Notes on Computation

The main computational load was in generating the pieces and specials. For the largest sizes
this was parallelized by running the lattice-generating program until a predefined number
of elements had been added. The search state at those points was saved to a file, and the
remaining work was divided among worker processes.

For modular lattices of 33, 34 and 35 elements, this computation took 8.9, 23.7 and
63.1 cpu-core-days on Intel Xeon Gold 6230 processors (clock frequency varying but nom-
inally 2.1 GHz), so empirically the running time scales roughly as 2.66n. For distributive
lattices of 58, 59 and 60 elements, the computation took 6.3, 10.4 and 17.2 cpu-core-days,
scaling roughly as 1.66n. This is better than would be possible by any algorithm that relies
on explicit enumeration of distributive vi-lattices, because the number of such lattices grows
at least as �(1.7250n).

The optimization in Section 4.3 that made it possible to count distributive lattices up to
60 elements is just one example, out of many, where the speed of a combinatorial search is
greatly affected by a simple, innocent-looking bounding condition. Here its implementation
takes about a dozen lines of code (see the accompanying program code for details). But
already at 30 elements, it speeds up the generation of distributive pieces and specials from
153 seconds to 0.4 seconds; and the savings ratio keeps improving as the lattices grow.

Unfortunately, it is not always easy to come up with conditions that actually have a great
impact, and are also fast enough to compute during the search. Given the large existing
theory of the structure of distributive and modular lattices, it is conceivable that our lattice-
generating program could still be much improved by imposing some other, so far untried,
bounding conditions.

Proof Let n ≥ 100 be given. Choose the largest admissible k such that
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4.6 Partial Verification

We describe here some of the methods that were used to partially verify the correctness of
the computational results.

The pieces and specials were generated and classified twice, on different computers.
The counts and the actual lattice listings were verified to be identical by comparing their
MD5 checksums. This would help against transient hardware and operational errors, but not
against systematic errors in the program.

The number of MA pieces equals the number of MC pieces in each column of Tables 1
and 2. This is as it should, because such pieces are duals of each other. The same holds
between BF and TF pieces, and between BS and TS pieces.

We also performed a more thorough duality check. The rank sequence of a graded lattice
is the sequence of its level sizes from bottom to top. The rank sequences of a lattice and its
dual are reverses of each other. In Fig. 1 the BF example piece has rank sequence (1, 3, 2, 1),
and its dual, the TF example piece has (1, 2, 3, 1). We counted the occurrences of each
combination of symmetry type and rank sequence in pieces and specials, and verified that
the numbers match between the dual pairs (MF–MF, MA–MC, MX–MX,MH–MH, BF–TF,
BS–TS, and special–special). For example, among all 60-element distributive MX pieces,
there are 2 137 whose rank sequence is (1, 2, 3, 4, 6, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 1), and
2 137 whose sequence is its reverse. If any of the lattice listings were accidentally truncated
or corrupted, this would likely be detected as a mismatch. An error in the lattice-generating
or classification logic would also have a good chance of causing a mismatch.

As a consistency check of the Cartesian counting logic, we directly generated, classi-
fied and counted all distributive vi-lattices of 50 elements including compositions. In each
class, the count thus obtained matches the calculated count in Table 2. Generating these
50-element lattices took 12.6 cpu-core-days, about 70 times longer than with compositions
excluded, nicely demonstrating the benefits of Cartesian counting.

Our totals on rows “vi-latt.” and “all” agree with previously published numbers of modu-
lar lattices to 33 elements [5, 13] and distributive lattices to 49 elements [1] (except at n = 1,
because we regard the singleton as a vi-lattice). The previous countings are independent in
the sense that they did not employ the vertical 2-sum.

5 Concluding Remarks

One of our stated goals was to create more compact lattice listings by leaving out all com-
positions (vertical 2-sums of smaller lattices). As seen in Tables 1 and 2, this was more
successful with distributive lattices than with modulars. Compositions make up 79% of the
modular vi-lattices of 35 elements, and 99.6% of the distributive vi-lattices of 60 elements.

The observed growths of modular and distributive lattice counts, to the extent that they
are now known, are illustrated in Fig. 3. In modular vi-lattices our lower bound �(2.3122n)

seems loose; the observed ratios keep increasing, hinting possibly of a (very slightly)
superexponential growth. We note that no exponential upper bound is currently known on
the number of modular lattices. In distributive vi-lattices the observed ratios seem to be
converging, and our lower bound �(1.7250n) seems rather tight.

Erné et al. have shown an upper bound of O(2.33n) on nonisomorphic distributive vi-
lattices [1]. Our improved lower bound�(2.3122n) on nonisomorphic modular vi-lattices is
still not enough to separate the growth rates of these two families. To close the gap there are
different options. We could count modular pieces further. Empirically, adding one element
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Fig. 3 Growth ratio of the number of nonisomorphic lattices, as lattice size increases from n−1 to n elements

increases the base in our lower bound by about 0.0048 (diminishing as n grows). Counting
the pieces up to 40 elements would probably raise the lower bound above�(2.33n). But this
would take about 10 000 cpu-core-days with the current lattice-generating program, and
was deemed not worth the effort. Improving the algorithm or the bounding techniques might
be a better idea. Another option is to improve the upper bound on distributive vi-lattices.
Indeed, Erné et al. note that “with more effort” it could be improved considerably, at least
to 2.28n. Combined with our lower bound, this would suffice to separate the growth rates.

Although our lower bounds are based on large computations, we must point out that
proper analysis of symmetry is the key to good lower bounds. Indeed, using all our data on
distributive lattices (n ≤ 60), if we ignore the symmetry cases (and lose the factors of 2 in
Theorem 1), we only obtain a bound of �(1.6213n) on distributive vi-lattices. In contrast,
using just the distributive middle pieces of n ≤ 21 elements (a truly modest collection of
134 lattices), our symmetry-distinguishing method already gives �(1.6818n).
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11. McKay, B.D., Piperno, A.: Nauty and Traces home page. http://pallini.di.uniroma1.it/
12. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symbolic Comput. 60, 94–112 (2014)
13. OEIS, the on-line encyclopedia of integer sequences. https://oeis.org/A006981. Number of unlabeled

modular lattices with n elements
14. Kohonen, J.: Cartesian lattice counting. https://bitbucket.org/jkohonen/cartesian-lattice-counting/
15. OEIS, the on-line encyclopedia of integer sequences. https://oeis.org/A006982. Number of unlabeled

distributive lattices with n elements
16. Kohonen, J.: Lists of finite lattices (modular, semimodular, graded and geometric). http://doi.org/10.

23728/b2share.dbb096da4e364b5e9e37b982431f41de
17. Wilson, R.M.: Nonisomorphic Steiner triple systems. Math. Z. 135, 303–313 (1974)
18. Keevash, P.: Counting Steiner triple systems. In: European Congress ofMathematics, pp. 459–481 (2018)
19. Kohonen, J.: Modular and distributive lattices without vertical sums and 2-sums. http://doi.org/10.23728/

b2share.80c0b996508b4a7b8f9bb6b7919c492a
20. The Tukaani Project: XZ Utils. https://tukaani.org/xz/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

141Order (2022) 39:113–141

http://creativecommons.org/licenses/by/4.0/
http://pallini.di.uniroma1.it/
https://oeis.org/A006981
https://bitbucket.org/jkohonen/cartesian-lattice-counting/
https://oeis.org/A006982
http://doi.org/10.23728/b2share.dbb096da4e364b5e9e37b982431f41de
http://doi.org/10.23728/b2share.dbb096da4e364b5e9e37b982431f41de
http://doi.org/10.23728/b2share.80c0b996508b4a7b8f9bb6b7919c492a
http://doi.org/10.23728/b2share.80c0b996508b4a7b8f9bb6b7919c492a
https://tukaani.org/xz/

	Cartesian Lattice Counting by the Vertical 2-sum
	Abstract
	Introduction
	Vertical 2-sum and Symmetry
	Cartesian Counting in a Lattice Family
	Computations
	Method of Classifying a Lattice
	Modular Lattices
	Distributive Lattices
	Semimodular Lattices
	Notes on Computation
	Partial Verification

	Concluding Remarks
	References


