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Abstract This paper studies the use of uncertain inputs in
the strategic network planning process. To model uncertain
planning inputs three essential parameters are needed: the
predicted value expressing for instance an expert’s view, the
uncertainty level indicating the doubt there is about the pre-
dicted value, and the confidence parameter denoting the prob-
ability that the output parameter was estimated big enough
(compared to the actual output). Several planning approaches
that handle uncertain variables are distinguished and their
strengths and shortcomings are indicated. This allows to indi-
cate the pitfalls in some common planning practices that use
a fixed safety margin to handle uncertainty. It is shown that
they can lead to incorrect planning decisions, such as under-
estimation of the impact of the input uncertainty and overdi-
mensioning in case of inaccurately modelled dimensioning
problems. Both a theoretic model and simulation results are
shown. A real-life planning problem is studied, including
forecasting future network traffic from uncertain inputs and
dimensioning a network to accommodate an uncertain traffic
demand.
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Strategic planning of today’s optical
telecommunication networks

The network planning process and the changing
environment

The telecommunication landscape has undergone dramatic
changes in recent years, especially due to the advances in
optical networking. The number of customers grows, as well
as the required bandwidth per user, causing the so-called
market pull. This effect is very important for Internet traffic
[1, 2] and is not expected to stop shortly [3]. Moreover,
the operator’s cost to be able to accommodate this demand
(equipment cost, etc.) is subject to dynamic changes over
time as a consequence of the fechnology push. The latter
is apparent from major technological breakthroughs. We are
witnessing an important evolution in optical networking tech-
nology, moving from point-to-point WDM transmission
towards all-optical networks using Optical Path Cross-
Connects [4]. Finally, the liberalization in most countries has
completely changed the telecommunication environment,
confronting network operators with fierce competition [5, 6].
In this dynamically changing environment, intelligent net-
work planning has even become more important than it used
to be [7, 8]. Figure 1 gives a graphical overview of the stra-
tegic planning process. The overall goal of the process is to
provide a network deployment plan optimising the profit of
the network operator (trade-off between the expected reve-
nues generated by the customers and the expected costs o
realize the network), while wking into account the indirect
customer requirements concerning survivability, etc [9-11].

Especially when planning over a longer time horizon. the
uncertainty of the considered planning data becomes impor-
tant, Forecasting future customer demand is a difficult prob-
lem [12-14] with an associated unavoidable forecast error.
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Fig. 1 Strategic planning
process
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typically increasing exponentially with the horizonal length.
Forecast unreliability is problematic to operators, as they
are—Iegitimately—concerned that the investments in net-
work capacity will not match the actual requirements. Insuffi-
cient dimensioning may cause a loss of revenue because of
displeased customers and penalty costs for unsatisfied Ser-
vice Level Agreements (SLA). Overdimensioning, on the
other hand, results in unused capacity that does not gener-
ate any revenue. Using optical technology, the equipment
cost per unit is big, e.g., the cost of an OXC is enormous
compared to the cost of an IP router line card (a ratio of
40/1 is common). As a consequence, investment decisions
for optical networks, dealing with important traffic amounts,
are critical for network operators. Understanding the impact
of planning input uncertainty is therefore especially relevant
in the context of optical networking.

Paper outline and related work

A lotof attention has been paid in the literature to the problem
of network planning with uncertain inputs. The fundamentals
of the network planning problem were described by Gupta
[15] and King [16]. Results of multiple case studies were
published: planning approaches using stochastic program-
ming {17, 18], the use of sensitivity analysis when consid-
ering uncertain inputs [19] and network dimensioning under
traffic uncertainty [20-23]. Furthermore, consulting compa-
nies emphasized the importance of handling uncertainty in
strategic decisions [24, 25].

In this paper, we focus on the evaluation of some wide-
spread planning practices. The use of a safety margin to han-
dle uncertainty is compared to the representation of uncertain
planning inputs as random variables. In Section ‘Uncertain-
ity modelling approaches” of the paper, the considered uncer-
tainty handling methods and their parameters are introduced.
The safety margin is studied in more detail and a reference
scenario is discussed, which allows to determine a useful
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safety margin value. Section ‘Pratical use’ compares this ref-
erence scenario to what actually happens in practice, reveal-
ing some pitfalls of the use of safety margins in real-life situ-
ations. Section ‘Real-life planning problems using uncertain
variables’ covers a realistic case study. As a starting point, a
traffic model with uncertain inputs is considered. In a sec-
ond stage, the uncertain traffic forecasts resulting from this
model are used for the dimensioning of a pan-European IP-
over-Optical network. The last section ends the paper with
some conclusions.

equipment
cosf

.

Uncertainty modelling approaches

In this section, we indicate where uncertainty comes into
play in the long-term network planning process and explain
the approach we follow to model this uncertainty.

Qur model

Roughly speaking, an uncertain variable consists of a pre-
dicted value (sharp number) and some description of the
inherent uncertainty. The predicted value of a planning in-
put variable (future demand, cost, . ..) will for instance be
obtained by hiring an expert for the considered planning do-
main. However, the real future value of the considered plan-
ning input will probably not equal the predicted value, even
if made by the best expert. An uncertain variable therefore
has some inherent uncertainty which should be taken into
account during the planning process and can be represented
in several ways (see Fig. 2). A-priori and a-posteriori adjust-
ment are straightforward approaches: they make use of a so-
called safety margin, added to the predicted values before or
after the planning caleulations. The probabilistic approach
is more formal as it uses probubility distributions to model
the uncertain character. All parameters needed to describe
our model are introduced below.
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The predicted value v is the expected value for the uncer-
win varinble under consideration. It is the forecasted
value proposed by an expert, an extrapolation model, or
the average of multiple forecasted values proposed by
«everal experts. For instance, the predicted value for next
vear's treffic may be obtained by an extrapolation of the
wrallic measured during previous years and the current
yedr.

In the a-priori and a-posteriori adjustment method, a rel-
ative safery margin m is used to take the uncertain charac-
rer of the forecasts into account in a very straightforward
way. In a-priori adjustment, a margin is added to the pre-
dicted value of every input variable before the start of
the calculations. It indicates the uncertainty inherent to
these inputs and may be different for every input vari-
able. For instance, we could add a safety margin of 10%
to all demand matrix entries so that they represent some
kind of upper limit on the expected traffic. In a-posteriori
adjustment, on the other hand, the margin is added to the
sharp calculated result at the end of all calculations: only
asingle safety margin is used, independently of the num-
ber of inputs. For instance, if the predicted traffic for next
year on a certain network link is 3000 Mbps, one might
take a safety margin of 10% and thus decide to foresee
3300 Mbps to be able to cope with the real demand that
might be bigger than expected.! As an illustration, the
results found by a-priori or a-posteriori adjustment for
some operations are given in Table 1. Remark that even
when using a-posteriori adjustment the intention of the
safety margin is still to incorporate the uncertain charac-
ter of the input variables. The a-posteriori added margin
should show how the input uncertainty is reflected in the

om this example it is clear that the safety margins we consider in
s paper always indicate positive margins: we add a safety margin i1 10
saleulated result v, so that the actual result (taking into account
vy equals v -+m . For the planning problems considered here.u
fegative safety margin (resulting in v-n1) would be meaningless. How-

tic sha

ver cises where negative margins would make sense (e.g.. when con-
g the minimal demand needed for the minimal expected revenuge)
could be studied in a completely similar way.

- number of sample points n

Table 1 A-priori and a-posteriori adjustment methods

A-priori adjustment A-posteriori

adjustment
Operand | Aprio (v}, my) Apost (vy. m)
Operand 2 Aprio (v, m2) Apost (v, m)
Sum Uy @%‘0'_"-\—) (v; + Uv)UO(H—m)
1 2700
+ 1 (lOOl+m3)
Maximum MAX [U {00+ m)) 1 (100 + nt)
l”‘Taj“‘Ly MAX [U],Lg]—m——
(100 4-m)
v2 ‘“‘“100“‘]
Product yy 400-+my) ey 00+ m)
17100 (V1 - 1) =5

o (100 +mp)

output variables. It is possible to indicate the a-posteriori
margin m as a function of the a-priori margins m; and
my, giving the same result, e.g., for the sum of two uncer-
tain variables: m = (my - vy +ma - v2)/(vy + v2). If the
predicted values of both inputs are equal to each other,
the appropriate a-posteriori margin equals the mean of
the a-priori margins.

o In the probabilistic model, an uncertain variable is repre-
sented as a random variable with an associated probabil-
ity distribution. The predicted value v is used as the mean
value for this distribution. The standard deviation of a
probability distribution can be seen as an indication of the
uncertainty associated with this mean value. As it is likely
that this uncertainty will grow with the magnitude of the
forecasted value, the standard deviation s is chosen to be
a percentage of the predicted value: s = p-v/100 with p
being the percentual standard deviation. In this model,
the operations on uncertain variables are performed using
the common formulae for continuous random vzu‘iublc:;
on piecewise linear approximations of the considered
density functions. Piecewise lincar functions allow 1o
approximate any probability distribution. even if itcannot
casily be described analytically. For scalubility reasons,
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the result of each operation is resampled to have the
same number of ‘pieces’ (=number of samples —1) as
its operands. The accuracy of the approximation grows
with the amount of samples, as illustrated in Fig. 3 for
the standard deviation of a sum (where the exact re-
sult can easily be determined analytically). A complex-
ity analysis showed that the computational complexity
of the addition of probabilistic approximated variables
grows with the third power of the number of samples,
which is also apparent in the figure. In contrast to the
traditional discrete sampling approach, our model uses
continuous probability distributions and imposes lower
memory requirements (see the Appendixs for more de-
tails on this model).

e The last important parameter is the so-called confidence
parameter c. For example, if a network planner is inter-
ested in the amount of capacity that has to be foreseen to
accommodate the future traffic on the network with some
(given) chance, this chance is indicated by the confidence
parameter. Mathematically speaking, we want to indicate
a limit value y ;i that will be greater than or equal to
the real future outcome of the uncertain value y with a
probability ¢:

Ylimit = Y predicted T Y margin
Prly = yyml = ¢

where ¥y, 18 the desired limit value, obtained as the end re-
sult of planning calculations using one of the proposed uncer-
tainty models, Ypredicted 1S the predicted value of the result
obtained by neglecting uncertainty and ymargin is determined
by the used uncertainty model. It can be different for all three
implementations (a-priori, a-posteriori adjustment and prob-
abilistic adjustment). The percentual confidence parameter
value indicates the confidence interval, e.g., if we want a
network link to be robust to uncertain traftic demand with
a probability of 95%, ¢ is set to 95%. Note that this can be
an important factor in SLAs. The penalty costs to be paid
hecause of an underdimensioned network can be enormous.
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Therefore, it is very important to be prepared for uncertain
traffic changes.

How to choose an appropriate safety
sargin value

A-priori and a-posteriori adjustment are popular planning
approaches because of their ease of use (both conceptual and
computational). When using those methods however, it is
crucial to determine a suitable safety margin value. Below,
we indicate a possible way of working to obtain a safety mar-
gin that allows to approximate the analytical value as closely
as possible.

We find a reference scenario in the addition of two uncer-
tain planning inputs x| and x5, represented by normally dis-
tributed variables. They have v; and v as mean values,
respectively. The percentual standard deviation p is equal |
for both. We know from probability theory that their sum y
is normally distributed with as standard deviation the square
root of the sum of the variance of both inputs. From the 68%,
95% and 99.7% -rules for the normal distribution (Fig. 4),
it is clear that approximately 68% of the observations fall
within one standard deviation from the mean.

For a confidence parameter of 84%, the limit value yfimit
can thus be expressed analytically by

Mimit = Ypredicted + Ymargin
Prly < yiimidl = Prly < vy +5,] = 84%
Ymargin = Sy = \/(pv1/100)3 + (PU2/100)2

where

Xy Nwy, s1) = N{vy, pu/100)
x2: Mz, 52) = N(v2, pv2/100)
v Nuy, sy) =N@i+va,(pu1 /10002 +(pua/100)%)

5 . .

“ Remark that we focus on the limit value vimy because this value
has most practical importance: it is used in planning decisions where it
indicates for instance actual link capacities to foresee for the future.
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¢ N, s) denotes a normal distributed random vari-
sble X with mean value v and standard deviation 5. As long
45 the safety margins considered in a-priori and a-posteriori
;Kijus;tmcm are equal, both approaches yield an equal sum.
In this case, Y = X1 + x2 = Aprio(vy, m) + Aprio(vz, m) =
Apost(vis m) + Apost(vz, m). We recall the following for-
mulae from above:

Vimit = Vpredicted 4+ Ymargin
Prly < yimie) = Prly = (1 + v2)(100 + m)/100] = ¢
= (v; + vy )m/ 100.

Ymargin
Identification Of Ymargin calculated analytically and Ymargin
found by a-priori or a-posteriori adjusted values leads to the
following expression for the safety margin /m as a function
of the percentual standard deviation p, the relative magni-
wde of the predicted values r = Ui /v2 and the confidence
parameter ¢ m(p, r, €).

(vi+v2)*m(p, 1, 84%)/100=/(pv1/100)* + 2/ 1002
m(P» r, 84%) = (pvl)z + (pvz)g/(vl + Uz)
m(p,r, 849) = pm/(r +1)

This last equation learns that the sum of normally distrib-
uted variables (where the standard deviation is a percent-
age of the mean value) can perfectly be approximated by
a-priori or a-posteriori adjustment if the confidence parame-
ter equals 84%. The needed safety margin is proportional to
the percentual standard deviation p and the proportion fac-
tor is a function of r, the ratio between the operands’ mag-
nitudes. For the special case where both operands are equal
(v; = vp, r = 1) this leads to m(p, 1,84%) = p/J/2. I
one operand is infinitely small compared to the other (vi >
va, r >3 1), we find m(p, +C, 84%) = p. Note that
exactly the same result is obtained when vi < v2, (r =
0),m(p,0,84%) = p. In what follows we will always
assume that vy > V2.

Following the 68%, 95% and 99.7%-rules we can make
4 similar calculation for a confidence parameter of 97.5% or
99.85%, resulting in m{p. 1.975%)y=p- J2, m(p, +0C,
97.5%) = 2p, inm(p, 1,99.85%) = 3p/2and m(p, +%.
99 .85%) = 3p. A summary of the obtained results can be
found in Fig. 5.

To determine the safety margin for other confidence param-
eters, we need numeric values for the cumulative distribution

| T el I
v vts vi2s v+3s v-35 v-25 V-8 v

‘ >

T { T T T 1
v+s v#2s v+3s v-3s v2s VsV y+s v+2s v+3s

of normal distributed variables. This information is widely
spread in the form of distribution tables for the normalised
¥+ N(O, 1) -distribution [26]. Note that via the transforma-
tion z = (x — v)/s these tables provide information for all
normal distributions z : N(v, $).

General observations concerning the safety margin

In this paragraph, some general properties of the margins
m(p, r, ¢) obtained from cumulative distributions (as indi-
cated in the previous paragraph) are discussed.

The influence of the ratio r of the predicted values on
the choice of the safety margin value is examined in
Fig. 6, which plots the limit value yimie for the sum found
by a-priori adjustment relative to the analytical value (ana-
lytical value is shown by the 100%-line in the figure) for a
confidence parameters of 84% and 97.5%. Leaving all the
rest unchanged, a growing ratio r of the operands causes the
appropriate safety margin to decrease (for small values of
the ratio), as could be expected by the obtained formulae
for m(p, 1, C). Remark that unexpected results can be ob-
tained if the wrong m-value is used. For instance, naively
setting the safety margin to p - /2 when adding uncertain
future traffic demands in a dimensioning problem where the
confidence parameter equals 97.5 %, may result in serious
capacity shortage if the actual ratio of the predicted values
turns out to be 100 or more (which might be the demand ratio
between a busy and a quiet link).

In Fig. 6 the distance between the lines m(p, 1. ©) and
m(p, +oo, ¢), and thus the difference between the appro-
priate safety margins for operands in the same order of mag-
nitude and in a completely different order of magnitude,
grows with an increasing confidence parameter ¢ (pis fixed).
An intelligent choice (taking into account the ratio of the
parameters) for the safety margin is thus even more impor-
tant when the confidence parameter grows. Remark in this
context that confidence parameters in the range of 95% (or
higher) are common in realistic planning problems.

So far we have considered the addition of only two uncer-
tain variables. It is known, however, that the relative standard
deviation (std dev/mean) of the sum of positive uncertan
variables decreases as we add more variables. As a conse-
quence, the appropriate safety margin value decreases with
the number of operands. In real network dimensioning prob-
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Fig. 53 Appropriate safety
margin value (m) as a function
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lems, multiple (>2) uncertain demands might be added.
Using the safety margin for two values will in this case lead
to results that are much larger than the analytically calcu-
lated ones. This problem can be overcome by adding the
variables two-by-two and recalculating the appropriate mar-
gin in every step or by adjusting the margin in the following
way (for the sum of n uncertain variables with equal pre-
dicted values v and percentual standard deviations p)

Vn(up/100)2 = nvxm(p, 1, 84%)/100
p/Ji = m(p, 1, 84%).

&) Springer

Practical use

So far we have shown how a safety margin value can be deter-
mined for the a-priori or a-posteriori adjustment approach
which allows to approximate the analytical results. But what
happens if the result of the operation under study no longer
has a known distribution (Gaussian in the considered case)?
If there is no information available concerning the cumula-
tive distribution of the expected result, a safety margin value
cannot be obtained in the way indicated by the reference
scenario.




communications (2006) 11:49-64

55

wetwork
Skew to the left Symmetric Skew to the right
X X X
e i e density distributio o8
- o o
e T
. /'\ 26 08 ;\
A ] § 1/\
T \ Zo4 Xo4
" : SRV
v / \ 2 // \\‘\ ) e \—-o——._;.
X ° x 0 - "
4 6 8 0 2 4 8 8 0 2 4 6 8
bk XX XX
| 05 05
e densty dstibution - density distibution e density distibution
+ it prob. apprax, value 04 + fimitprob, app.vale [ . %% 4 limit prob., approx. value {]
. i adjusted value /\ )’g 03 kit adusted value 35 s e ok |
% 02 / . Zo2 ,/ \\
i / VAN
\ 0 do / \.'\‘ . o ! \‘ : .
X 10 15 0 5 10 150

10 15 Q0 5

the reference scenario cannot always be followed

.t of all, the inputs can cause the result not to be normally
distributed anymore. Figure 7 shows the influence of the input
Jisiribution skewness on the limit value ylimit for the sum of
equal uncertain variables. Fora symmetric input distribu-
-priori or a-posteriori adjustments give the same results
the approximated probabilistic model (when following
the reference scenario approach). For a positively skewed
distribution (tail to the right) however, the limit value ob-
wined by a-priori or a-posteriori adjustment underestimates
actual limit value. For a negatively skewed distribution,
the value is overestimated. The probabilistic approximated
alue technique is far best suited to model uncertainty in this
case, because it calculates the limit value based on the area
underneath the density curve.
~ Also the actual operation performed on the uncertain vari-
 ables has its influence. If the input variables are represented
s normally distributed variables, the sum will be normally
 distributed as well. Maximum and product will have different
distributions. Furthermore, from the information of Table 1
, ,/%i is clear that the sum and maximum of uncertain vari-
'@i&s is equal for both a-priori and a-posteriori adjustment
{as long as all considered safety margins are the same). The
’, product obtained by a-priori adjustment, on the other hand,
will always be m bigger than that obtained by a-posteriori
adjustment:

i ; ) 100 + 1)
a-priori adjusted product ””?85 . 2 130 -

#posteriori adjusted product w;g)g_zﬂl

|

B 100 + m
100

y, %gﬁacnce of the skewness of the probability distribution on the performance of the models

Pitfalls of common practices

A-priori and a-posteriori adjustments are common practices
today. Despite the insights of the previous paragraphs, how-
ever, the safety margin value is often chosen in an ad-hoc
way. A particular value is chosen at the start of the study and
then used throughout all calculations.

In Fig. 8, we illustrate that the use of a fixed safety margin
value is a dangerous practice. It may, for example, lead to
inaccurate dimensioning decisions if uncertain demands are
involved. In the figure, the safety margin m is set to P2,
irrespective of the ratio of the operands r. The confidence
parameter ¢ equals 97.5%. The results are shown relative to
the solution obtained by the probabilistic approximation case,
which approximates the analytical value well: the discrep-
ancy between analytical and approximated values obtained
when adding two uncertain variables is always below 0.5%.

The uppermost part of Fig. 8 shows that, for equal oper-
ands, the adjusted sum (equal for a-priori and a-posteriori
adjustments) is exactly the same as the sum found by proba-
bilistic approximation, independently of the uncertainty level
value. This is what we expected with the used value for the
safety margin (reference scenario). When the operands are
not equal anymore, there is a difference between both results
which grows with the uncertainty level and with the ratio of
the operands’ magnitudes. The fact that the adjusted value
is always smaller than the probabilistic approximated value
can be understood from the influence of the ratio r = v /v2.
The bigger this ratio, the more the ideal value for m moves
away from p - /2 towards 2p and thus the bigger the fault

made by choosing m = p- /2. The fault grows linearly with
the uncertainty level value.

The middle part of Fig. 8 studies the maximum of uncer- .
tain variables. The adjusted value (again, equal for a-priori
and a-posteriori adjustments) is always smaller than the value
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Fig. 8 Influence of uncertainty level (p = s/v) on sum, maximum, and product

found by probabilistic approximation, which is understood
from the density curve of the maximum of two normally dis-
tributed variables. This curve will be higher on the right hand
side, so that the abcissa of the limit value having 97.5% of
the area underneath the curve to its left will be bigger than
the corresponding abcissa on a Gaussian curve with the same
mean value. This discrepancy between the adjusted value and
the probabilistic approximated value grows with the uncer-
tainty level. It decreases with the ratio of the operands.

The product of uncertain variables is given in the bottom
part of Fig. 8. A-priori adjustment and probabilistic approx-
imation lead to almost identical results for most considered
cases. The inaccuracy observed for very large uncertainty
levels (45%) could be avoided by using more sample points.
However, in contrast to the case for addition and maximum,
the operands’ ratio does not influence the performance at all.
The three bottommost parts of Fig. 8 are identical despite
the fact that they represent different ratios of the predicted
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values. This is because the relative fault on the product of
two variables always equals the sum of the relative faults
of the operands, independently of their absolute values. The
discrepancy between the a-priori and a-posteriori adjusted
product is striking. This is the ratio (100 4+ m)/100 that
was explained above. Because the chosen safety margin m
is a linear function of the uncertainty level p, the discrep-
ancy grows with this p. These observations make clear that
a-posteriori adjustment will often not lead to the expected
results, therefore planners should definitely prefer a-priori
adjustment over a-posteriori adjustment when multiplicative
operations are involved.

Probabilistic approximation is conceptually more com-
plicated than a-priori or a-posteriori adjustment and has a
higher computational complexity as well, but will always
give a good approximation of the analytically calculated re-
sults. If there is no information available concerning the
cumulative distribution of the expected results {and there-
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fore it is infeasible to determine an appropriate safety margin
value for a-priori or a-posteriori adjustment), probabilistic
approximation certainly is the best uncertainty handling
technique.

Real-life planning problems using uncertain variables

In this section, a realistic planning problem is studied. Based
on the uncertain traffic forecasts resulting from a traffic
prediction model, the dimensioning of the pan-European IP-
over-Optical network of Fig. 9 (similar to the topologies de-
scribed in [27, 28]) is performed. This happens in two steps.
Section ‘Forecasting future traffic’ determines the expected
future traffic from a traffic model with uncertain inputs (based
on the forecasts of [28]), Section ‘Network dimensioning
based on uncertain traffic predictions’ performs the dimen-
sioning of the network links based on the obtained traffic
matrix.

Forecasting future traffic

Theconsidered tratfic model, proposed by Refs. [12-14] 2 dis-
tinguishes voice, transaction data, and IP traffic. It is based on
the population, the number of non-production business
employees, and the number of internet hosts in the consid-
ered cities, respectively. Moreover, the three traffic types have
difterentdistance dependencies. The total trafficis givenas the
sum of those three types. as shown in Fig. 10. In this
figure, uncertain variables are shown in grey boxes, sharp val-
ucs in white boxes. Consider for example the prediction of IP
traffic between city / and city j. The number of hosts in those
cities are estimations and thus the resulting amount of IP traf-
fic will be an estimation as well. The planner’s goal is to deter-
mine a realistic upper bound on the expected [P trafhic.

The uncertain inputs are represented as uncertain vari-
ables and the upperbounds for the considered traffic types
tand the total traffic) can be caleulated according to the three

" i the presented simulation results. the formulae of [14] are used.

uncertainty handling approaches. When using the probabilis-
tic approximated case, uncertain variables are represented as
normally distributed variables, approximated by a piecewise
linear function with 19 sample points. Although this model
can deal with all kinds of distributions, we use normal dis-
tributions for our planning inputs because we suppose them
to be obtained from multiple experts” forecasts. According
to the central limit theorem, the average of (infinitely) many
forecasts provided by independent experts will in most cases
be approximately normally distributed.

First, we consider the immediare introduction of uncer-
tainty: the inputs of Fig. 10 are considered as uncertain
variables. It is our impression that the uncertainty level asso-
ciated with the three kinds of uncertain inputs is different.
The population (P) for the next year in a certain city region
is probably known rather accurately. The number of non-
production business employees (£) might be more difficult to
forecast and the prediction for the future number of hosts (H)
is probably most uncertain. For this reason, we set different
p-values for the different inputs: p(P) = 5%, p(E) = 10%,
and p(H) = 20%. For a confidence parameter of 97.5%, we
have chosen the safety margin value as m = p - /2. As we
want to illustrate the practical use of the safety margin, the
operands’ ratio is not taken into account here (this is the so-
called use of fixed safety margin value). Fig. 11 shows results
for the traffic to and from a single source node (London). In
the considered case, the forecast for the transaction data traf-
fic is about four times as big as the voice traffic. IP traffic
is approximately twice as big as voice traffic, because of the
used reference information for the considered year 2003. Us-
ing realistic forecasts for future years would probably result
in an important growth of the expected IP traffic. A-priori
adjustment and probabilistic approximation give similar re-
sults, the used safety margin value was a good choice because
the relative magnitude of the predicted values does not influ-
ence the choice of the safety margin in case of multiplication.
This is clear for all three traffic types. A-posteriori adjustment
results in smaller values, which was expected as well. The
difference between the a-priori and the a-posteriori adjusted
values equals m% (which was indicated theoretically before)
and therefore is smallest for voice traffic, bigger for transac-
tion data traffic and, the biggest for IP traffic (reflecting the
growth in the uncertainty level of the input values for these
traffic types).

The total expected traffic per link is obtained by summing
up the above amounts of traffic for the three considered types
(voice, transaction data, and IP traffic). We find the results
in Fig. 12, indicated by the black points, The uncertainty has
been introduced in the first step of the model (Fig. 10}, which

justifies the name immediate introduction of uncertainty.

Remark that, from hereon, we will only consider a-prior
adjusted values and probabilistic approximated  values,

A-posteriori adjustment of uncertain variables indeed can-
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Fig. 10 Traffic prediction model proposed in [12-14]

not handle the different safety margins used for the different
traffic types in a straightforward way (see remark in Section
Our model). Moreover, for equal safety margins a-priori
and a-posteriori adjustments would give the same result,
indicated by the square black points.

It is apparent that a-priori adjustment and probabilistic
approximation no longer give equal results, despite the cho-
sen values for ¢ and m. This example shows that it is very
difficult to find a reliable safety margin in cases where sev-
eral kinds of operations are involved and a wide range of
predicted values is considered. Therefore, the a-priori adjust-
ment method should be used with care in real-life
situations.

In practice, it can happen that the network planner does not
know the traffic prediction model (the first step of Fig. 10),
but only disposes of its outcome (amount of voice, trans-
action data, and IP traffic). This means that he knows fore-
casted values for the three traffic types as sharp numbers
without knowing where they come from. However, he still
wants to incorporate the inherent uncertain character of those
forecasts and therefore models the amounts of voice, trans-
action data, and IP traffic as uncertain inputs for the deter-
mination of the total amount of traffic. In other words, the
introduction of uncertainty is delayed till the second step
of the wtraffic model of Fig. 10. The transparent points of
Fig. 12 show results for this case when ¢ = 97.5%, p(voice
trafficy = 5%, pltransaction datatraffic) = 10%,
pl Prrafficy = 20% and m = p- /2. The results obtained
by a-priort adjustment and probabilistic approximation are
similar. If the uncertainty level on all inputs would have been
the same, both results would have been identical. When we
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Table 2 Values for relative standard deviation (p) of different traffic
types

Traffic type Std dev (obtained Std dev (introduced)
from step 1) in case in case of delayed
of immediate uncer- uncertainty introduction
tainty introduction *

Voice 721% 5%

Transaction data 14.47% 10%

P 29.27% 20%

compare the two ways of calculating the total expected traffic
onour pan-European network (immediate introduction versus
delayed introduction of uncertainty), we notice that delayed
introduction leads to smaller limit values for the total traffic in
the considered case. This can be explained using the informa-
tion of Table 2. This table shows that the uncertain variables
obtained for the different traffic types as intermediate results
in case of immediate introduction of uncertainty have bigger
percentual standard deviations than the values that are intro-
duced in the case of delayed uncertainty introduction. A big-
ger standard deviation means a wider density curve and thus a
bigger abscissa value for the limit having ¢% of the area below
thedensity curve toits left. The method of delayed uncertainty
introduction therefore may lead to an underestimation of the
total future traffic.

Network dimensioning based on uncertain
traffic predictions

Knowing the expected future traffic on the network, the
network planner can take dimensioning decisions to
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Fig. 12 Limit values (yim) for
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with P, being the path of the traffic for source-destination
pair g; V,, TD,, IP,, the amounts of voice, transaction
data and IP traffic for source-destination pair g. The amounts
of traffic are not known exactly, they are modelled as uncer-
tain variables with an uncertainty level of 10%. The first part
of Fig. 13 plots the results for a confidence parameter of
97.5%. The required capacity on every link is shown relative
to the amount determined by the approximated probabilistic
method. The latter method closely approximates the actual
required capacity to be robust to an uncertain demand with
a chance of 97.5%. For a-priori and a-posteriori adjustments
several m-values are considered. The appropriate value for
the addition of two uncertain variables in the considered case
(m p - /2) leads to an important overprovisioning on
most links, compared to the probabilistic case. This can be
understood by the decreasing appropriate safety margin with
a growing number of operands and the fact that the safety
margin is not recalculated here for every single operation
(fixed safety margin value). A better approximation of the
100% -line is obtained for smaller values of the safety mar-
gin(e.g.,m = p/./2). On some links on the other hand (e.g.,
the link Vienna-Rome) we notice a capacity shortage, even
for rather big values of the safety margin. In this regard, re-
mark that a part of the capacity shortage could be solved by
performing some form of traffic engineering (which is not
considered here). Itis clear from the observations in this par-
agraph that the usage of a fixed safety margin to incorporate
uncertainty leads to unexpected dimensioning decisions.
Another approach is to differentiate the protection schemes
for the considered traffic types, as they may have different
survivability requirements. Voice and transaction data traffic
can be protected by a pre-caleulated link restoration scheme,
while IP traffic is sent unprotected. Restoration is especially
important in optical networks. Because of the huge wraffic
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source_destination

amounts a single failure may have a dramatic impact, while
the cost of spare resources (optical equipment) is substan-
tial. Sharing resources among several paths is a good option
in this case. The differentiated restoration scheme, we use
here implies that for IP traffic the formula from the previous
section still holds, while for voice and transaction data traf-
fic, the value stated there has to be augmented by the maxi-
mum of all traffic that can be affected by a single link failure,
resulting in

required capacity (/)
=3 Wil R,]+Mé;\lx[zg[vg ke Pynle Sg]]

+ 3, [TDg 14 € Py] + MAX [ (T : k € Pyn
LeSgl|+ 3, P L€ Py

with

Py and S, being the working and backup path for the traffic
for source-destination pair g; Vy, TD,, IP,, the amounts of
voice, transaction data, and IP traffic for source-destination
pair g.

The dimensioning decisions obtained for an uncertainty
level of 10% associated with all traffic types (V, TD, IP)
and a confidence parameter of 97.5% are shown in the sec-
ond part of Fig. 13. In this case the overdimensioning com-
pared to the probabilistic case is even worse than it was for
unprotected traffic.* A network operator following a-priori

* Note that there can be some confusion concerning the word overdi-
mensioning. With overdimensioning in the context of traffic uncertainty
we mean that there is more capacity installed that what is needed to ful-
fill the requirements set by the confidence parameter (1o be robust 0
changes in the traffic with a probability of 97.5%). The actual amount
of capucity @ be foreseen to fulfill this requirement is indicated by the
approximated probabilistic case. Overdimensioning in the context of
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Fig. 13 Limit values imit) for link dimensions in the pan-European network
limit

adjustment would make an overinvestment, compared to one
following the approximated probabilistic case. Because deter-
mination of maxima is involved here, the result is not
normally distributed and therefore it is not possible to deter-
mine a suitable safety margin in the indicated way. More-
over, the changing number of operands involved complicates
the issue even more. For the sake of completeness, we re-
mark that the extra capacity needed to protect voice and
transaction data represents 40% of all capacity in this case.

Conclusions

Strategic network planning needs forecasts for all major plan-
ning inputs. These forecasts are uncertain in nature and in

e s ocosseesrmse

survivability 1o network faulis on the other hand, may indicate the exira
“apacity we foresee compared (o the unprotected case, because of the
Use of backup paths.

order to model them as uncertain variables three essential
parameters are needed: the predicted value expressing for
instance an expert’s view, the uncertainty level indicating
the doubt there is about the presented predicted value, and
the confidence parameter denoting the importance that the
estimated output parameter exceeds the actual outcome. We
distinguish several planning approaches for handling uncer-
tainty, starting with a-priori and a-posteriori adjustments,
which are widely used in practice today. Both use a safety
margin to incorporate the effects of uncertainty. In the first
case, the margin is added to the inputs of the planning prob-
lem, in the latter to the sharply calculated result after all cal-
culations are performed. The popularity of those models can
be explained by their conceptual as well as computational
simplicity. The third considered approach represents uncer-
tain variables using probability distributions. To he able to
approximate all kind of density functions. a scalable picce-
wise linear approximation method is implemented,
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We have shown that under some specific conditions it is
possible to determine a safety margin value which allows
a-priori or a-posteriori adjustment to approximate the proba-
bilistic case. This appropriate value is a function of the con-
fidence parameter, the ratio of the predicted values, and the
number of operands. In practice, however, it is often infea-
sible to determine a useful safety margin value before the
start of the planning calculations. This can for instance be
the case when the shape of the distribution of the result is not
known in advance, because of the skewness of the input dis-
tributions, the considered operations, etc. As a consequence,
network planners often use a fixed safety margin value. We
have shown that this may lead to incorrect planning deci-
sions. Our findings were based on a theoretic model as well
as on simulation results for a realistic planning problem.

Appendix A: some implementation details

When using the probabilistic approximated value model, the
inputdistributions are sampled in n equidistant sample points.
For normally distributed variables N (v, s), we choose to
sample in v —4s, v+ 4s (where the density is set to 0) and
n — 2 equidistant points between those extremes. A piece-
wise approximation of the original distribution is obtained,
which, from this point onwards, is used as the continuous
density distribution of the considered uncertain variable.

To determine the sum of two probabilistic approximated
uncertain variable x| and 3 (each having n sample points),
the following steps are performed:

e Determine n? sample points for Y : y = x; +x2, with x;
and x> sample points for X | and X». Sort these y-values
in increasing order.

e Calculate Fy(y) for all sample points y by calculating
Fy, (y — x2) + fx,(x2) and determining the area below
the linear interpolation between those points. Connecting
all points for Fy (y) results in a piecewise linear approx-
imation of Fy.

Fy{y) = Probl¥ < y] = Probl X + X7 < v]
oo
P / ProblX; < y —xpandx < X5 <

X2+ dxp]
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e Determine a piecewise linear density function f(y) from
this cumulative function F(Y) by the following formula
(for two consecutive sample points y; and y;:

LIy ) + fr(yi)
2

Fy(yj) — Fy(yi) = (y; — yi) -

e Resample f(y) to n sample points and normalise (area
below f(Y) = 1)

Figure A1 illustrates how the density curve of the operands
is approximated by a piecewise linear curve. The result is rep-
resented by a piecewise linear curve with the same amount
of sample points (due to resampling) to order to serve as an
input for another calculation lateron.

A similar way of working is followed to determine the
maximum and product of uncertain variables. A complexity
analysis showed that the determination of a maximum is of
the order O(n -log(n)), while addition and multiplication are
of the order O(n?).
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