Skip to main content

Advertisement

Log in

Optical wireless network convergence in support of energy-efficient mobile cloud services

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Mobile computation offloading has been identified as a key-enabling technology to overcome the inherent processing power and storage constraints of mobile end devices. To satisfy the low-latency requirements of content-rich mobile applications, existing mobile cloud computing solutions allow mobile devices to access the required resources by accessing a nearby resource-rich cloudlet, suffering increased capital and operational expenditures. To address this issue, in this paper, we propose an infrastructure and architectural approach based on the orchestrated planning and operation of optical data center networks and wireless access networks. To this end, a novel formulation based on a multi-objective nonlinear programming model is presented that considers energy-efficient virtual infrastructure planning over the converged wireless, optical network interconnecting DCs with mobile devices, taking a holistic view of the infrastructure. Our modelling results identify trends and trade-offs relating to end-to-end service delay, mobility, resource requirements and energy consumption levels of the infrastructure across the various technology domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In the wireless access domain, \(m_{n}\) corresponds to the number of input queues at an eNodeB, while in the optical domain, it corresponds to the number of receiver/transmitter queues in the TSON edge node.

References

  1. Rappa, M.: The utility business model and the future of computing systems. IBM Syst. J. 43(1), 32–42 (2004)

    Article  Google Scholar 

  2. Fiorani, M., Aleksic, S., Monti, P., Chen, J., Casoni, M., Wosinska, L.: Energy efficiency of an integrated intra-data-center and core network with edge caching. J. Opt. Commun. Netw. 6, 421–432 (2014)

    Google Scholar 

  3. Wiatr, P., Chen, J., Monti, P., Wosinska, L.: Energy efficiency and reliability tradeoff in optical core networks. In: Proceedings of OFC 2014, paper Th4E.4 (2014)

  4. Mandal, U., Habib, M., Shuqiang, Z., Mukherjee, B., Tornatore, M.: Greening the cloud using renewable-energy-aware service migration. IEEE Netw. 27(6), 36–43 (2013)

    Article  Google Scholar 

  5. Dinh, H., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13(18), 1587–1611 (2013)

    Article  Google Scholar 

  6. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017. White Paper (2013)

  7. Mun, K.: Mobile cloud computing challenges. TechZine Magazine. http://www2.alcatel-lucent.com/techzine/mobile-cloud-computing-challenges/

  8. Satyanarayanan, M., et al.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  9. http://www.gogrid.com/

  10. http://www.flexiscale.com/

  11. Weiwen, Z., Yonggang, W., Wu, D.O.: Energy-efficient scheduling policy for collaborative execution in mobile cloud computing. In: Proceedings of IEEE INFOCOM 2013, pp. 190–194 (2013)

  12. Rahman, M., Gao, J., Wei-Te, T.: Energy saving in mobile cloud computing. In: Proceedings of IEEE IC2E 2013, pp. 285–291 (2013)

  13. Hyytiä, E., Spyropoulos, T., Ott, J.: Optimizing offloading strategies in mobile cloud computing. https://www.netlab.tkk.fi/u/esa/pub/files/hyytia-subm2-2013.pdf (2013)

  14. Zhang, Y., Niyato D., Wang, P., Tham, C.K.: Dynamic offloading algorithm in intermittently connected mobile cloudlet systems. In: Proceedings of IEEE ICC, Sydney (2014)

  15. Barbarossa, S., Sardellitti, S., Di Lorenzo, P.: Computation offloading for mobile cloud computing based on wide cross-layer optimization. In: Proceedings of FutureNetworkSummit (2013)

  16. Peng, S., Fangming, L., Hai, J., Min, C., Feng, W., Yupeng, Q.: eTime: energy-efficient transmission between cloud and mobile devices. In: Proceedings of IEEE INFOCOM 2013, pp. 195–199 (2013)

  17. Kaewpuang, R., Niyato, D., Ping, W., Hossain, E.: A framework for cooperative resource management in mobile cloud computing. IEEE J. Sel. Areas Commun. 31(12), 2685–2700 (2013)

    Article  Google Scholar 

  18. Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. doi:10.1109/TPDS.2014.2316834 (2014)

  19. Kumar, K., Liu, J., Lu, Yung-Hsiang, Bhargava, B.: A survey of computation offloading for mobile systems. Mob. Netw. Appl. 18(1), 129–140 (2013)

    Article  Google Scholar 

  20. Sanaei, Z., Abolfazli, S., Gani, A., Buyya, R.: Heterogeneity in mobile cloud computing: taxonomy and open challenges. IEEE Commun. Surv. Tutor. 16(1), 369–392 (2014). First Quarter

    Article  Google Scholar 

  21. http://content-fp7.eu/

  22. Tzanakaki, A., et al.: Virtualization of heterogeneous wireless-optical network and IT infrastructures in support of cloud and mobile cloud services. IEEE Commun. Mag. 51(8), 155–161 (2013)

    Article  Google Scholar 

  23. Hou, W., Yu, C., Zong, Y.: A novel dynamic virtual infrastructure planning for converged optical network and data centers under power outage and evolving recovery. Opt. Switch. Netw. 14(3), 209–216 (2014)

    Article  Google Scholar 

  24. Hou, W., Guo, L., Liu, Y., Song, Q., Wei, X.: Virtual network planning for converged optical and data centers: ideas and challenges. IEEE Netw. 27(6), 52–58 (2013)

    Article  Google Scholar 

  25. Wang, A., Iyer, M., Dutta, R., Rouskas, G., Baldine, I.: Network virtualization: technologies, perspectives, and frontiers. J. Lightwave Technol. 31(4), 523–537 (2013)

    Article  Google Scholar 

  26. MAINS project website. http://www.ist-mains.eu/

  27. Giatsios, D., Apostolaras, A., Korakis, T., Tassiulas, L.: Methodology and tools for measurements on wireless testbeds: the nitos approach. Measurement Methodology and Tools, LNCS, vol. 7586, pp. 61–80. Springer, Berlin (2013)

    Chapter  Google Scholar 

  28. Schupke, D.: Multilayer and multidomain resilience in optical networks. Proc. IEEE 100(5), 1140–1148 (2012)

    Article  Google Scholar 

  29. Chang, J., Lim, K.T., Byrne, J., Ramirez, L., Ranganathan, P.: Workload diversity and dynamics in big data analytics: implications to system designers. In: Proceedings of ASBD ’12 (2012)

  30. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. Katrinis, K.M., Tzanakaki, A.: On the dimensioning of WDM optical networks with impairment-aware regeneration. IEEE/ACM Trans. Netw. 19(3), 735–746 (2011)

    Article  Google Scholar 

  32. Davis, Z.: Power consumption and cooling in the data center: a survey (online). http://www.greenbiz.com/

  33. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computation save energy? Computer 43(4), 51–56 (2010)

    Article  Google Scholar 

  34. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: Proceedings of the 2010 USENIX, Berkeley, CA, USA, p. 21 (2010)

  35. Ardito, L., et al.: Profiling power consumption on mobile devices. In: Proceedings of the \(3^{{\rm rd}}\) International Conference on Smart Grids, Green Communications and IT Energy-Aware Technologies, pp. 101–106 (2013)

  36. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  37. Auer, G., Giannini, V.: Cellular energy efficiency evaluation framework. In: Proceedings of IEEE VTC (2011)

  38. http://www.oracle.com/us/industries/healthcare/058454.pdf?ssSourceSiteId=ocomjp

  39. 3GPP TS 23.203. Technical Specification Group Services and System Aspects

  40. Chang, J., Lim, K.T., Byrne, J., Ramirez, L., Ranganathan, P.: Workload diversity and dynamics in big data analytics: implications to system designers. In: Proceedings of ASBD ’12. New York, NY, USA, pp. 21–26 (2012)

  41. Fang, Y., Chlamtac, I.: Analytical generalized results for handoff probability in wireless networks. IEEE Trans. Commun. 50(3), 369–399 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the CONTENT (FP7-ICT- 318514) project funded by the EC through the 7th ICT Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markos P. Anastasopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastasopoulos, M.P., Tzanakaki, A., Rofoee, B.R. et al. Optical wireless network convergence in support of energy-efficient mobile cloud services. Photon Netw Commun 29, 269–281 (2015). https://doi.org/10.1007/s11107-015-0494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0494-2

Keywords

Navigation