Skip to main content
Log in

Erlangian approximation to finite time probability of blocking time of multi-class OBS nodes

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In an optical burst switching (OBS) network, the blocking time, representing the time interval during which the channel is occupied for a given class of incoming burst, is a key metric for performance evaluation and traffic shaping. In this paper, we study a horizon-based single-channel multi-class OBS node, for which the multiple traffic classes are differentiated using different offset time of each class. By assuming Poisson burst arrivals and phase-type distributed burst lengths and using the theory of Multi-layer stochastic fluid model, we obtain the Erlangian approximation for the finite time probability of the blocking time for a given class of burst in an OBS node. We further propose an explicit algorithm and procedure to calculate the Erlangian approximation. Numerical results are provided to illustrate the accuracy and the speed of convergence of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yoo, M., Qiao, C.: Supporting multiple classes of services in IP over WDM networks. In: Global Telecommunications Conference, 1999 (GLOBECOM’99), vol. 1B, pp. 1023–1027 (1999)

  2. Barakat, N., Sargent, E.: An accurate model for evaluating blocking probabilities in multi-class OBS systems. IEEE Commun. Lett. 8(2), 119–121 (2004)

    Article  Google Scholar 

  3. Hernandez, J.A., Aracil, J., de Pedro, L., Reviriego, P.: Analysis of blocking probability of data bursts with continuous-time variable offsets in single-wavelength OBS switches. J. Lightwave Technol. 26(12), 1559–1568 (2008)

    Article  Google Scholar 

  4. Kaheel, A., Alnuweiri, H., Gebali, F.: A new analytical model for computing blocking probability in optical burst switching networks. IEEE J. Sel. Areas Commun. 24(12), 120–128 (2006)

    Article  Google Scholar 

  5. Kankaya, H.E., Akar, N.: Exact analysis of offset-based service differentiation in single-channel multi-class OBS. IEEE Commun. Lett. 13(2), 148–150 (2009)

    Article  Google Scholar 

  6. Vu, H.L., Zukerman, M.: Blocking probability for priority classes in optical burst switching networks. IEEE Commun. Lett. 6(5), 214–216 (2002)

    Article  Google Scholar 

  7. Yazici, M. A., Akar, N.: Analysis of continuous feedback markov fluid queues and its applications to modeling optical burst switching. In: Proceedings of the 2013 25th International Teletraffic Congress (ITC) (2013)

  8. Morato, D., Izal, M., Aracil, J., Magana, E., Miqueleiz, J.: Blocking time analysis of OBS routers with arbitrary burst size distribution. In: IEEE Global Telecommunications Conference, 2003 (GLOBECOM ’03), vol. 5, pp. 2488–2492 (2003)

  9. Morato, D., Aracil, J., Hernandez, J.A., Garcia-Dorado, J.L.: On the blocking time distribution of core OBS switches. Photonic Netw. Commun. 18(3), 314–322 (2009)

    Article  Google Scholar 

  10. Anick, D., Mitra, D., Sondhi, M.M.: Stochastic theory of data handling system with multiple sources. Bell Syst. Tech. J. 61(8), 1871–1894 (1982)

    Article  MathSciNet  Google Scholar 

  11. Elwalid, A., Mitra, D.: Analysis and design of rate-based congestion control of high-speed networks, I: stochastic uid models, access regulation. Queueing Syst. 9(1–2), 29–63 (1991)

    Article  MATH  Google Scholar 

  12. Foreest, N.D., Mandjes, M., Scheinhardt, W.: Analysis of a feedback fluid model for heterogeneous TCP sources. Stoch. Models 19(3), 299–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. O’Reilly, M.M., Palmowski, Z.: Loss rates for stochastic fluid models. Perform. Eval. 70(9), 593–606 (2013)

    Article  Google Scholar 

  14. Badescu, A.L., Breuer, L., Soares, A.D.S., Latouche, A.G., Remiche, M.A., Stanford, D.: Risk processes analyzed as fluid queues. Scand. Actuar. J. 2005(2), 127–141 (2005)

    Article  MATH  Google Scholar 

  15. Badescu, A., Drekic, S., Landriault, D.: On the analysis of a multi-threshold Markovian risk model. Scand. Actuar. J. 2007(4), 248–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lina, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur. Math. Econ. 42(2), 617–627 (2008)

    Article  Google Scholar 

  17. Ramaswami, V.: Passage times in fluid models with application to risk processes. Methodol. Comput. Appl. Probab. 8(4), 497–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jones, G.L., Harrison, P.G., Harder, U., Field, T.: Fluid queue models of battery life. In: 19th Annual IEEE International Symposium on Modelling. Analysis, and Simulation of Computer and Telecommunication Systems, pp. 278–285 (2011)

  19. Stanford, D.A., Latouche, G., Woolford, D.G., Boychuk, D., Hunchak, A.: Erlangized fluid queues with application to uncontrolled fire perimeter. Stoch. Models 21(23), 631–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bean, N.G., O’Reilly, M.M., Sargison, J.E.: Stochastic fluid flow model of the operation and maintenance of power generation systems. IEEE Trans. Power Syst. 25(3), 1361–1374 (2010)

    Article  Google Scholar 

  21. Mandjes, M., Mitra, D., Scheinhardt, W.: Models of network access using feedback fluid queues. Queueing Syst. 44(4), 365–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahn, S., Badescu, A., Ramaswami, V.: Time dependent analysis of finite buffer fluid flows and risk models with a dividend barrier. QUESTA 55(4), 207–222 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Bean, N.G., O’Reilly, M.M.: Performance measures of a multi-layer Markovian fluid model. Ann. Oper. Res. 160(1), 99–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling. In: ASA SIAM, Philadelphia (1999)

  25. Asmussen, S., Avram, F., Usbel, M.: Erlangian approximations for finite time ruin probabilities. ASTIN Bull. 32(02), 267–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ramaswami, V., Woolford, D.G., Stanford, D.A.: The erlangization method for Markovian fluid flows. Ann. Oper. Res. 160(1), 215–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Teletraffic Engineering in a Competitive World. Proceedings of the 16th International Teletraffic Congress, pp. 1019–1030 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Tan.

Additional information

The work described in this paper was supported by National Natural Science Foundation of China (No. 61370107).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Tan, L. Erlangian approximation to finite time probability of blocking time of multi-class OBS nodes. Photon Netw Commun 30, 167–177 (2015). https://doi.org/10.1007/s11107-015-0508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0508-0

Keywords

Navigation